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Abstract 
Companies in charge of water supply networks are making a huge effort to optimally plan the 
annual replacements of pipes. This would save costs, enable a higher quality of service and a 
sustainable management of infrastructure. 
This study presents a methodology to predict pipe failures in water supply networks. Logistic 
regression and support vector classification are chosen as predictive systems. Both provide a 
failure probability associated with each sample which is increasingly required by companies 
that manage these infrastructures. Furthermore, several pre-processing techniques that seek 
to improve the accuracy of predictions are addressed. 
The proposed methodology is illustrated with the real case of a Spanish city. This is an 
extensive water supply network whose recorded data contains 4,393 pipe failures. The results 
obtained state that the number of unexpected failures might be significantly reduced. Around 
30% of failures could have been prevented by replacing only 3% of the network’s pipes per 
year, which is a realistic and feasible option. 
As a future line of research, the objective must be to develop a global tool that incorporates 
the failure probability and its consequence, generating the optimal pipe replacement plan. 
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1. Introduction 

Nowadays, ensuring access to drinking water is one of the most important challenges in the 
world. Water distribution networks are the infrastructure responsible for bringing this 
resource to population. Data collected in the 16th Drinking Water Supply and Sanitation Study 
in Spain [1] show that water distribution networks in the country traverse a total of 
224,000km, which in average corresponds to 4.8 metres per person. The good maintenance of 
such networks is crucial to preserve the system quality, which has a strong impact on 
economy, environment and well-being of people. One of the symptoms of the intrinsic 
deterioration of a water supply system is the appearance of frequent breakages. The detection 
of these failures is difficult because of the buried nature of pipes. An unexpected failure in the 
network may lead to serious security risks as well as to the interruption of the supply. Figure 1 
shows several examples of real dangerous situations derived from unexpected pipe breaks. 

Companies in charge of water supply networks are making a huge effort to optimally plan 
the annual repairs of these utilities. This supposes cost savings, a higher quality of the service 
and a sustainable management of the infrastructure. Although the most common tools to 
predict pipe failures are rating indexes or lifetime curves [2], more robust and accurate 
techniques are necessary. For this reason, machine learning as predictive system is increasingly 
demanded by this sector. 
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Figure 1. Real consequences of unexpected pipe failures (photographs taken by the authors) 

This paper demonstrates the ability of two binary classifiers to the challenge of predicting 
pipe failures in water supply networks. In the second section, an extensive literature review, 
including the main variables and approaches used to date, is presented. Section 3 describes 
the applied methodology and its three main blocks: (i) data pre-processing; (ii) predictive 
system: logistic regression (LR) and support vector classification (SVC); and (iii) the quality 
metrics used to measure and compare the obtained results. In the fourth section, the case of a 
Spanish city is used as illustration. Firstly, data are described and analysed. Secondly, the two 
predictive models are calibrated and some techniques are studied to improve their 
performance. Finally, results are shown and discussed from a quantitative and comparative 
point of view. Conclusions are presented in section 6. 

2. Literature review 
 

There are many studies aimed at determining the causes of pipe failures as well as the failure 
modes [3]–[6]. Nowadays, it is widely accepted that most breakages do not only occur in old 
pipes. Kleiner and Rajani [7] differentiated three phases in the pipe lifecycle: “burn-in”, “in-
usage” and “wear-out”. They explained in their work that breakages in the first phase are often 
caused by manufacturing defects and storage, or by improper construction processes. A pipe 
“in-usage” can suffer a breakage because of inappropriate maintenance, natural hazard or 
external interference. While a “wear-out” pipe has more probability to break due to the 
intrinsic deterioration of the installation. Despite the major difficulty of predicting all the 
breakages in a water supply system, many authors have demonstrated that pipe failures follow 
certain patterns that can be extracted from historical data [8]–[13]. 

2.1. Variables considered in the literature to explain pipe failures 
 

In most cases, it is impossible to obtain all the data that influence the operation and state of a 
network. Nevertheless, in the last years, available data in the industry have increased due to 
both the development of new technology and the growing interest in big data usefulness. This 
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has enabled an in-depth study of the variables that influence pipe failures and has led to the 
application of different prediction models. The introduction of geographic information systems 
(GIS) tools for the storage, manipulation and access to the water network data suggested a 
new perspective in the field. In fact, case studies from many researches are based on data 
which have been extracted from this kind of tools [6], [8]–[11], [14]–[16]. 

Each water supply network has different physical, operational and environmental 
characteristics [10], [12], [17]. Physical features are those that characterise the layout and 
state of the network, for example, material, diameter or ageing of the pipes. Operational 
factors include parameters concerning network operation, as water properties, pressure or 
velocity, among others. Finally, environmental factors are external conditions that can affect 
the network performance, such as climate, soil corrosion, use of the land, etc. 

The importance of physical factors in future breakages has been strongly demonstrated. 
Fares and Zayed [17], after consulting more than twenty experts, concluded that age has the 
highest effect on risk of failure, followed by material and failure rate. Meanwhile, 
Christodoulou et al. [9] considered the age of pipes as an output variable named “LifeCycle”. 
Material is treated differently, some authors only study certain kind of materials [13], [16], 
[18], [19] while others consider all the diverse materials in the water network. Several studies 
stated that pipes with smaller diameters tended to suffer more failures [20], [21]. Regarding 
the pipe length, higher lengths broadly suppose more exposure to risk of failure [8]. An 
alternative to replacing a pipe might be to add some type of protection. In fact, protection 
methods have demonstrated to significantly extend the lifetime of pipes, specifically the 
cathodic protection in iron pipes [22].  

Operational factors, such as water pressure or velocity, are more laborious to be obtained 
for the entire network. Among all of them, the number of previous failures (NOPF) is 
definitively the most used factor and its effect in the appearance of new pipe breaks has been 
widely demonstrated [3], [10]–[13], [17], [22]. Pipes which have already experienced a 
breakage are more prone to suffer a new one. Oliveira et al. [14] employed a density-based 
spatial clustering analysis to conclude that poor repairs of breaks might produce new 
breakages close to the previous one. Regarding water pressure, there are several points of 
view. On the one hand, Shirzad et al. [19] have argued that the performance of two predictive 
models, artificial neural networks and support vector regression, improved when the average 
of the hydraulic pressure was incorporated as input variable. On the other hand, Jafar et al. 
[10] have defended the major influence of the fluctuation of the pressure over its average. 

Data referring to the environment of the pipes are less common and these factors are 
sometimes estimated per area under certain assumptions, for instance, using the clusterisation 
of pipes by location and historical breaks [12]. Debón et al. [11] included the traffic variable in 
their study, concluding that pipes under roadways with intense traffic are more likely to break 
than those under sidewalks or roadways with low traffic. In [23], the correlation between pipe 
failures and soil liquefaction is studied since the breaking behaviour changes if an earthquake 
occurs in the area. Fares and Zayed [17] defended that the best parameter to carry out an 
appropriate soil classification is corrosivity. Corrosivity is an electrochemical phenomenon 
between two materials in contact with each other that results in the deterioration of parent 
material [24]. Since it is difficult to obtain this parameter directly, the soil type is used to 
represent an approximation of its corrosivity. There are many factors that affect corrosivity, 
soil pH has been considered as a good indicator because corrosion occurs in a certain range of 
pH [25]. 

It is impossible to study the variability that some parameters experience along the year 
when the recorded data is annual. Authors, who have worked with data using shorter periods 
of time, defend the significance of seasonal changes on pipe breaks. One important cause of 
failure is the water renewal time inside pipes which typically increases during dry periods. The 
greater the renewal time is, the more breakages appear [3], [26], [27]. Moreover, pipes tend to 
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suffer more failures during winter periods in places where heavy snowfalls are common due to 
the extra-loads pipes must support [21]. 

Table 1 summarises the main factors used by several studies in the last decade. The second 
column, type of study, clarifies whether it is a descriptive or a predictive study. Additionally, 
the utilised approaches are also emphasised. In addition to physical, operational and 
environmental features, the consequences of failures have also been considered in some 
studies and are also included in the table. 

2.2. Approaches to predict pipe failures 

This topic can be addressed from a descriptive or a predictive approach. In both cases, the use 
of high-quality historical data leads to well-founded conclusions. The descriptive or backward 
analysis helps to understand how the network works and which its most vulnerable points are 
[28]. Its objective is not to predict breakages but to analyse the characteristics and factors that 
promote them. Fuzzy logic (FL) and multicriteria optimisation (MCO) are techniques usually 
applied to this purpose [4], [5]. 

The classification of predictive studies according to [29] is: (i) statistical models; (ii) 
probability-based methods; and (iii) artificial intelligence. Statistical models are the most 
suitable to extract information about the variable interactions and also to predict the lifetime 
of pipes. Some survival models (SMs) have been employed to estimate the failure time of pipes 
[8], [11], [13], [30]. However, they cannot take into account the zeros or pipes that do not 
suffer any breaks. 

Amongst probability-based methods, Bayesian Belief Networks (BBNs) receive a special 
attention in the scientific literature. BBNs are based on the Bayes’ probability theorem. Its 
structure is represented by a directed acyclic graph where nodes represent parameters and 
arcs represent the probabilistic relationship between them. They allow performing prognostic 
and diagnostic reasoning [31]. Its main disadvantages are that the interpretation of results is 
not trivial and expert opinions are generally needed to generate conditional probabilities. 

Artificial intelligence applications in this field have been mainly related to Artificial Neural 
Networks (ANN)[9], [10], [19], [32]. This methodology tries to emulate the functioning of 
human brains. Neurons are represented by nodes and the nerve impulses by a weighted sum 
of the input values in each neuron. The learning of networks is achieved by adjusting those 
weights, while its structure does not usually vary [33]. Although they have excellent pattern 
recognition and generalisation capabilities, ANNs are unable to explain the relation between 
parameters [9]. According to [19], support vector regression (SVR) algorithms are more 
appropriate to face this problem because of ANNs’ lack of consistency with the physical 
behaviour observed. SVR allows predicting the failure rate [34] using a regression analysis after 
mapping the features into a high-dimensional space. The approaches considered in each study 
are also specified in table 1. The acronym GLM refers to generalised linear models, GP to 
genetic programing, NB to naïve Bayes classifier and OL to ordered lists, a heuristic process. 

In this study, logistic regression and support vector classification are used to address the 
described problem. There are only two studies that have already used LR [8], [12]. While they 
only use scalar measurements such as mean squared error (MSE) and Akaike information 
criterion (AIC) to analyse the models' performance, we propose the use of specific quality 
metrics such as the confusion matrix and the ROC curves. Furthermore, our study 
contemplates all pipes present in the network and not only these which have previously 
suffered a failure. 

To the best of our knowledge, support vector machine have only been utilised as a linear 
regression technique to estimate lifetime of pipes [19], [32] or their failure rate [34]. 
Nevertheless, no prior evidence has been found about its application to classify pipes 
regarding the prediction of future failures. We have applied this approach here because it has 
proved to be suitable working with unbalanced data [35] and has accomplished successful 

https://www.linguee.es/ingles-espanol/traduccion/well-founded.html
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results in other fields of study [36]. Additionally, as such as LR, the output variable generated 
by SVC can be interpreted as a failure probability. 
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Table 1. Summary of the main factors used by different authors and the resolution method applied by each one 
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[8] Yamijala et al., 2009 Pred SMs; GLMs; LR x x x x    x x     x  x x x x  x  
[11] Debón et al., 2010 Pred SMs x x x x    

x     
x  x x       

[10] Jafar et al., 2010 Pred ANNs x x x x x   
x      

x  x  x     
[17], [37] Fares and Zayed, 2009-10 Descr FL; MCO x x x   

x  x   
x    

x x  x    
x 

[9], [38] Christodoulou et al., 2009-2010 Pred FL; ANNs  x x x    
x       

x   
x   

x  
[18] Xu et al., 2011 Pred GP x  x x    

x               
[12] Kleiner and Rajani, 2012 Pred OL; LR; NB; SM x   

x    
x      

x       
x  

[6] Royce et al., 2014 Descr BBNs       
x       

x  x   
x  x x 

[19] Shirzad et al., 2014 Pred SVR; ANNs  x  x x   
x  x              

[3] Pietrucha, 2015 Descr - x x x x   
x x      

x         
[13] Kabir et al., 2015a Pred SMs; NB x  x x    

x         
x x  x x  

[16] Kabir et al., 2015b Pred BBNs x  x x x    
x x x x   

x  x x  x  x 
[5] Li et al., 2015 Descr MCO x x x     x        x     x  
[21] Sattar et al., 2016 Pred GP;GA  x x x  x  x               
[4] Al-Zahrani et al., 2016 Descr FL; MCO x x      x x x x x    x  x    x 
[32] Kutyłowska, 2016 Pred SVR; ANN x  x x                   
[39] Farmani et al., 2017 Pred GP x  x x    x           x x   
[22] Sattar et al., 2017 Pred ANN  x x x  x  x               
[34] Kutyłowska, 2018 Pred SVR    x    x               
[31] Tang et al., 2019 Pred BBNs x x x x   x x     x    x    x  
[30] Lin and Yuan, 2019 Pred SMs x  x x                   

 
*     Include network type, depth of installation or pipe lining. 
**   Include pressure fluctuation or time since last breakage. 
*** Include rainfall, soil resistivity or soil shrink swell among others. 
  
Consequences are mainly repair costs and damage to surrounding measures as population density. 
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3. Methodology 

Figure 2 outlines the applied methodology in four main blocks. The three last blocks are 
explained in the following subsections. The first block is not addressed because this study 
assumes that the acquisition of data and the identification of factors have already been done 
by the company in charge of the network. 

 
 

Figure 2. Main steps of the applied methodology

3.1. Data pre-processing 

Data pre-processing have an important role in all predictive algorithms due to its great 
influence on models’ performances. Systems of the same nature usually have data with a 
similar structure. Therefore, the main steps to pre-process data from water supply networks 
are, in general, common to all of them. 

Categorical data such as pipes material, pipes protection, type of network or traffic need to 
be transformed into numerical. In this study, it is proposed to assign an integer to each 
variable level depending on its failure rate per unit length (λ). Then all factors can be analysed 
by graphics and descriptive statistical measures to detect anomalies such as missing values or 
outliers. A sample which presents an anomaly could be removed, but relevant information 
about the rest of variables may be lost. Consequently, missing values and outliers are filled 
with the median of the factor. Finally, all factors are standardised in order to unify their scale. 

3.2. Predictive system 

Among all the explained predictive methodologies, logistic regression and support vector 
classification are selected to predict pipe failures in water supply networks because: (i) They 
generate an output between 0 and 1 that can be interpreted as a failure probability which is 
increasingly demanded by companies; (ii) Their capabilities to work with unbalanced data 
which allows including in the study those pipes which have not suffered any break, making the 
predictive system more realistic; and (iii) They work efficiently with small and medium size 
database, which is the case of many companies whose records are not too extensive. 

In general, models need to be calibrated in order to fit some hyperparameters. 
Furthermore, water supply networks present a common characteristic: their data is 
unbalanced. The majority of pipes have never suffered a failure. This causes problems in the 
training phase. If data classes are not balanced, the model will not learn to predict sample of 
the minority class [35]. In this study, an under-sampling technique which removes samples of 
the majority class is applied to the training set. Other procedure to enhance prediction 

Predictive system
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accuracies is the transformation of variables whose distribution or magnitude order is 
significantly different. For instance, the use of logarithms might avoid the expansion of data 
into high orders of magnitude. 

3.2.1. Logistic regression 

Logistic regression is a particular case of the generalised linear models that concerns the 
analysis of binary data, where the link function is the logit or logistic function [40]. 

𝑝𝑝𝑖𝑖 =
1

1 + 𝑒𝑒−(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖+𝑏𝑏) (1) 

As stated in equation 1, the probability of occurrence of the success of interest (𝑝𝑝𝑖𝑖) is a 
function of the vector of explanatory variables (𝑥𝑥𝑖𝑖), their respective associated weights (𝑤𝑤), 
which are common to the whole observations, and a constant term, b. The subscript i refers to 
each of the N observations forming the sample. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤,𝑏𝑏
‖𝑤𝑤‖2

2
+ 𝐶𝐶𝑙𝑙𝑙𝑙�𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝑒𝑒−𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖+𝑏𝑏))

𝑁𝑁

𝑖𝑖=1

 (2) 

In this study, weights are calculated by minimising the negative log-likelihood function 
(second term of equation 2)[41], [42]. Where 𝐶𝐶𝑙𝑙𝑙𝑙 is a previously fixed hyperparameter that 
controls the balance between the two terms of the objective function, being the first one a 
weight regularisation term according to L2-norm. Once weights are estimated, predictions of 
new samples can be made by (eq. 3). The value of 𝑦𝑦𝑖𝑖, the output variable, depends on its 
associated probability and a fixed risk threshold whose value is usually 0.5. 

𝑦𝑦𝑖𝑖 = �
−1 𝑚𝑚𝑖𝑖 𝑝𝑝𝑖𝑖 ≤ 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑟𝑟ℎ𝑙𝑙𝑙𝑙𝑜𝑜
1 𝑚𝑚𝑖𝑖 𝑝𝑝𝑖𝑖  > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑟𝑟ℎ𝑙𝑙𝑙𝑙𝑜𝑜  (3) 

3.2.2. Support vector classification 

Support vector classification is a support vector machine algorithm based on the structured 
risk minimisation principle [43]. The explanatory variables are mapped through non-linear 
structures into a high dimensional space and then, a hyperplane that optimally separates both 
classes is generated. This hyperplane aims at minimising the classification errors while 
maximises the margins or distance sum from the hyperplane to the nearest training samples of 
each class [44]. 

The primal model is presented hereafter in equations (4-6) [45]. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤,𝑏𝑏,𝜖𝜖
‖𝑤𝑤‖2

2
+ 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠� ∈𝑖𝑖

𝑁𝑁

𝑖𝑖=1

  (4) 

Subject to: 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇 ∙ ∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏) ≥ 1 −∈𝑖𝑖  𝑚𝑚 = 1, … ,𝑁𝑁 (5) 
∈𝑖𝑖≥ 0 𝑚𝑚 = 1, … ,𝑁𝑁 (6) 

Where ∅(𝑥𝑥𝑖𝑖) is a non-linear function which maps each observation composed of its 
explanatory variables (𝑥𝑥𝑖𝑖) into a higher-dimensional space. 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 is again a regularisation 
parameter, w the weight vector associated to the explanatory variables in the new space, also 
named feature space, and b a bias term. Variables ∈𝑖𝑖  are slack variables representing the 
distance between the observations i and the edge of the margin corresponding to their classes. 
Therefore, finding the optimal hyperplane (eq. 7) which maximises the margin (in the high-
dimensional space) corresponds to minimising the vector weights’ norm together with the 
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number of misclassified instances (eq. 4). Finally, the labels or output variables, 𝑦𝑦𝑖𝑖{−1,1}, 
represent the sample class. 

𝐷𝐷(𝑥𝑥𝑖𝑖) = 𝑤𝑤𝑇𝑇 ∙ ∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏 (7) 

While the scale of the primal model depends on the dimensionality of the problem, its 
corresponding dual form depends on the number of samples. Consequently, when the 
dimensionality is high enough, it is more convenient to solve the dual model (eqs. 8-10). 

𝑚𝑚𝑚𝑚𝑥𝑥𝛼𝛼�𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

−
1
2
�𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
𝑁𝑁

𝑖𝑖=1

 (8) 

Subject to: 
�𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝛼𝛼𝑖𝑖 = 0 
(9) 

0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚 = 1, … ,𝑁𝑁 (10) 

A Kernel function, 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗), assigns to each pair of instances a corresponding in the feature 
space. There are many different Kernel functions, such as linear, polynomial, radial basis, 
sigmoidal, etc., whose only requirement is to be symmetric and positive semi-definite. 
Previous studies in this field have shown that the radial basis Kernel function (eq. 11) is the 
most suited to classification problems [46]. Thus, in our study, we utilise a radial basis Kernel 
function where 𝛾𝛾 is a hyperparameter that represents the inverse of the radius of influence of 
the instances selected by the model as support vectors [47]. 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) =  ∅(𝑥𝑥𝑖𝑖)𝑇𝑇∅�𝑥𝑥𝑗𝑗� = 𝑒𝑒𝑥𝑥𝑝𝑝(−𝛾𝛾�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖�) (11) 

Predictions of new samples (eq. 12) are done once the weights and the bias term are 
estimated by solving the model. 

SVC      𝑦𝑦𝑖𝑖 = �
−1 𝑚𝑚𝑖𝑖 𝑤𝑤𝑇𝑇 ∙ ∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏 ≤ 0
1 𝑚𝑚𝑖𝑖 𝑤𝑤𝑇𝑇 ∙ ∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏 > 0

 (12) 

3.3. Analysis of results: quantitative and comparative 

In this study, the obtained results are analysed and compared using easily interpretable 
metrics such as confusion matrix and the ROC curves. These metrics are specific to measure 
the quality of classification approaches. Furthermore, cross-validation ensures that final results 
are independent of the partition between training and test data. 

On the one hand, the confusion matrix is a tool to address the performance of binary 
classifiers. Once a model is estimated using training data, a prediction is made for each 
validation sample. Then, this matrix contains the real values against those predicted for the 
validation set (figure 3). There are four possible results for each sample: true positive (TP), 
false positive (FP), false negative (FN) and true negative (TN). Each box would include the total 
number of observations of each type. 

 
Figure 3. Confusion matrix 
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Some of the most frequent metrics derived from the confusion matrix are accuracy and 
recall [48]. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑚𝑚𝐴𝐴𝑦𝑦 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁
 (13) 

𝑅𝑅𝑒𝑒𝐴𝐴𝑚𝑚𝑙𝑙𝑙𝑙 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
 (14) 

𝑆𝑆𝑝𝑝𝑒𝑒𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚𝐴𝐴𝑚𝑚𝑡𝑡𝑦𝑦 =
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇
 (15) 

The accuracy (eq. 13) measures the total percentage of correct predictions; this metric 
gives the same importance to both classes, so in the case of an unbalanced sample it may 
cause misunderstanding. For this reason, the recall (eq. 14) is useful as it measures the 
percentage of right predictions made from class 1, in this study, pipes which suffer a failure. 
Specificity gives the percentage of correct classifications of class -1. 

On the other hand, it is common to calculate the Area Under the Curve (AUC) as a metric 
which represents the ability of a classifier to avoid false classifications. The Receiver Operating 
Curve (ROC) depicts the recall (or true-positive rate) against 1-specificity (or false-negative 
rate) for different values of a risk threshold. The AUC is always between 0 and 1 [49]. A 
classifier whose AUC is 0.5 (red line of figure 4), will make random classifications, and closer to 
1, better the performance of the classifier. 

 
Figure 4. A generic ROC curve 

4. Case study: City of Seville 

Seville is a city located in the south of Spain with a warm Mediterranean climate. The network 
analysed in this study supplies fresh water to more than 1 million people. It covers a total area 
of 1,220km2, including the city town and its metropolitan area, and it is composed of 3,800km 
of pipes. 

4.1. Description and pre-processing of data 

Table 2 presents a brief description of the factors used in this study. 
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Table 2. Data description 
Factor Description Units Count Mean Std Min Max 

MAT Material of which the pipe is made --- 88541 7.71 4.37 0 13 

DIA Nominal diameter of the section mm* 88541 158.58 157.90 20 2000 

AGE Years since the installation years 88541 25.60 19.66 0 118 

LEN Length of the section m 88541 41.98 75.49 0.50 2522 

CON Number of connections of the section --- 88541 2.08 4.70 0 71 

N_type Net type --- 88541 0.91 0.28 0 1 
∆PRE Pressure fluctuation m** 87739 2.87 2.33 0 60.19 
NOF Total number of failures --- 88541 0.04 0.29 0 11 

*1m = 1000mm    **9,806.38Pa = 1m 

There are fourteen different materials which have been grouped in cements (AMC), metal 
(FER) and plastics (PLA) following Jafar et al. [10] suggestion. As observed in table 3, cement 
pipes show the highest 𝜆𝜆, 2.1 failures have occurred per kilometre during the seven years of 
study. 

Table 3. Pipe materials description 

Acronym Material % Length 𝝀𝝀𝒊𝒊 
(Breaks/u.L.) 

FE Metal 58.27 0.0005 
PLA Plastic 7.17 0.0006 
AMC Cement 34.56 0.0210 

Available data only differs between two types of network, transport and secondary, whose 
percentage of length is 14.8% and 85.2% respectively. The number of recorded failures for the 
transport network is 0.42 breakages per kilometre, while the secondary network presents 1.14 
breakages per kilometre. 

Data visualisation 
Histograms (figure 5) enable an overview of the frequency distributions of the variables. This 
allows observing the existence of possible outliers and the need for transformation of some 
variables in order to scale it. As shown in table 2, the average age of pipes is 25 years and its 
histogram shows that most of the sections are less than 50 years old. However, there is a 
substantial number of pipes that are 118 years old. The fluctuation of the pressure mainly 
varies between 0 and 10, existing atypical values of 60. Consequently, it will be impossible to 
extract patterns of pipes with these fluctuations of pressure values because of the lack of a 
significant sample. DIA and LEN cover large ranges of magnitude compared to the other of 
variables. Finally, the histogram of NOF shows one of the previously mentioned characteristic 
of this type of problems: the sample is totally unbalanced since most of the sections have not 
suffered any breakage during the seven years of study. 
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Figure 5. Histograms of numerical variables 

Relationship between factors 
The correlation coefficient is the covariance between two standardised variables. This 
parameter is only applied to a pair of quantitative variables and represents the linear relation 
between them. It is independent of the variables’ scale and it moves from -1 to 1, 0 meaning 
non-relation and 1 (or -1) an intense linear relation. 

Table 4 shows the matrix of correlation between variables. The highest relationship exists 
between DIA and N_type because, in general, transport network pipes have bigger diameters 
than secondary network ones. MAT and AGE also show a strong linkage because the higher 
numbers were assigned to the materials with the greatest failure rates. Therefore, it could 
imply a relationship between AGE and NOF. Variable CON, referring to the connections of a 
pipe, is changed by the number of connections per unit length, avoiding the possible 
dependence between CON and LEN. 

Unfortunately, none linear relationship has been found between pressure and NOF. The 
reason could be the lack of precision of these data that have been recently added to the study. 

Table 4. Matrix of correlation between variables 

 
MAT DIA AGE LEN CON N_type ∆PRE NOF 

MAT 1 
     

  
DIA 0.01 1 

    
  

AGE 0.51 0.01 1 
   

  

LEN 0.03 0.11 -0.03 1 
  

  

CON 0.04 -0.13 0.02 0.39 1 
 

  

N_type -0.02 -0.73 -0.04 -0.12 0.13 1   

∆PRE 0.05 -0.08 0.03 -0.01 0.02 0.05 1  

NOF 0.16 -0.02 0.12 0.11 0.11 0.01 -0.01 1 

Analysis of pipe breaks 
The total number of pipe breaks recorded during the period of study (2012-2018) is 4,393. 
Figure 6 shows the number of breaks of each material group per year. Since the percentage of 
cement pipes is only 34.56%, the existence of a problem concerning these pipes emerges as 
unquestionable. In addition, a progressive increase of AMC and PLA pipe breaks is appreciated. 
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Figure 6. Total number of pipe breaks per year 

The percentage of pipe breaks per range of diameter, length, age and pressure fluctuation 
is shown in figure 7. As stated in the literature, it can be noticed that more breakages appear 
in pipes with smaller diameters. In most cases, the breakage percentage of AMC pipes is higher 
than in the other materials. However, old metal pipes show large pipe failure percentage, so it 
should be more deeply studied. As previously mentioned, pipe length suggests more exposure 
to risk of failures, which is demonstrated in the graphic (b). 

 
Figure 7. Percentage (%) of pipe breaks per range of Diameter, Length, Age and Pressure fluctuation 

4.2. Predictive system 

Both LR and SVC need label data to be trained because they are supervised methods. Four 
different models have been analysed. The global model which includes the entire network has 
eight input variables: MAT, DIA, AGE, LEN, CON, N_type, ∆PRE and NOPF, and in the three 
other models, which only include pipes of a kind of material (AMC, FE and PLA), MAT is not a 
variable. The output variable of every model is 1 if the pipe breaks in this year and -1 if not. 

Calibration of the models 
In the calibration phase, the first five years (2012-2016) are employed for training the models 
and the last two years (2017 and 2018) for their validations. All performance metrics of table 5 
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are calculated for the validation years and setting the hyperparameters to their default values 
(C=1 and 𝛾𝛾=1/8). The accuracy represents the percentage of well-predicted pipes, while the 
recall shows the percentage of predicted failures. It can be appreciated that when the training 
set is not balanced, a minimal percentage of failures are predicted (simulations 1, 3, 5 and 7). 
The prediction of pipe failure is the main goal of the study, so the training set balance becomes 
a crucial procedure to obtain reasonable results. Moreover, feature transformation, which 
includes the replacement of DIA and LEN variables by their logarithms, produces a significant 
increase of the accuracy. Hence, it is demonstrated that both mechanisms entail a remarkable 
improvement in the methodologies’ performance. 

Table 5. Results for the global model with and without feature transformation and balance of the training set. 
C=1 and 𝜸𝜸=1/8 

Approach Sim. 
No. 

Feature 
transformation 

Training  
set balance 

Resolution 
time (s) Acc. Recall AUC 

LR 

1 No No 5 0.993 0.036 0.750 
2 No Yes 2 0.648 0.893 0.863 
3 Yes No 3 0.994 0.009 0.773 
4 Yes Yes 2 0.768 0.849 0.876 

SVC 

5 No No 36,290 0.994 0.003 0.396 
6 No Yes 89 0.589 0.849 0.798 
7 Yes No 13,272 0.994 0.000 0.631 
8 Yes Yes 21 0.735 0.886 0.855 

Simulations have been done using Python 3.7 on a PC, 3 GHz dual core Intel 5 processor and 
16.0 GB RAM and using Windows 10 as operating system. It should be noted that the 
resolution times (training and predicting) of SVC are greater than of LR, especially, when the 
training set is not balanced. Consequently, SVC is more suitable when the size of the database 
is small or medium. 

A second set of simulations is made to estimate the optimal hyperparameters of the four 
models. These hyperparameters are the regularisation parameters, 𝐶𝐶𝑙𝑙𝑙𝑙 and 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠, and γ, proper 
to the radial basis kernel function of SVC. The optimal configurations are marked in bold in 
tables 6 and 7. The criterion followed to decide which results are better is: (i) identifying the 
simulations whose mean between the accuracy and the recall are higher; (ii) if there is a 
difference lower than 1% between such means, the one with the highest AUC is chosen. In this 
case, feature transformation and balance of training set are always applied. 

Table 6. Estimation of the optimal hyperparameter 𝑪𝑪𝒍𝒍𝒍𝒍 of the LR algorithm 

𝐶𝐶𝑙𝑙𝑙𝑙 

M
od

el
 

Acc. Recall AUC 

M
od

el
 

Acc. Recall AUC 

M
od

el
 

Acc. Recall AUC 

M
od

el
 

Acc. Recall AUC 

0.1 

Gl
ob

al
 0.766 0.853 0.876 

AM
C 

0.660 0.761 0.784 

FE
 

0.868 0.775 0.871 

PL
A 

0.674 0.854 0.852 

1 0.768 0.849 0.876 0.662 0.757 0.784 0.871 0.772 0.871 0.697 0.792 0.842 

10 0.768 0.849 0.876 0.662 0.755 0.784 0.872 0.772 0.871 0.698 0.771 0.836 
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Table 7. Estimation of the optimal hyperparameters 𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔 and γ of the SVC algorithm 

γ 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 

M
od

el
 

Acc. Recall AUC 

M
od

el
 

Acc. Recall AUC 

M
od

el
 

Acc. Recall AUC 

M
od

el
 

Acc. Recall AUC 

0.01 0.1 
Gl

ob
al

 
0.711 0.873 0.870 

AM
C 

0.586 0.821 0.782 

FE
 

0.893 0.738 0.861 

PL
A 

0.985 0.333 0.835 

0.01 1 0.751 0.869 0.874 0.626 0.783 0.783 0.891 0.755 0.864 0.663 0.813 0.839 

0.01 10 0.736 0.880 0.870 0.659 0.759 0.782 0.895 0.769 0.870 0.719 0.771 0.816 

0.125 0.1 0.738 0.880 0.859 0.623 0.777 0.776 0.887 0.762 0.876 0.612 0.792 0.780 

0.125 1 0.735 0.886 0.855 0.630 0.785 0.778 0.889 0.769 0.879 0.691 0.792 0.784 

0.125 10 0.741 0.890 0.851 0.644 0.755 0.771 0.882 0.792 0.884 0.744 0.708 0.760 

1 0.1 0.704 0.894 0.828 0.545 0.840 0.739 0.912 0.520 0.869 0.754 0.458 0.735 

1 1 0.744 0.883 0.830 0.643 0.771 0.745 0.877 0.785 0.875 0.675 0.792 0.752 

1 10 0.752 0.828 0.820 0.655 0.705 0.715 0.836 0.812 0.855 0.738 0.563 0.763 

4.3. Analysis of results 

Quantitative and comparative analysis 
The values presented in table 8 are the average of the quality metrics for seven generations (7-
fold cross-validation). These values suggest that both methodologies have really good 
predictive abilities as well as generalisation capabilities. Firstly, it is observed that better 
results are reached by both approaches for the model that only includes FE pipes. This is due 
to the fact that these pipes have the lowest percentage of breakage. Secondly, the AMC model 
shows the worst results. In order to obtain moderately good recalls, the number of 
misclassified pipes considerably increases (low accuracies). This confirms that there is a 
difficulty on failure prediction of these pipes. 

Table 8. Summary of results attained by both methods for the optimal hyperparameters of each model 
Approach Model C 𝛾𝛾 Acc. Recall AUC 

LR 

Global 0.1 - 0.769 0.848 0.873 
AMC 0.1 - 0.666 0.727 0.774 

FE 10 - 0.873 0.807 0.888 
PLA 0.1 - 0.705 0.732 0.816 

SVC 

Global 1 0.01 0.750 0.866 0.872 
AMC 1 0.01 0.633 0.763 0.773 

FE 10 0.125 0.893 0.799 0.895 
PLA 1 0.01 0.717 0.724 0.816 

A comparison between the global model performance and the performance of the three 
other models together (aggregated model) is presented in table 9. The accuracy of the 
aggregated model (eq. 16) is calculated as the weighted sum of the accuracy of each model 
(𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘) multiplied by its total number of pipes (𝑁𝑁𝑇𝑇𝑘𝑘). Meanwhile, for calculating the recall (eq. 
17) only the number of pipes which suffer a failure (𝑁𝑁𝑇𝑇𝑘𝑘

𝑓𝑓) is considered. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑚𝑚𝐴𝐴𝑦𝑦𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎_ 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑙𝑙 =
∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 ∙ 𝑁𝑁𝑇𝑇𝑘𝑘𝑘𝑘

∑ 𝑁𝑁𝑇𝑇𝑘𝑘𝑘𝑘
 

 
𝑘𝑘 = 𝐴𝐴𝐴𝐴𝐶𝐶,𝐹𝐹𝐹𝐹,𝑇𝑇𝑃𝑃𝐴𝐴 (16) 

𝑅𝑅𝑒𝑒𝐴𝐴𝑚𝑚𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎_ 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑙𝑙 =
∑ 𝑅𝑅𝑒𝑒𝐴𝐴𝑚𝑚𝑙𝑙𝑙𝑙𝑘𝑘 ∙ 𝑁𝑁𝑇𝑇𝑘𝑘

𝑓𝑓
𝑘𝑘

∑ 𝑁𝑁𝑇𝑇𝑘𝑘
𝑓𝑓

𝑘𝑘
 

 
𝑘𝑘 = 𝐴𝐴𝐴𝐴𝐶𝐶,𝐹𝐹𝐹𝐹,𝑇𝑇𝑃𝑃𝐴𝐴 (17) 

Although the accuracy of the global model is a bit lower, it achieves the prediction of a 
much greater percentage of breakages than the aggregated model. Since the corrective actions 
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are more expensive than the preventive ones, it is concluded that the global model is the most 
suitable. 

Table 9. Comparison between the percentages of well-classified pipes and predicted failures using the global 
model and the aggregated model 

Approach Model Acc. Recall 

LR Global 76.9% 84.8% 
Aggregated 79.4% 73.3% 

SVC Global 75.0% 86.6% 
Aggregated 79.6% 73.7% 

A percentage of 76.9% of the pipes are well-predicted by using LR for the global model, 
avoiding 84.8% of pipe breaks. This represents, for instance, the possibility of predicting 541 of 
the 638 recorded failures during 2018. SVC gets to predict more failures, 86.6%, but at the cost 
of misclassifying more pipes, an accuracy of 75.0%. Since the annual replacement of the fourth 
part of the network is unfeasible both economically and physically, the replacement of those 
pipes, whose associated failure probability was the highest, is analysed. As previously 
mentioned, LR directly assigns a probability of failure to each pipe. In the case of SVC, this 
probability is also obtained based on the distance of the sample to the hyperplane which 
separates the classes. Once the pipes are ordered according to their probability of failure, the 
percentage of breakages that could be avoided by replacing only those with the greatest 
probability of breakage can be obtained. On the one hand, the use of the LR model for the year 
2018 would have led to the prevention of 34.09% of breakages by replacing only 3.16% of the 
network's pipes (pi> 0.85). On the other hand, SVC achieves avoiding 29.52% of breakages by 
replacing 3.84% of the pipes (pi> 0.85). These results show that costs could be significantly 
reduced. 

The ROC curve is an appropriate tool to compare predictive models with the same response 
variable. Figure 8 depicts these curves for LR (red lines) and SVC (blue lines) and their 
corresponding AUC when the validation set is the year 2018. In all cases, the ability to avoid 
erroneous classifications is slightly higher using LR than SVC, except for the FE model. Both 
algorithms demonstrate to be very good classifiers with outstanding abilities to avoid false 
classification. 
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Figure 8. ROC curves for the test data of year 2018 

Table 10 presents the AUCs obtained by various approaches used in the literature and 
those achieved in this work for the global model in the last recorded year. LR attains an AUC of 
0.874 and SVC of 0.871, which represent a notable improvement with respect to the rest. 
Although the results might be influenced by the data quality because each method has been 
applied to different data, the applicability of the proposed methodologies to this particular 
problem is fully demonstrated. Moreover, it proves the importance of data pre-processing and 
the calibration of the models to enhance models’ performance. 

Table 10. Comparison of AUCs for the problem of predicting pipe failures 
Authors Approach AUC 

Debón et al. [11] 
Cox model 0.769 

Poison GLM 0.828 

Tang et al. [31] 
BBNs automated 0.786 

BBNs guided 0.702 

Our approaches 
LR 0.874 

SVC 0.871 

Physical interpretation of logistic regression parameters 
LR allows extracting interesting information from the estimated weights (see table 11). Firstly, 
by substituting the intercept, 𝑏𝑏, in the equation 1 (1 + 𝑒𝑒−𝑏𝑏)⁄ , it is obtained the probability of 
failure when all explanatory variables are equal to their means. Model assigns the highest 
breakage probability to PLA pipes, 0.40, followed by AMC 0.37. 
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Table 11. Estimated weights of LR model for the four studied models 

  
Coefficients (w) 

  
Intercept Mat log(DIA) AGE log(LEN) CON N_type NOPF APRE 

M
od

el
 

Global -0.94 0.84 -0.13 0.27 0.78 0.01 -0.05 0.22 -0.09 

AMC -0.52 
 

-0.28 0.07 0.92 0.15 -0.07 0.27 -0.13 

FE -1.33 
 

-0.26 1.14 0.84 -0.02 0.07 0.19 -0.05 

PLA -0.41 
 

-0.56 0.10 0.67 -0.32 0.10 0.08 -0.04 

According to the global model, the most influential factor is the pipe material followed by 
the pipe length, the age and the number of previous failures. The sign of the coefficients 
expresses if the effect of a unit change in an explanatory variable increases or decreases the 
probability of failure (𝑒𝑒−𝑤𝑤). Therefore, it is confirmed that pipes with smaller diameters are 
more likely to break. Moreover, this factor becomes crucial to the appearance of failures in 
plastic pipes. The age is not relevant neither to cement nor plastic pipes, which means that 
other circumstances are causing these failures before the end of its lifetime. On the contrary, 
this factor does have a remarkable importance on the breakage of FE pipes as suggested in the 
initial historical data analysis. The length of the pipes exhibits a strong influence in all the 
models as well as, to a lesser extent, the number of previous failures. Regarding the number of 
connections per unit length, it only seems to be influential for cement pipes and, on an inverse 
sense, for plastic pipes. Plastic pipes with more connections are less prompt to break, perhaps, 
because the pressure inside these pipes is lower or more balanced.  

5. Conclusions 

This study presents a methodology to predict pipe failures in water supply networks. Firstly, 
data pre-processing is revised due to its great influence on models’ performances. The 
visualisation and analysis of factors helps detect and prevent anomalies such as missing values 
and outliers. Secondly, logistic regression and support vector classification are utilised as a 
predictive system. Finally, results are analysed and compared using easily interpretable quality 
metrics such as confusion matrix and the ROC curves. 

Among the explained predictive methodologies, logistic regression and support vector 
classification are chosen because they generate an output variable that can be interpreted as a 
failure probability which is increasingly demanded by companies. Additionally, both have key 
capabilities to deal with unbalanced class data which is the case of water supply networks. The 
major contributions of our study to the literature are the use of specific quality metrics to 
analyse and compare the results of the logistic regression model, and the use of support vector 
machines as a classifier, which has never been used before to address this problem. 

Once models are chosen, these have to be calibrated to fit some hyperparameters. 
Moreover, mechanisms such as classes’ balance and variables transformation demonstrate to 
greatly improve their performances. 

The proposed methodology is illustrated with the real case of a Spanish city. This is an 
extensive water supply network, 3,800 kilometres, whose recorded data contains 4,393 pipe 
failures. It represents the largest water network analysed until now from a failure predictive 
point of view. Four different scenarios are analysed, one including the entire network and the 
other three in which pipes are grouped by kind of material (AMC, FE and PLA). 

The results obtained are outstanding, showing LR a slightly better performance than SVC. 
The number of unexpected failures might be significantly reduced. Using the available 
historical data from the city of Seville, around 30% of failures could have been prevented by 
replacing only 3% of the network’s pipes, which is a realistic and feasible option. 

From a predictive point of view, the global model reaches better results than the three 
models separately. Moreover, AUCs attained for both algorithms are higher than those 
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previously achieved in the literature. Accordingly, they have excellent abilities to avoid 
erroneous classifications. The coefficients derived from logistic regression show that material 
seems to be the most influential variable followed by pipe length, age and number of previous 
failures. It is also determined that pipes with smaller diameters are more prone to breakage. 

Besides predicting the major number of breakages, the final goal of companies in charge is 
to avoid the highest priority ones. These are the ones that would cause the greatest problems 
as environmental and security risks, supply disruption of sensitive population or high 
reparation costs. Since the proposed methodology enables accurate predictions, the future 
line of research should be to study the consequences and costs derived from pipe failures. The 
objective must be to develop a global tool that incorporates the failure probability and its 
consequences, generating an optimal pipe replacement plan based on a budget and period of 
time. 
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