A NEURAL CONTROLLER FOR QUASI-RESONANT CONVERTERS
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Abstract. A neural controller implementing an energy feedback control law is proposed to improve
the stability and dynamic characteristics of the series resonant converter (SRC). The energy feedback
control is introduced and analysed in discrete time domain. A novel formulation of the control law
is suggested. The adaptive control law is learnt by an analog neural network (ANN). An easy imple-
mentation of this controller is proposed and applied to a SRC circuit. Simulation results show a good
improvement in the SRC response and confirm the validity of the controller.
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I. INTRODUCTION

Multi-Loop control schemes have been used to improve the
stability and dynamic characteristics of many different SRC
topologies (Ridley, 1991; Kim, 1991). These schemes imply two
feed—back loops : a fast inner one around the power stage and an
outer voltage feed—back loop via the error amplifier (see figure 1).

As a result, some quite remarkable improvements in the dy-
namic behaviour of the resonant converters have been achieved.
All these approaches analyse the response of the SRC when its
behavioural equations are linearized about its equilibrium state.
That is the reason why they fail to provide a good response when
changing its stable state. Stable adaptive laws for the adjustement
of parameters assure the global stability of the relevant overall sys-
tems.

Muitilayer networks have proved extremely successful in iden-
tification and control of dynamical systems (Narendra, 1990;
Quero 1990). They adaptively change their connections by means
of a learning algorithm. In this paper we show how a multilayer
perceptron (Rumelhart, 1986) is able to recognize the state of the
SRC and to provide the switching schedule that ensures optimal
response.

This paper is organized as follows: section 1l deals with mod-
eling of SRC’s and energy feed-back control. In section III, the
multilayer perceptron and its dynamic learning algorithm are in-
troduced. Section IV is devoted to describing the proposed con-
trol scheme. Section V shows the simulation results using Hspice
( Hspice, 1987 ). Finally, in section VI some ideas are given for
future work.

II. DISCRETE TIME DOMAIN MODELING OF ENERGY
FEEDBACK CONTROLLED SRC

Development of this neural controller is illustrated in this sec-
tion by its application to the SRC circuit shown in figure 1.

Basic operation of a SRC

Many authors (Kim, 1991; Elbuluk, 1988) have analysed the
steady state operation of the SRC. In this subsection a brief de-
scription of the behaviour of this converter is included. Figure
1 shows a SRC with the control switch implemented by transis-
tors Q; @2 @3 Q¢ and their antiparallel diodes D1 D2 Da D4
respectively. The transistors are triggered in a time sequence as
illustrated in figure 2.
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Figure 1: Schematic diagram of SRC with proposed multii

loop control.



Figure 2: Waveforms of a SRC for different conduction intervals.

All the transistors are driven with 30% of duty cycle gating
signals. Transistors @,, @3 are triggered according to a clock
signal whose frequency determines the operating frequency of the
converter. Transistors @, Q. are triggered with a controllable time
delay with respect to the triggering of @,, Q3.

A typical circuit operation of a SRC is filustrated in figure 2.
At t=0 transistors @, and Q turn on, while all diodes are off.
At t = T1, i¢ decreases to zero, due to resonance, and diodes
D1, D3 begin to conduct. The first half switching cycle finishes
at t = T,/2. At the beginning of the second half of the switching
cycle, the transistors @, and Q4 aretriggered and a similar process
occurs with the roles of @y, Q3, Dy, Q3 and Qz, Q4, D2, Qs
interchanged, respectively.

Dynamic modeling

Very little work has been done in the area of dynamic modeling
of a resonant converter. A general sample data representation of
power electronic circuit dynamics has been used (Elburuk,1988)
to model the discrete time domain behaviour of the SRC. The
discrete time domain modeling is carried out under the following
asumptions:

¢ All components are ideal.

e The input voltage v;, tbe output voltage v, and the control
INput Y.y are sonstant.

o The turns ratio transformer is 1:1.

The series converter goes through four switch configurations every
cycle. Each configuration has a linear time invariant (LT}) state-
space description of the form
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and where

Ai,B: coefficient matrices, and the subscript  is the number of
the switching configuration,

tr end of the kth cycle and the beginning of the (k¥ + 1)th cycle,

T%.. time from the end of the kth cycle till the end of the ith
switching configuration,

te is the switching period T,.

The state vector z is continuous across each change in the
switcb configuration: the final state in one configuration is the
initial state in next. Therefore, by comhining the solution of 1 for
the switch configuration over a cycle, a large signal model that
describes the state z{tx+,) at the end of the (k¥ + 1)th cycle in
terms of the state z{,} is given by the following:
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Tk is a vector composed of indirectely controlled transition
times (T, and Ti3). These aretimes that depends on the state
trajectories of the system, specifically, when the inductor current
goes to zero and turns off the diode that is on, as given by the
following threshold equations:
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Pi is a vector of controlling parameters. These include the
circuit parameter and the directly controlled transition times (T} 2
and Tg.q).

All the computations involved in deriving this model can be
carried out using symbolic manipulation programs like Macsyma,

as Verghese (1986) suggests.

Energy Feedback Control Law

The proposed energy feedback control law is of the form:

(8)
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where [, is the energy feedback gain ratio.



Expressions 4 and 8 can be linearized and combined to provide
the small signal sampled data modeling. Analysing the eigenval-
ues of the characteristic equation of the resulting dynamic transfer
function, a critical f., can be found. When [, is less than the
critical value, the response of the controlled system after a distur-
bance is underdamped, and overdumped when [, is greater than
the critical f,, {Kim, 1991). The critical f,. is given by :
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The above critical f,, can also be derived from the optimal
trajectory eontrol law (OTCL) (Oruganti, 1987)

From 4 and 9 an adaptive version of the optimal trajectory
control law is obtained:
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ITl. MULTILAYER NETWORKS

A typical multilayer network with a hidden layer is shown in
figure 3, where v is the sigmoidal transfer function [i.e., y(z) =
1 —e /1 + e %] and W* are weight matrices. Each unit that
composes the network can be regarded as a filter that sums up its
input signals linearly, according to

0; =Z:“-'ji°i (11)

it has been shown (Hornic,1988), using the Stone-Weierstrass
theorem, that a two layer network with an arbitrarily large number
of nodes in the hidden layer can approximate any continuous func-
tion f¢C(R",R™) over a compact subset of R™. In order to obtain
a desired set of connections that approximates a given function,
the backpropagation learning algorithm (Rumelhart,1986) can be
used. The weight on each line should be changed by an amount
proportional to the product of an error signal é available to the
unit receiving input along that line and the output of the unit
sending activation along that line.
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Figure 3: Schematic representation of a two layer network.

The determination of the error signal is a recursive process
which starts with the output units,

<
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where #,; s the jth component of the desired output when
the input pattern p is applied to the neural net and v'() is the

derivative of the transfer function. The error signal for hidden
units for which there is no specified target is
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3 P

V. CONTROL SCHEME

The proposed control scheme is presented in figure 4. The
state variables 2z and vc and the parameters vepn,, v, and v, are
fed into the ANN, which calculates an approximation of the error

Ajwy; = 6,50 (12)  signal e given hy 10.
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Figure 4: Proposed centrol scheme.



The ANN is previously configured in a learning phase. This
procedure is carried out using random input signals uniformly dis-
tributed within the ranges of interest. When this phase is finished,
the connections W are networks of resistors and the sigmoidal
transfer function can be realized using CMOS inverters, leading
to an easy implementation.

V. SIMULATION RESULTS

In order to evaluate the performance of the neural controller,
it is applied to a full-bridge series resonant converter, The param-
eters of the cenverter are:

30v
12v

L=0.113ml
C=0120uF v,

The ANN used to implement the controller belongs to class
Nag, (three inputs, eight hidden units and one output unit). Dur-
ing the learning process, the following intervals for the generation
of random inputs are used:

Veoms € [1.0,4.0] ve ¢ [-100,100] i €[5,5]

The values of the error function e are limited by the maxi-
mum and minimum values of the sigmoidal transfer function. No-
tice that we are only concerned with the zero-crossing of the ez-
ror function. During the learning phase, the ANN is trained for
100.000 time steps before it is being applied to the SRC.

Hspice is being used to simulate the whole circuitry. The SRC. -sea.es

is simulated using a constant f,, controller and the proposed neu-
ra} one in order to compare its responses to a change in the refer-
ence. The transient output current of the etiergy feedback control
with f,, = 0.2 for the step change of v, from 1.2 to 3.75 can be
seen in figure 5, showing a undesirable underdamped behaviour.

In figure 6 an improved transient response is obtained when
using the neural controller. The evolution of f,, is presented in
figure 7. When the transistors are triggered, f,, evolves from 0.76
to 0.52, corresponding to the optimal values predicted by 9.

VI. CONCLUSIONS

A neural controller utilizing the resonant tank energy as an
adaptive contro] law is proposed to improve the stability and dy-
namic characteristic of the series resonant converter. The con-
troller supervises the state of the converter and generates the
switching schedule that provides optiinal trajectory control. Simu-
lation results confirm the validity of the controller. The electronic
itnplementation of the neural controller is based on the integra-
tion of a sct of inverters iuterconnected with constant resistors.
Although the proposed coutroller is being applied to an specific
converter, the design can be casily generalized 10 any kind of res-
onant converter.
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Figure 5: Transient output current response to a change of veon,
from 1.2 to 3.75 when using constant f, = 0.2.
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Figure 6: Transient output current response to a change of vVeon
from 1.2 to 3.75 when using the neural network controller.
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Figure 7: Evolution of f., when the state variables change.
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VII. NOMENCLATURE

Switching period.

Current in resonant tank inductor.
Voltage on resonant tank capacitor.
Resonant tank inductance.

Resonant tank capacitance.

Subscript used to indicate the [K-th event
Input voltage.

Output voltage.

Discrete state variables.

Characteristic impedance Z=,/L/C
Energy feedback gain ratio

Output d neuron j.

Connection between neuron i and j

Pattern currently presented to the network.

Learning step size.

Difference between the target and the output
of the network {t-o0).

Desired output,

Sigmoidal transfer function.
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