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Abstract. A neural controller implementing an energy feedback control law is proposed to improve 
the stability and dynamic characteristics of the series resonant converter (SRC). The cnert)' feedback 
control is introduced and analysed in discrete time domain. A novel formulation of the control law 
is suggested. The adaptive control law is learnt by an analog neural network (ANN). An easy imple· 
mentation of this controller is proposed and applied to a SRC circuit. Simulation results show a good 
improvement in the SRC response and confirm the validity of the controller. 
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I. INTRODUCTION 

Multi-Loop control schemes have been used to improve the 
stability and dynamic characteristics of many different SRC 
topologies (Ridley, 1991; Kim, 1991). These schemes imply two 
feed-back loops: a fast inner one around the power stage and an 
outer voltage feed-back loop via the error amplifier ($Ce figure I). 

As a result, some quite remarkable improvements in the dy· 
namic behaviour of the resonant converters have been achieved. 
All these approaches analyse the response of the SRC when its 
behavioural equations are linearized about its equilibrium state. 
That is the reason why they fail to provide a good response when 
changing its stable state. Stable adaptive laws for the adjustement 
of parameters assure the global stability of the relevant overall sys
tems. 

Multilayer networks have proved extremely successful in iden
tification and control of dynamical sy5tems (Narendra, 1990; 
Quero 1990). They adaptiveJy change their connections by means 
of a learning algorithm. In this paper we show how a multilayer 
perceptron (Rumelhart, 1986) is able to re<XllI:nize the state of the 
SRC and to provide the switching schedule that ensures optimal 
response. 

., " 

This paper is organized as follows: section 11 deals with mod
eling of SRC's and energy feed-back control. In section III, the 
multilayer perceptron and its dynamic learning algorithm are in
troduced. Section IV is devoted to describinll: the proposed con
trol scheme. Section V shows the simulation rc:sults using Hspice 
( Hspice, 1987). Fina!ly, in section VI some ideas are given for 
futUre work. 

II. DISCRETE TIME DOMAIN MODELING OF ENERGY 

FEEDBACK CONTROLLED SRC 

Development of this neural oontro!ler is illustrated in tbis sec
tion by its application to the SRC circuit shown in figure 1. 

Basic operation of a SRC 

Many authors (Kim, 1991; Elbuluk, 1988) have analysed tbe 
steady state operation of the SRC. In this subsection a brief de
scription of the behaviour of this converter is included. Figure 
1 shows a SRC with the control switch implemented by transis
tors QI Q2 Q3 Q. and their antipara!!el diodes 01 O2 03 O. 
respectively. The transistors are trigger<.'<1 in a time sequence as 
il!ustrated in figure 2. 
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Figure I: Schematil diagram of SHe witl, prophSt!d lIlulti· 
loop control. 
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Figure 2: Waveforms of a site for different conduction intervals. 

All the transiston are driven with 50% of duty cycle gating 
signals. Transistors Q,. Q3 are triggered according to a clock 
signal whose frequency determinl'!ll the operating frequency of the 
converter. Transiston Q, Q. are triggered with a controllable time 
delay with respttt to the triggering of Q" Q). 

A typical circuit operation of a SRC is nJustrued in figure 2. 
At t""O transistors Q, and Q3 turn on, while all diodes Are off. 
At I = T1, II. decreases to uro, due to resonance. and diodes 
DI, D3 begin to conduct. The first hlJ( switching cycle finishes 
at f = T./2. At the bqinning of the second half of the switching 
cycle, the transistors Q2 and Q. are triggered and a similar process 
occurs with the roles of Q" Q3, D" Q3 &lid Q" Q., D2, Q. 
interchanged, respectively. 

Dynamic modelin!!j 

Very little work hIlS been done in the area of dynamic modeling 
of a fe!1Onant converter. A general sample data representation of 
power electronic circuit dynamics ha.s been used (Elburuk,J988) : 
to mudcl the discrete time domain behaviour of the SRC. The 
discrete time domain modeling is carried Out under the following 
a.!1umptions: 

• All components are ideal. 

• The input \"Oltage v" tbe output voltllge v. and the control 
input v""" are constant. 

• The turns ratio transfor,.,er is 1:1. 

The series converter gen through four switch configurations every 
cycle. Each configuration hAll a linear time in\'ariant (LTI) state
space description of the form 

A.;r(t)+IJ,u(l), ,=1.2,3,4 

( 1 ) 

where 

(2) 

and where 

'It) = [ "�I
t) 1 

v.(t) (3) 

A"B, coefficient matrices, and the sub$Cript i is the number of 
the switching configuration, 

I� end of the klh cycle and the beginning of the (k + l)th cycle, 

T�., time from the end of the klh cycle till the end of the ith 
switchin$ conllguration. 

I� .• is the switching period T,. 

The state vcctor :t" is continuous across each change in the 
switcb configuration: the final Slate in one configuration is the 
initial state in nell"t. Therefore, by comoining the solution of J for 
the switch configuration over a cycle, Il large signal model that 
describes the stale :t"(I�+I) ill the end of the (k + 1)lh cycle in 
terms of the stille :«1.) is gi\'<:n by the follo ..... ing: 

where 

V.(I) 

v.(I) 
L 
c 

7:'" 
T� .• 

( ') 

(5) 

(6) 

r. is a veetor composed of indireetdy controlled transition 
times (T •. 1 and Tu). These are times thaI depends on the state 
trajectories of the system, specifically, when the inductor current 
goes to zero and turns off the diode that is on, as given by the 
following threshold equations: 

id1t+Tt.l) = 

idt� + Tk.3) 

cdz(t�, P�, Tin 0 
cl(z(t.,P.,Tk» = 0 (7) 

p� is a vcctor of controlling parameters. These include the 
circuit parameter and the directly controlled transition times (Tu 

and TiA). 

All the computations involved in deriving this model can be 
carried Ollt using symbolic mllllipuilltion programs like Macsyma, 
as Verghese (J9S6) suggests. 

Ener&>, Feedback Control Law 

The proposed energy feedback control ],ny il of the form: 

(8) 

where I •• is the I'I1t'rg,v r��lback gain ratio. 



Exprel5sions 4 and 8 can be lineari2ed and combined to provide 
the small signal sampled data modeling. Analysins the eiSenval
ues of the characteristic equation of the rC$ulting dynamic transfer 
function, a critical f .. can be found. When f .. is Ie" than the 
critical value, the rC$ponse of the controlled system after a distur· 
bance is underdamped, and o\'erdumped when f .. is sreater than 
the critical f .. (Kim, 1991). The critical f .. is given by: 

'c 
f •• I ... , = 

+ + vc v, v. 
(9) 

The above critical f .. can also be derived from the Olltimal 
trajectory control law (OTCL) (Oruganti, 1987) 

From 4 and 9 an adaptive l'Crsion of the optimal trajectory 
control law is obtained: 

(10) 

Ill. MULTILAYER NETWORKS 

A typical multilayer network with a hidden layCT is shown in 
figure 3, where 1 is the sismoidal tran,fer function [i.e., 1(r) = 

I - e-� /1 + e-�J and lV' are weight malrices. Each unit that 
composes the network can be regarded as a !ilter thal sums up its 
input signals linearly, &(cordins to 

(J I) 

[t has been shown (Hornic,1988), using the Stone-WeieTlltrass 
theorem, that a two layer network with an I\rbitrarily large number ; 
of nodell in the hidden layer can approximate any continuous func
tion f cC(1V', n ... ) over a compact subset of X". In order to obtain 
a dCliired set of connections that approximAtes a gil'en function, 
the ollckproplIglltlon lellrning IIlgorlthm (Rumelharl.1986) can be 
used. The weight on each line sholild be chllnged by an amount 
proportional to the product of an error signal 6 available to the 
unit r«eiving input along that line and the output of lhe unit 
sending activation aloug that liue. 

(12) 
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Fisure 3: Schematic representation of a two layer network. 

The determination of the error signal is a recursive procelS 
which starts with the output units, 

(13) 

where I" is the jth component of the dCliired output when 
the input pattern p is applied to the neural net and 1'() is the 
derivative of the transfer function. The error signal for hidden 
units for which there ill no specified target is 

(\1) 

IV. CONTROL SCHEME 

The proposed control scheme is prCliented in fisure 4. The 
stale variables It. and Io'C and the parameters v_" v, and v. are 
fed into the ANN. which calculates an approximation or the error 
signal e gh'en by 10. 
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Figure 1 J>roll(."'od c(Jutr(Jl .. d'n ne. 



The ANN is previously confisured in a learnillS phase. This 
procedure is carried out usinS r .. ndom input Ilsn .. 1s uniformly dis
tributed within �he rans:es of int('rr:st. When this phase is finished, 
the connection. IV .. re networks of resinors and the sis:moidal 
transfer function can � realiud usinS CMOS inverters, leadint; 
to an easy implementation 

V. SIMULATIO� RESULTS 

In order to e\· .. lu .. t(' the p('rformancc of thc neural controller. 
it il applied to II full.brid!c series rC$Onant colwerter. The paramo 
eters of the c;onverter IIrC; 

L = 0.113mll II, _ 3011 

C = O.I20IlF II. = 12u 

The ANN used to implement the controller belons:s to class 
"'U.I (three inputs, eiSht hidden units and

.
one output uniL). Our· 

ins: the learnins: process, the followinS intC'!"vals for the s:eneration 
of random inpuls are used: 

Ilc t 1-100, 100) 

The nlues of the C'!"ror function e are limited by the maxi· 
mum and minimum nlues of the lismoid .. l transfer (unction. No
tice that .... e are only concerned with the zero-crossins of the er· 
ror function. Durins the learnins phase, the ANN is trained for 
100.000 time Itepi before it it �ins applied to the SRC. 

IIspice il beinS used to simulate the whole circuitry. The SR� 
is simulated usinS a constant I •• controllC'!" and the proposed neu· 
ral one in order to compare it. respon5('l to a change in the refer· 
ence. The transient output current of the ellergy feedback control 
with I .. "" 0.2 for the step chanse o{ 11« .. " from 1.2 to 3.75 can be 
seen in fisure 5. $howins a undesirable underdamped behaviour. 

In fisure 6 an improved tran.ieul resl"lnse is obtained when 
usinS the neural controller. The evolution of I ... is presented in 
figure 7. When the trantittors are trisscred, I •• evohoes from 0.76 
to 0.52, correspondins to the optimal nlues predicted by 9. 

VI. CONCLUSIONS 

A neurAl controller IItililins the resonant tank eners,y as an 
adapth'e control law il pro� to improve the stability J.nd dy· 
namic dlluJ.Cteristic of the M'ries Il'SOnant converter. The con· 
troller sUIJI.·rl'iso tht' state of the COIII'CTtt'r and generalCli the 
Iwitchins schedlllt' that provides optilnllJ tr ... jectory control. Simu· 
lJ.tion resulu confirm the \·alidity of the controt1er. The electronic 
irnillenu�ntillion of thl' nenl·1I1 conlrolkr is bl'l.SC<i on the intesra· 
lion of a set of il)\'\'l"tCI"I interconnected \\'ith constant rninon. 
Although the IITOr10&i'd cOl1troller is beiliS applied 10 an specific 
COI1\'('rll'r, the design elln be casily gl'lwTaliozed to any kind of res· 
onllnt colII'Crter. 
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Figure 5: Transient oulput current response to J. chanse of "_, 
from 1.2 to 3.75 when usinS const"'"t I .. = 0.2. 
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Figure 6; Transient output current response to ... chanse of "_, 
from 1.2 to 3.75 when usinS the neural network controller. 
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Figure 7: E\'Ollltioli o{ I •. when the state variables change. 



VII. NO�IENCLATURE 

T, Switching period. 

. , Current in resonant tank inductor . 

·c VoltAge on resonant tank capAcitor. 
L Resonant tank inductance. 
C Resonant tank capacitance. 
, Subscript used to indicate the I(-th e\-ent 

•• Input voltage . 

•• Output voltage . 
Z.(!A) Discrete state \·ariables. 

Z Characteristic impedance Z:J LIC 
f •• 

Enerll:Y feedback gain ratio 

'. Output of neuron j. 
W;j Connection between neuron i and j 
p 

, 
, 

, 

r 

PAttern currently presented to the network. 
Learning step site. 
Difference between the tarll:et and the output 

of the network (t·o). 
Desired output. 
SigmoidAl transfer function. 
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