
Carlos Jesús Jiménez-Fernández
Dpto. Tecnología Electrónica

Universidad de Sevilla
Instituto Microelectrónica de Sevilla

IMSE-CNM CSIC/US
Sevilla, España

cjesus@imse-cnm.csic.es

Alejandro Gallardo Soto
Dpto. Tecnología Electrónica

Universidad de Sevilla
Sevilla, España

alegallardo@us.es

Carmen Baena Oliva
Dpto. Tecnología Electrónica

Universidad de Sevilla
Instituto Microlectrónica de Sevilla

IMSE-CNM CSIC/US
Sevilla, España

baena@imse-cnm.csic.es

Francisco Eugenio Potestad Ordóñez
Instituto Microlectrónica de Sevilla

IMSE-CNM CSIC/US
Sevilla, España

potestad@imse-cnm.csic.es

Pilar Parra Fernández
Dpto. Tecnología Electrónica

Universidad de Sevilla
Instituto Microlectrónica de Sevilla

IMSE-CNM CSIC/US
Sevilla, España

parra@imse-cnm.csic.es

Manuel Valencia Barrero
Dpto. Tecnología Electrónica

Universidad de Sevilla
Instituto Microlectrónica de Sevilla

IMSE-CNM CSIC/US
Sevilla, España

manolov@imse-cnm.csic.es

Abstract—The learning of digital design at the RT level by
the students improves with practical work, which can be
developed in teams, allow both the gradual advance of
complexity as the learning progresses, and the proposal to be
attractive to them, such as playing simple games. FPGAs and
development boards offer a very suitable platform for the
implementation of these designs. This paper presents a work
in the Advanced Digital Design course (4th year of the Degree)
consisting of the construction of a slightly adapted version of
the game "Simon Says" in which the player must memorize a
sequence that becomes more difficult for as levels pass. The
work, which occupies the second half of the semester, is
carried out by teams of three students and must have a
demonstrator implemented on a Digilent Nexys4-DDR board.

Keywords— VHDL, design of digital systems, games in
VHDL, FPGA.

I. INTRODUCCIÓN

The subjects of digital design in the last degree courses
in electronic degrees allow the use of FPGA device and
hardware description languages as a platform to
experimentally test the designed circuits. This methodology
has many advantages. One of them is the use of a single
CAD environment for the design, verification and
programming of the devices. In addition, the software is
offered free of charge for educational use by the
manufacturers of FPGA. Another advantage is the
availability of development boards, which include, in
addition to the FPGA, display and interface elements that
allow input values to be input and output results to be
viewed. With all this, teaching of digital design with the
VHDL-FPGA tandem is an alternative with an acceptable
cost and, above all, very practical and highly attractive to
students.

In the Advanced Digital Design course of the fourth year
of the Degree in Industrial Electronic Engineering, taught at
the Higher Polytechnic School of the University of Seville,
the student is intended to learn the most important concepts
of digital design. It is taught how to describe digital circuits
using the VHDL hardware description language and how to
implement them on FPGA devices (in our case from
Xilinx).

The student has to carry out a proposed project on a
Digilent Nexys4-DDR development board available in the
laboratory.

In this communication we present a proposal carried out
as teamwork within the subject. It is about the development
of a game of skills and memory similar to the well-known
"Simon Says". Since the design is quite complex, it is
carried out as a second work of the subject and it is
developed by teams of three students. In each team a
distribution of tasks is proposed between the components
both at design and verification level, which will train
communication, leadership and collaborative work skills.

This work involves learning multiple concepts since, in
addition to the VHDL designs themselves, it is necessary to
use an additional module consisting of an LED matrix that
has to be connected to the development board to display the
sequential images that are part of the game.

The structure of this communication is as follows: the
second section explains the mechanism of the game. Section
III details the design to be carried out by the students. In
section IV, the implementation and the experimental results
are presented. Finally, the conclusions are summarized.

II. GAME SPECIFICATIONS

The task at work, as previously mentioned, is to emulate
the well-known game "Simon Says".

The goal of this game is to remember in order a sequence
of events that occur and be able to reproduce it. The length
of this sequence of events is progressively increased as you
advance in the game. In our case, the events to memorize
are five different drawings, specifically: a circle and four
arrows: up, down, right and left that will be displayed in a
8x8 led matrix. This matrix is inserted in a board (“Fig. 1”)
that is the result of a previous work and it is connected to
the Nexys4 through the PMODS ports.

The images displayed on the LED matrix are generated
in a (pseudo)random way. It starts with a single image that
must be remembered and returned by the player. In the next
step, which involves going up a level, a new image is added
and displayed in sequence with the previous one and so on,
with one image added each time a level is passed. The

number of images in the sequence represents the level
reached, which is displayed on the Nexys4 7-segment
displays. In case of failure, a new game is started with a new
and different sequence.

Each image must be visible for a certain reasonable time,
then it is turned off, the next event is shown, it is turned off
again and so on for all the drawings of that level. Once all
the images are shown, the player will be expected to repeat
the sequence.

To replay the sequence, the player must press one of the
five buttons on the Nexys4 board (one per event). The five
buttons are arranged on the board as a cross, which makes it
easier to associate each of the buttons at the edges with the
direction of each arrow and the central button with the
circle. If the sequence is correct, it goes to the next level, but
if it is incorrect, an X must be shown on the LED matrix and
the game is over.

The status of the game is indicated by three colors of a
colored LED included in the Nexys4. A blue led will light
up when it can be pressed, green when it is pressed correctly
and red when it has failed.

In the following section we will describe the system to
be developed.

III. SYSTEM DESIGN

Below are the most significant details of the system that
the team of students has to design. The main module called
"simon_says" (“Fig. 2”) consists of the following inputs and
outputs.

Starting with the inputs, we have:

 clk: clock signal, the Nexys4 board clock,
which is 100 MHz.

 reset: Asynchronous reset signal active on
high. It will be connected to the switch SW0
on the board.

 btnu, btnd, btnr, btnl y btnc: which will be
connected to the buttons on the board.

 start_game: It will be connected to the switch
SW1 on the board.

Regarding the outputs:

 row: 8 bits indicating which row of the LED
matrix will illuminate.

 col: 8 bits indicating which LEDs will light for
a particular row of the LED array.

 led_r, led_g: signals to set the tricolor led to
red or green depending on the game status.

 an: 8 bits that enable the activation of each of
the 7-segment displays on the board.

 ca, cb, cc, cd, ce, cf, cg: signals that control the
segments of each display.

It is recommended that the design has a hierarchical
structure, with the following modules: rom_simon,
ram_data, lfsr_16, debounce_cod, bin2bcd, bcd7seg
(“Fig. 3”).

The rom_simon module consists of a ROM that will
store the encoding of the images to be displayed on the 8x8
LED array. Each symbol requires 8 rows of 8 bits. At least
seven images must be stored: the five that can be part of the
game sequence, the X to indicate failure and another to turn
off the whole array. Therefore, a 64 word 8-bit ROM with
addr_row address bus and data_row data bus will be
generated. The seven images referred to are shown in "Fig.
4". To generate the content of the ROM, an LED matrix
editor can be used.

The ram_data module is a RAM memory with double
port, one for writing and another for reading. In this memory
the pseudo-random sequence of drawings to be remembered
will be stored. The maximum number of values to remember
will be 128 and as there are 5 possible values, 3 bits are
needed to code them (codes from 0 to 4). Therefore, this
memory is a 128-word RAM of 3 bits with addra and addrb
address buses and dia data buses for writing and doa, dob
for reading.

The sequence of images to remember is generated in a
pseudo-random way and it is stored in the ram_data module.
In order to generate this sequence, we are going to use the
lfsr_16 module. It is a shift register with linear feedback:
with the reset an initial value is loaded and in each clock
cycle a shift is made from the less significant bit to the more

Fig. 2. Block diagram of module simon_says.

reset

clk

start_game

btnu

btnd

btnr

btnl

btnc

row<7:0>

col<7:0>

ledr,ledb,ledg

ca,cb,…cg

 an<7:0>

Main module

simon_says

Fig. 1. Board containing 8x8 LED matrix

significant bit. The least significant bit is loaded with the
XOR operation of the several bits register itself. This design
introduces the XOR operation of the bits 10, 12, 13 and 15.
The initial value to be loaded when resetting cannot be all
the bits at zero.

This module has as inputs the clock and the reset and as
output the 16 bits of the shift register of which, the three
most significant ones, are connected to the input data bus
(dia) of the RAM for writing.

For the system to work properly it is essential to
eliminate the bouncing that occurs when a button is pressed
and released because otherwise the circuit will interpret it as
if it had been pressed twice and therefore detect an incorrect
sequence. Five bounce filter circuits are used, one for each
button, named debounce_u, debounce_d, debounce_r,
debounce_l and debounce_c. The students can choose the
specific form of implementation but must explain how they
have designed it.

The debounce_cod module has two functions: first, it
provides a split clock signal to the debounce modules, so
that they consume less resources. Secondly, it provides the
simon_dice design with a 3-bit signal where the button
pressed is coded (5 codes) and a different code that indicates
if more than one button has been pressed at the same time.
Please note that the code must match the one stored in the
ram_data and the display in the 8x8 LED matrix.

Finally, code converters are used to display on the
Nexys4 7-segment displays the level of play as you
progress.

The entire system is written in VHDL code. This
includes, on one hand, the description of the modules
already presented, and on the other hand, the description of
the main module simon_says. In this last one, the
connection between the modules of the hierarchy is made
and the definition of several processes is included. These
are, the generation of the pseudo-random sequence, the

writing of the RAM with the random sequence, and the
control of the game: start of the image display process,
capture of the player's clicks, check of coincidences, storage
of the achieved level, level advance or failure detection and,
in short, all the necessary tasks for the game operation.

As for the generation of the pseudo-random sequence it
is recommended, to simplify the process, that every time a
game is started the pseudo-random data of the 128 levels are
generated and written in the ram_data. To do this, in a
process the 3 most significant bits of the output of the
component lfsr_16 are taken. If the value is between 0 and
4, it writes it into memory. Otherwise, it lets 8 clock cycles
pass and takes another data. When the 128 values have been
written, it will set a signal to '1' indicating that the different
phases of the game can begin.

It is recommended that all phases of the game be
controlled in one process. This process will have to do the
following tasks:

 The process will have to be started when no
game is being played and the start_game
signal is set to '1'.

 Once started, the sequence to be remembered
must be displayed on the 8x8 LED matrix. To
do this, it will keep the corresponding image
for a certain time, then it will keep the matrix
off for a certain time and then it will show the
next image, and so on until it has shown all the
images corresponding to the level in which the
player is.

 Then check the sequence of buttons pressed.
This phase starts with the lighting up of the
blue led. Then, every time it is correctly
pressed, the green led lights up.

Fig. 4. Images of the game on 8x8 LED matrix.

addr_row

rom_simon

6 8

data_row

wea

ram_data

7
3

7
3

3

ena enb

addra

addrb

dia

doa

dob

btnu
btnd
btnr
btnl
btnc

ck

debounce_cod

3

lsfr_16
ck

reset

3_MSB

data_random

16

level_game conv
bin/bcd

conv
bcd/7seg

ca
cb
.
.
.

cg

Fig. 3. Most significant internal blocks of the main module.

 If the sequence is correct, the level is increased
and the same sequence as above is displayed
by adding one more.

 If the sequence is incorrect, the matrix shows
the fault indication (X) and the red LED lights
up.

 Finally, wait until the start_game entry is set to
'1' to generate a new pseudo-random sequence
and start again.

To display the images on the 8x8 LED matrix, it is
recommended that this is done by reading the rom_data
memory directly. To do this, the process that controls the
operation of the game sets the 3 most significant bits of the
address bus of the rom_data memory (information read from
the ram_data memory), to indicate the image to be displayed
in the array. The three less significant bits are changed
sequentially and used to decode the array row (row output).
At each moment, the value of the column of the array
(output col) will be the value stored in the corresponding
address of the memory rom_datos.

For example, assuming that the left arrow starts in the
lowest directions in memory, we would have its 8 rows in
the binary directions "000_000" to "000_111". If the right
arrow is the following its directions would be "001_000" to
"001_111", and so on. Therefore, if the left arrow is to be
displayed, the process controlling the game phase would set
the three most significant bits ("000") and another process
would cyclically generate the three least significant bits
("000" to "111"), so the values would be read from the ROM
and displayed in the matrix.

The following section details how the work has been
implemented within the subject.

IV. IMPLEMENTATION AND RESULTS

This work is developed as a team task, to be developed
as part of the non-presential credits.

The team, formed by three students, receives the
necessary documentation that includes: objectives of the
work, general description of the game, description of the
design to be made with indications of how to carry it out and
instructions for the verification of the system. They are also
encouraged to make variations of the game and add it as a
complementary design.

Students have one month to complete the work, during
which they can attend tutorials.

The design environment they should use is lSE Design
Suite 14.7 from Xilinx. To use it, they can access the course
lab where, in addition, they are provided with the
development boards and the board with the LED matrix.

As a result of the work they must deliver:

 A zip file containing the design of the
complete project. This must contain the design
files and all the test_bench files used, also the
pin restriction file. In addition, they must
deliver the ".bit" board programming file.

 A document that details in a clear and concise
way how each of the designs has been made,
detailing the strategy followed to make the
debounce circuit and explaining how the

process of the game phases has been carried
out.

 A table with the work done by each student.

 A list of the most significant difficulties found
and how they have been resolved.

Once the work has been finished, all teams must hold
meetings with the teacher to defend it. The evaluation takes
into account the contribution of each student to the project
and, although it is a team work, the grade is individual.

Below are some photos obtained after the
implementation, where you can see the system in operation
at different stages of the game.

Specifically, "Fig. 5" shows the board with the FPGA
already programmed at the moment immediately before the
start of the game.

In the "Fig. 6-8" you can see the board in three different
levels of play and with the matrix showing some of the
symbols.

Finally, "Fig. 9" shows the board in the player's fault
situation, which is identified by the red diode on and the
cross shown in LED matrix.

V. CONCLUSIONS

With this work proposal, the student is confronted with
the development of a sufficiently complex design based on
some very general indications. In addition, the student
carries out the complete process of design, that is to say, the
writing of the VHDL code, debugging of errors, writing of
the stimulus file (testbench) that allows the functional
simulation, the implementation in the board and its
experimental check.

Emphasis is placed on teamwork, which includes the
ability to establish an appropriate distribution of tasks and
roles, as well as the development of oral communication
skills, both among classmates during the development of the
activity and with the teacher when presenting results.

As another conclusion, it can be added that the students
successfully carry out the work, even proposing specific
modifications or extensions in some cases.

ACKNOWLEDGEMENTS

This work has been partially supported by the project
INTERVALO (TEC2016-80549-R).

REFERENCES

[1] The teaching project can be consulted at the link:
https://www.us.es/estudiar/que-estudiar/oferta-de-grados/grado-en-
ingenieria-electronica-industrial/2010034 (accessed in March
2020).

[2] LED matrix editor: https://xantorohara.github.io/led-matrix-editor/

[3] The Nexys4 development board specifications can be found at:
https://reference.digilentinc.com/reference/programmable-
logic/nexys-4-ddr/reference-manual

Fig. 5. Board before the start of the game.

Fig. 6. Board at level 1 game.

Fig. 7. Board at level 2 game.

 Fig. 8. Placa en el nivel 3 del juego.

Fig. 9. Placa en el instante de fallo del jugador.

