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Selective interactions in the quantum Rabi model
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We demonstrate the emergence of selective k-photon interactions in the strong and ultrastrong coupling
regimes of the quantum Rabi model with a Stark coupling term. In particular, we show that the interplay between
the rotating and counterrotating terms produces multiphoton interactions whose resonance frequencies depend,
due to the Stark term, on the state of the bosonic mode. We develop an analytical framework to explain these
k-photon interactions by using time-dependent perturbation theory. Finally, we propose a method to achieve the
quantum simulation of the quantum Rabi model with a Stark term by using the internal and vibrational degrees
of freedom of a trapped ion, and demonstrate its performance with numerical simulations considering realistic
physical parameters.
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I. INTRODUCTION

Understanding the interactions that emerge among two-
level atoms (qubits) and bosonic field modes is of major
importance for the development of quantum technologies.
The qubit-boson interaction governs the dynamics of distinct
quantum platforms such as cavity QED [1], trapped ions [2],
or superconducting circuits [3], that can achieve the so-called
strong coupling (SC) regime. Here the qubit-boson Rabi cou-
pling g is much smaller than the field frequency, but it is larger
than the coupling to the environment. In these conditions, the
Jaynes-Cummings (JC) model [4] that appears after applying
the rotating-wave approximation (RWA) provides an excellent
description of the system. On resonance, the frequency of
the bosonic mode ω equals the frequency of the qubit ω0

and the JC model predicts a coherent exchange of a single
energy excitation between the atom and the field leading to
Rabi oscillations. In the JC model, these Rabi oscillations are
restricted to pairs of states known as JC doublets. When the
qubit-boson coupling increases and reaches the ultrastrong
coupling (USC) [5–9] regime (g/ω � 0.1) or the deep-strong
coupling (DSC) [10] regime (g/ω � 1), the RWA does not
hold and the full quantum Rabi model (QRM) has to be
considered [11,12]. Recently, an exact analytical solution for
the QRM was proposed [13]. Unlike the JC model, the QRM
dynamics does not show clear features, until it reaches the
DSC regime, where periodic collapses and revivals of the
qubit initial-state survival probability are predicted [14].
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The QRM with a Stark coupling term, named the Rabi-
Stark model [15] (in the following we will also use that
denomination) was first considered by Grimsmo and Parkins
[16,17]. On the one hand, the study of its energy spectrum
[15,18–20] has revealed some interesting features such as a
spectral collapse or a first-order phase transition [19], which
connects it with the two-photon [21–26] or anisotropic [27,28]
QRMs. On the other hand, dynamical features of the JC model
with a Stark coupling term have been studied in the past
[29–34]. The Stark coupling is useful to restrict the resonance
condition and the Rabi oscillations to a preselected JC dou-
blet, leaving the other doublets in a dispersive regime. This
selectivity has found applications for state preparation and
reconstruction of the bosonic modes in cavity QED [29,31] or
trapped ions [30,32,33]. In light of the above, the dynamical
study of the full QRM with a Stark coupling term in the SC
and USC regimes is well justified.

In this article, we study the dynamical behavior of the
QRM with a Stark term, i.e., the Rabi-Stark model, and show
that the interplay between the Stark and Rabi couplings gives
rise to selective k-photon interactions in the SC and USC
regimes. Note that, previously, k-photon (or multiphoton)
resonances have been investigated in the linear QRM [35,36],
driven linear qubit-boson couplings [37–42] or nonlinear
couplings [43–45], and recently have found applications for
quantum-information science [46,47]. In our case, k-photon
transitions appear as higher-order processes of the linear
QRM, while the Stark coupling is responsible for the selective
nature of these interactions. Using time-dependent perturba-
tion theory we characterize these k-photon interactions, whose
strength scales as (g/ω)k . Moreover, we design a method to
simulate the Rabi-Stark model in a wide parameter regime
using a single trapped ion. We validate our proposal with
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numerical simulations which show an excellent agreement
between the dynamics of the Rabi-Stark model and the one
achieved by the trapped-ion simulator.

II. MODEL

The Hamiltonian of the Rabi-Stark model is

H = ω0

2
σz + ωa†a + γ a†aσz + g(σ+ + σ−)(a + a†), (1)

where ω0 is the frequency of the qubit or two-level system,
ω is the frequency of the bosonic field, and γ and g are the
couplings of the Stark and Rabi terms, respectively. Note that
the Stark term is diagonal in the bare basis {|e〉, |g〉} ⊗ |n〉
(where σz|e〉 = |e〉, σz|g〉 = −|g〉 and a†a|n〉 = n|n〉), and it
can be interpreted as a qubit energy shift that depends on
the bosonic state. If we move to an interaction picture with
respect to (w.r.t.) the first three terms in Eq. (1), the system
Hamiltonian reads (see Appendix A for additional details)

HI (t ) =
∞∑

n=0

�n(σ+eiδ+
n t + σ−eiδ−

n t )|n+1〉〈n| + H.c., (2)

where �n = g
√

n + 1, δ+
n = ω + ω0

n, and δ−
n = ω − ω0

n, with
ω0

n = ω0 + γ (2n + 1). If γ = 0, these detunings are inde-
pendent of the state n, and, for |δ+| � �n and δ− = ω −
ω0 = 0 (|δ−| � �n and δ+ = ω + ω0 = 0), a resonant JC
(anti-JC) Hamiltonian is recovered when fast-rotating terms
are averaged out by invoking the RWA. In these conditions,
the dynamics leads to Rabi oscillations between the states
|e, n〉 ↔ |g, n + 1〉 (|g, n〉 ↔ |e, n + 1〉) for every n, and at a
rate proportional to �n. These interactions are not selective as
they apply to all Fock states in the same manner.

A. Selectivity in one-photon interactions

The presence of a nonzero Stark coupling γ makes these
detunings dependent on n, allowing to identify a resonance
condition for a selected Fock state n = N0, while the rest of the
Fock states stay out of resonance. From Eq. (2) we note that
if δ−

N0
= 0 (δ+

N0
= 0) and |δ−

n 	=N0
| � �n 	=N0 (|δ+

n 	=N0
| � �n 	=N0 ),

the dynamics of Hamiltonian (1) will produce a resonant
one-photon JC (anti-JC) interaction only in the subspace
{|e〉, |g〉} ⊗ {|N0〉, |N0 + 1〉}. This is observed in Fig. 1, where
resonance peaks appear for initial states |e, n〉 with different
number n. Here a one-photon Rabi oscillation occurs if ω −
ω0 = γ (2n + 1), i.e., δ−

n = 0. In Fig. 1, we vary (ω − ω0)/ω
in the x axis for fixed γ /ω = −0.25 and g/ω = 0.02, and
meet this resonance condition for n = 0, 1, 2, 3 that corre-
spond to the four peaks on the left side (solid lines). The
other two peaks on the right correspond to δ+

n = 0 resonances
leading to one-photon anti-JC interactions for n = 1, 2.

B. Multiphoton interactions

As revealed in the Introduction, besides one-photon transi-
tions, the Rabi-Stark Hamiltonian produces selective k-photon
interactions. The characterization of these interactions is the
main result of our work. Unlike the selective one-photon
interactions, which appear due to the interplay between the
Stark term and the rotating or counterrotating terms, these
selective multiphoton interactions are a direct consequence
of the interplay between the Stark term and both the rotating
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FIG. 1. One-photon selective interactions of the Rabi-Stark
model. Hamiltonian (1) acts during a time t = π/2�n and we
calculate 〈a†a〉 for different ratios of ω0/ω and initial states |e, 0〉
(blue), |e, 1〉 (orange), |e, 2〉 (purple), and |e, 3〉 (green) with fixed
couplings γ /ω = −0.25 and g/ω = 0.02 (solid lines). If γ = 0, all
JC peaks would be at ω − ω0 = 0 (dashed lines).

and counterrotating terms. Calculating the Dyson series for
Eq. (2), we obtain that the second-order Hamiltonian is

H (2)
I =

∞∑
n=0

(
�e

nσ+σ− + �g
nσ−σ+

)|n〉〈n|, (3)

where �e
n = �2

n−1/δ
+
n−1 − �2

n/δ
−
n and �

g
n = �2

n−1/δ
−
n−1 −

�2
n/δ

+
n , plus a time-dependent part oscillating with fre-

quencies δ+
n+1 + δ−

n = 2ω + 2γ , δ−
n+1 + δ+

n = 2ω − 2γ , and
δ±

n , δ±
n+1 that is averaged out due to the RWA (see Appendix A

for a detailed derivation).
The third-order Hamiltonian leads to three-photon

transitions described by the following Hamiltonian (see
Appendix A for a complete derivation)

H (3)
I (t ) =

∞∑
n=0

(
�

(3)
n+eiδ(3)

n+tσ+ + �
(3)
n−eiδ(3)

n−tσ−
)|n+3〉〈n| + H.c.,

(4)

where �
(3)
n±=g3√(n + 3)!/n!/2δ±

n (ω ∓ γ ) and δ
(3)
n±=δ±

n+2+
δ∓

n+1 + δ±
n = 2ω + δ±

n+1. According to this, a JC-type three-
photon process occurs for |e, N0〉 if δ

(3)
N0− = 0 producing popu-

lation exchange between the states |e, N0〉 ↔ |g, N0 + 3〉. For
the state |g, N0〉, anti-JC-type transitions to the state |e, N0 +
3〉 occur when δ

(3)
N0+ = 0. In the following we will check

the validity of these effective Hamiltonians by numerically
calculating the dynamics of Hamiltonian (1).

In Fig. 2(a) we let the system evolve for a time t = π/2�
(3)
5+

for a fixed value of γ /ω = −0.4 and calculate the average
number of photons 〈a†a〉 for different values of ω0/ω and
couplings g/ω. We do this for the initial state |g, N0 = 5〉,
near the resonance point δ

(3)
5+ = 3ω + ω0 + 13γ = 0. We

observe that resonances do not appear when δ
(3)
5+ = 0, see

dashed line on the left, owing to a resonance-frequency
shift that depends on the value of g. To explain this
we go to an interaction picture w.r.t. Eq. (3), then,
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FIG. 2. Three-photon selective interactions of the Rabi-Stark
model. (a) Resonance spectrum of anti-JC-like three-photon process
for state |g, 5〉. After a time t = π/2�

(3)
5+, 〈a†a〉 is shown for γ /ω =

−0.4. The peaks appear shifted from δ
(3)
5+ = 0 (dashed line) at δ̃

(3)
5+ =

0 which corresponds to the dark curve in the XY plane representing
the lower values of log10 |δ(3)

5+|. (b) Time evolution of populations Pg,4

(solid) and Pe,7 (dashed) for initial state |g, 4〉 (green) and populations
Pg,5 and Pe,8 for initial state |g, 5〉 (red) for g/ω = 0.05 (up) and
g/ω = 0.1 (down).

the oscillation frequencies in Eq. (4) will be shifted to
δ̃

(3)
n+ = δ

(3)
n+ + �e

n+3 − �
g
n and δ̃

(3)
n− = δ

(3)
n− + �

g
n+3 − �e

n. In the
XY plane of Fig. 2(a) we make a grayscale color plot of
log10 |δ̃(3)

5+| as a function of ω0 and g and see that the minima

of δ̃
(3)
5+ (dark line) is in very good agreement with the point

in which the three-photon resonance appears (the logarithm
scale is used to better distinguish the zeros of δ̃

(3)
5+).

To show that the three-photon interaction applies only to
the preselected subspace, in Fig. 2(b) we plot the evolution
of initial states |g, 4〉 and |g, 5〉. As expected, the last term
exchanges population with the state |e, 8〉 while the other re-
mains constant. In addition, for g/ω = 0.05 (upper figure), the
transition is slower but most of the population is transferred to
|e, 8〉 at time t = π/2�

(3)
5+. For g/ω = 0.1 (lower figure) the

exchange rate is much faster but the transfer is not so efficient.
In this context, higher-order selective interactions will be

produced by the Rabi-Stark model and could, in principle,
be tracked by the calculation of higher-order Hamiltonians.
However, being a high-order process, its strength decreases
with order k since �(k)/ω ∝ (g/ω)k . Then, high-order pro-
cesses require longer times to be observed which may exceed
the decoherence times of the system. See Appendix B for a
numerical analysis of dissipative effects. In any case, we find
interesting to study the case for a higher k. Following the same
procedure as for calculating Eqs. (3) and (4), we conclude that
for even k, the kth-order Hamiltonian will not produce selec-
tive interactions as they will average out as a consequence
of the RWA. For odd k, the kth order Hamiltonian predicts
a k-photon transition of the form

H (k)
I (t ) =

∞∑
n=0

(
�

(k)
n+eiδ(k)

n+tσ+ + �
(k)
n−eiδ(k)

n−tσ−
)|n+k〉〈n| + H.c.,

(5)

FIG. 3. Five-photon selective interactions of the Rabi-Stark
model. (a) On the left, 〈σ+σ−〉 is shown after a time t = π/2�

(5)
2−,

for different values of ω0/ω around ωc
0 = 5ω − γ (2 × 2 + 5) and

initial state |g, 7〉. Here, g/ω = 0.1 and γ /ω = 0.9. On the right,
time evolution of populations Pe,2 and Pg,7 for initial state |g, 7〉 and
populations Pe,1 and Pg,6 for initial state |g, 8〉, for ω0/ω = −3.227.
(b), (c) The same procedure with initial state |g, 8〉 and |g, 9〉, where
the peaks appear for ω0/ω = −5.072 and ω0/ω = −6.918.

where

δ
(k)
n± =

k−1∑
s=0

δ±
n+s + δ∓

n+s+1 + δ±
k = (k − 1)ω + δ±

n+(k−1)/2, (6)

and

�
(k)
n± = gk

(k − 1)!!(ω ∓ γ )
k−1

2

√
(n + k)!

n!

k−2∏
s=1,3...

1

δ
(s)
n±

. (7)

To gain some physical intuition about the difference be-
tween odd and even orders, one can consider the symmetry in
Hamiltonian (1) [15,19]. As in the QRM [14], due to parity
symmetry, transitions between |e, n〉 and |g, n + k〉 states are
not allowed for even k. On the contrary, for odd k, transitions
between these states are possible when the energy cost of an
atomic excitation is similar to that of k bosons, i.e., ω0 ≈ kω.

Using Eqs. (6) and (7) and with the help of numerical
simulations, it is easy to find k-photon processes to validate
the effective Hamiltonian (5). Here, numerical simulations
are required as the analytic calculation of the exact reso-
nance frequencies of higher-order processes rapidly becomes
challenging. For example, for tracking a JC-type five-photon
interaction for N0, we use the condition δ

(5)
N0− = 0 to retrieve

an approximate value for the qubit frequency of ωc
0 = 5ω −

γ (2N0 + 5). Then we calculate the time evolution governed
by Hamiltonian (1) for a time t = π/2�

(5)
N0− and plot 〈σ+σ−〉

for different values of ω0 close to ωc
0 until we find a peak

corresponding to the resonant five-photon interaction.
As an example, in Fig. 3 we show these resonances for

N0 = 2, 3, and 4, with g/ω = 0.1 and γ /ω = 0.9. We find
resonance peaks for ω0/ω = −3.227,−5.072, and −6.918
which are close to the ones obtained with the approximate
formula ωc

0/ω = −3.1,−4.9, and −6.7. In comparison with
the three-photon processes, five-photon transitions are slower,
and the population transfer to the preselected state is par-
tial for g/ω = 0.1. It is interesting to note that the revival
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of the initial state as well as the selectivity condition are
maintained at the beginning of the USC regime. Note that
for ω0/ω = −3.227, an exchange between states |g, 7〉 ↔
|e, 2〉 occurs while the neighboring states |g, 6〉 and |e, 1〉
are completely out of resonance. In this respect, with larger
coupling constants such as g/ω ≈ 0.3 one would still get
signatures of selectivity, but the interaction will not longer be
a JC (or anti-JC) type k-photon interaction as it would involve
states out of the selected JC (or anti-JC) doublet. In Fig. 3
the population transfer from |g, N0 + 5〉 to |e, N0〉 is already
partial, and interestingly, the remaining population goes to
states |g, N0 + 1〉 and |g, N0 − 1〉.

To experimentally verify our predictions regarding the
selective k-photon interactions of the Rabi-Stark model, in the
next chapter we propose an experimental implementation of
the model.

III. IMPLEMENTATION WITH TRAPPED IONS

Trapped ions are excellent quantum simulators [2,48], with
experiments for the one-photon QRM [49–51] and proposals
for the two-photon QRM [52,53]. In the following, we pro-
pose a route to simulate the Rabi-Stark model using a single
trapped ion.

The Hamiltonian of a single trapped ion interacting with
copropagating laser beams labeled with j can be written, in
an interaction picture w.r.t. the free energy Hamiltonian H0 =
ωI/2σz + νa†a, as [2]

H =
∑

j

� j

2
σ+eiη(ae−iνt +a†eiνt )e−i(ω j−ωI )t eiφ j + H.c. (8)

Here � j is the Rabi frequency, η and a†(a) are the Lamb-
Dicke (LD) parameter and the creation (annihilation) operator
acting on vibrational phonons, ν is the trap frequency, ω j −
ωI is the detuning of the laser frequency ω j w.r.t. the carrier
frequency ωI , and φ j accounts for the phase of the laser.

As a possible implementation of the Rabi-Stark model we
consider two drivings acting near the first red and blue side-
bands, and a third one on resonance with the carrier interaction
ωS = ω0. The Hamiltonian in the LD regime, η

√〈n〉  1, and
after the vibrational RWA, reads

HLD = −igraσ+e−iδr t − igba†σ+e−iδbt − gSσ
+ + H.c., (9)

where ωr,b = ω0 ∓ ν + δr,b, gr,b = η�r,b/2, φr,b,S = −π ,
and gS = �S

2 (1 − η2/2) − �S
2 η2a†a = �0

2 − γ a†a. Depen-
dence of the carrier interaction on the phonon number ap-
pears when considering the expansion of eiη(a+a† ) up to the
second order in η. At this point, if δr = −δb = ωR, Eq. (9)
can already be mapped to a Rabi-Stark model in a frame
rotated by −ωRa†a. However, the engineered Hamiltonian
cannot explore all regimes of the model, as �0 and γ cannot
be independently tuned, thus restricting the Hamiltonian to
regimes where γ  �0. This issue can be solved by mov-
ing to an interaction picture w.r.t. �DD

2 σx − ωRa†a, where
�DD = −(�0 + ωR

0 ), and by shifting the detunings by δr,b =
�DD ± ωR. The resulting Hamiltonian, after ignoring terms
oscillating at �DD, is

HII
LD = ωR

0

2
σx + ωRa†a + gσy(a + a†) + γ a†aσx. (10)

200 t (ms)
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FIG. 4. Selective one-photon and three-photon interactions with
a trapped ion. (a) Time evolution of the mean number of phonons and
populations P+,2 (solid) and P−,3 (dashed) starting from state |+, 2〉
for g/ωR = 0.05, γ /ωR = −0.4, and ωR

0 /ωR = 3. (b) Time evolution
of the mean number of phonons and populations P+,3 (solid) and
P−,0 (dashed) starting from state |+, 3〉 for g/ωR = 0.3, γ /ωR =
−0.1 and ωR

0 /ωR = −2.4385. Solid green lines evolve according to
Eq. (10) while black squares evolve according to Eq. (8).

Here g = (η�r/4)(1 − εS) if �b = �r (1 − εS)/(1 + εS) with
εS = �S/ν. See Appendix C for a detailed derivation of
Eq. (10). Notice that Eqs. (1) and (10) are equivalent by
simply changing the qubit basis. For Eq. (10), the diagonal
basis is given by {|+〉, |−〉} ⊗ |n〉, where σx|±〉 = ±|±〉. The
parameters of the model are now ωR

0 = −(�0 + �DD), ωR =
(δr − δb)/2, and γ = η2�S/2. Regimes where γ < 0 can be
also reached by taking φS = 0, however, the frequency of the
rotating frame changes to �DD = �0 − ωR

0 . Moreover, in this
case g = (η�r/4)(1 + εS) if �b = �r (1 + εS)/(1 − εS).

Regarding the initial-state preparation, laser-cooling tech-
niques can be used to initialize the system in state |g, 0〉
with high fidelity. Later, the carrier interaction can used to
prepare an arbitrary qubit state, and this can be combined
with JC or anti-JC interactions (using the first-red or first-blue
sidebands), to prepare an arbitrary Fock state [54]. In addition,
high-n Fock states can be prepared combining controlled
depolarizing noise applied to the ion internal state with anti-JC
interactions beyond the LD regime [45]. Finally, population
of the state |g〉 can be measured via resonance-fluorescence
detection. This is then combined with the Fourier cosine
transform to extract the populations of each Fock state [54].

In the following, we verify the feasibility of the proposal
by comparing the dynamics generated by the Hamiltonian in
Eq. (8) with the one of the Rabi-Stark model at Eq. (10). The
results are shown in Figs. 4(a) and 4(b) for one-photon and
three-photon oscillations, respectively. The experimental pa-
rameters we use in Fig. 4(a) are ν = (2π ) × 4.98 MHz for the
trapping frequency, η = 0.1 for the LD parameter and �S =
(2π ) × 120 kHz for the carrier driving, leading to a Stark
coupling of |γ | = (2π ) × 0.6 kHz. We consider a Stark cou-
pling of γ /ωR = −0.4, a Rabi coupling of g/ωR = 0.05, and
ωR

0 = ωR − γ (2N0 + 1) with N0 = 2. To achieve this regime
the experimental parameters are �r = (2π ) × 2.94 kHz,
�b = (2π ) × 3.08 kHz, and �DD = (2π ) × 114.86 kHz. We
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observe that with the initial state |+, 2〉, there is an exchange
of population with the state |−, 3〉. In Fig. 4(b) we show that
selective three-photon oscillations of the Rabi-Stark model
can be observed in some milliseconds. Starting from |+, 3〉,
we can observe the coherent population exchange with state
|−, 0〉. Here, the LD parameter is η = 0.05 and the parameters
of the model are γ /ωR = −0.1, g/ωR = 0.3, and ωR

0 /ωR =
−2.4385 for which we require �r = (2π ) × 35.2 kHz, �b =
(2π ) × 36.9 kHz, and �DD = (2π ) × 123.5 kHz. Although
in the previous case we focused on the Rabi-Stark model in
the strong and ultrastrong coupling regimes, it is noteworthy
to mention that our method is still valid for larger ratios of
g/ω. Thus our method represents a simple and versatile route
to simulate the Rabi-Stark model in all important parameter
regimes.

IV. CONCLUSION

We studied the dynamics of the QRM with a Stark term
in the strong and ultrastrong coupling regimes and charac-
terize the novel k-photon interactions that appear by using
time-dependent perturbation theory. Due to the Stark-coupling
term, these k-photon interactions are selective, thus their
resonance frequency depends on the state of the bosonic
mode. Finally, and with the support of detailed numerical
simulations, we propose an implementation of the Rabi-Stark
model with a single trapped ion. The numerical simulations
show an excellent agreement between the dynamics of the
trapped-ion system and the Rabi-Stark model.
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APPENDIX A: DYSON SERIES OF THE
RABI-STARK HAMILTONIAN

The Rabi-Stark Hamiltonian as written in Eq. (1) of the
main text is

H = ω0

2
σz + ωa†a + γ a†aσz + g(σ+ + σ−)(a + a†), (A1)

where σz, σ+, σ− are operators of the two-level system and
a† and a are infinite-dimensional creation and annihilation
operators of the bosonic field. Using the ket-bra notation,
the two-level matrices are σ+ = |e〉〈g|, σ− = |g〉〈e|, and σz =
|e〉〈e| − |g〉〈g| where |e〉 and |g〉 are the excited and ground

states of the two-level system, respectively. On the other hand,
the bosonic operators can be written as

a† =
∞∑

n=0

√
n + 1|n + 1〉〈n|, (A2)

a =
∞∑

n=0

√
n + 1|n〉〈n + 1|, (A3)

where |n〉 is the nth Fock state. With this notation, the Hamil-
tonian in Eq. (A1) can be rewritten as

H =
∞∑

n=0

ωe
n|e〉〈e| ⊗ |n〉〈n| + ωg

n|g〉〈g| ⊗ |n〉〈n|

+�n(|e〉〈g| + |g〉〈e|) ⊗ (|n + 1〉〈n| + |n〉〈n + 1|), (A4)

where ωe
n = (ω + γ )n + ω0/2, ω

g
n = (ω − γ )n − ω0/2, and

�n = g
√

n + 1. We can move to an interaction picture w.r.t.
the diagonal part of Eq. (A4), and the nondiagonal elements
will rotate as

|e〉〈g| ⊗ |n + 1〉〈n| → |e〉〈g| ⊗ |n + 1〉〈n|ei(ωe
n+1−ω

g
n )t , (A5)

|g〉〈e| ⊗ |n + 1〉〈n| → |g〉〈e| ⊗ |n + 1〉〈n|e−i(ωe
n−ω

g
n+1 )t , (A6)

|e〉〈g| ⊗ |n〉〈n + 1| → |e〉〈g| ⊗ |n〉〈n + 1|ei(ωe
n−ω

g
n+1 )t , (A7)

|g〉〈e| ⊗ |n〉〈n + 1| → |g〉〈e| ⊗ |n〉〈n + 1|e−i(ωe
n+1−ω

g
n )t , (A8)

where δ+
n = ωe

n+1 − ω
g
n = ω + [ω0 + γ (2n + 1)] and δ−

n =
ω

g
n+1 − ωe

n = ω − [ω0 + γ (2n + 1)]. The Hamiltonian in the
interaction picture can be then rewritten as

HI (t ) =
∞∑

n=0

�n(σ+eiδ+
n t + σ−eiδ−

n t ) ⊗ |n + 1〉〈n|

+�n(σ+e−iδ−
n t + σ−e−iδ+

n t ) ⊗ |n〉〈n + 1|, (A9)

which corresponds to Eq. (2).

1. Second-order Hamiltonian

The second-order Hamiltonian that corresponds to
Eq. (A9) is given by [55]

H (2)(t ) = −i
∫ t

0
dt ′HI (t )HI (t ′). (A10)

We can write HI (t ) as

HI (t ) =
∞∑

n=0

�n(Sn(t )|n + 1〉〈n| + S†
n (t )|n〉〈n + 1|), (A11)

and, then,

H (2) = −i
∑
n,n′

�n�n′ (Sn(t )|n + 1〉〈n| + S†
n (t )|n〉〈n + 1|)

×
∫ t

0
dt ′(Sn′ (t ′)|n′ + 1〉〈n′| + S†

n′ (t ′)|n′〉〈n′ + 1|),

(A12)
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which gives H (2) = H (2)
A + H (2)

B , where

H (2)
A (t ) = −i

∑
n

�2
n

(
Sn(t )

∫ t

0
dt ′S†

n (t ′)
)

|n + 1〉〈n + 1| + �2
n

(
S†

n (t )
∫ t

0
dt ′Sn(t ′)

)
|n〉〈n| (A13)

gives diagonal elements and

H (2)
B (t ) = −i

∑
n

�n�n+1

(
Sn+1(t )

∫ t

0
dt ′Sn(t ′)

)
|n + 2〉〈n| + �n�n+1

(
S†

n (t )
∫ t

0
dt ′S†

n+1(t ′)
)

|n〉〈n + 2| (A14)

is related with two-photon processes. Calculating the two-level operators we obtain

Sn(t )
∫ t

0
dt ′S†

n (t ′) = i

δ+
n

σ+σ− + i

δ−
n

σ−σ+ − i

δ+
n

σ+σ−eiδ+
n t − i

δ−
n

σ−σ+eiδ−
n t , (A15)

S†
n (t )

∫ t

0
dt ′Sn(t ′) = − i

δ+
n

σ−σ+ − i

δ−
n

σ+σ− + i

δ+
n

σ−σ+e−iδ+
n t + i

δ−
n

σ+σ−e−iδ−
n t , (A16)

Sn+1(t )
∫ t

0
dt ′Sn(t ′) = − i

δ−
n

σ+σ−(ei(δ+
n+1+δ−

n )t − eiδ+
n+1t ) − i

δ+
n

σ−σ+(ei(δ−
n+1+δ+

n )t − eiδ−
n+1t ), (A17)

S†
n (t )

∫ t

0
dt ′S†

n+1(t ′) = i

δ−
n+1

σ−σ+(e−i(δ+
n +δ−

n+1 )t − e−iδ+
n t ) + i

δ+
n+1

σ+σ−(e−i(δ−
n +δ+

n+1 )t − eiδ−
n t ). (A18)

We can ignore the terms oscillating with ±δ±
n , as these frequencies correspond to resonances of the first-order Hamiltonian and

one-photon processes. Keeping the other terms we have that

H (2)
A ≈

∑
n

�2
n

(
1

δ+
n

σ+σ− + 1

δ−
n

σ−σ+

)
|n + 1〉〈n + 1| − �2

n

(
1

δ+
n

σ−σ+ + 1

δ−
n

σ+σ−

)
|n〉〈n| (A19)

and

H (2)
B (t ) ≈

∑
n

−�n�n+1

(
1

δ−
n

σ+σ−ei(δ+
n+1+δ−

n )t + 1

δ+
n

σ−σ+ei(δ−
n+1+δ+

n )t

)
|n + 2〉〈n|

+�n�n+1

(
1

δ−
n+1

σ−σ+e−i(δ+
n +δ−

n+1 )t + 1

δ+
n+1

σ+σ−e−i(δ−
n +δ+

n+1 )t

)
|n〉〈n + 2|. (A20)

The two-photon transition terms in Eq. (A20) oscillate with frequencies δ+
n + δ−

n+1 = 2ω − 2γ and δ+
n+1 + δ−

n = 2ω + 2γ ,
which are zero only in the points of the spectral collapse. Thus we do not expect to see two-photon transitions in the regime
where the Hamiltonian is bounded from below, i.e., the ground-state energy is finite [15,19]. The terms in Eq. (A19) will induce
an additional Stark shift that can induce a shift in the resonance conditions of the higher-order processes, as we will see later.
The Hamiltonian can be simplified to

H (2)
A ≈

∑
n

{(
�2

n−1

δ+
n−1

− �2
n

δ−
n

)
σ+σ− +

(
�2

n−1

δ−
n−1

− �2
n

δ+
n

)
σ−σ+

}
|n〉〈n|. (A21)

2. Third-order Hamiltonian

The third-order Hamiltonian is calculated by

H (3)(t ) = (−i)2
∫ t

0
dt ′

∫ t ′

0
dt ′′HI (t )HI (t ′)H (t ′′). (A22)

Following the same notation of the previous section, the third-order Hamiltonian is

H (3)(t ) = −
∑

n,n′,n′′
�n�n′�n′′ (Sn(t )|n + 1〉〈n| + H.c.)

∫ t

0
dt ′(Sn′ (t ′)|n′ + 1〉〈n′| + H.c.)

∫ t ′

0
dt ′′(Sn′′ (t ′′)|n′′ + 1〉〈n′′| + H.c.).

(A23)

If we focus on the three-photon resonances, the following Hamiltonian contains them

H (3)
A (t ) = −

∑
n

�n�n+1�n+2Sn+2(t )
∫ t

0
dt ′Sn+1(t ′)

(∫ t ′

0
dt ′′Sn(t ′′)

)
|n + 3〉〈n| + H.c. (A24)
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The contribution of the two-level operators can be easily calculated by noticing that from

Sn+2(t )Sn+1(t ′)Sn(t ′′) = (σ+eiδ+
n+2t + σ−eiδ−

n+2t )(σ+eiδ+
n+1t ′ + σ−eiδ−

n+1t ′
)(σ+eiδ+

n t ′′ + σ−eiδ−
n t ′′

), (A25)

only the following two terms are not zero (notice that σ 2
± = 0)

Sn+2(t )Sn+1(t ′)Sn(t ′′) = σ+eiδ+
n+2t eiδ−

n+1t ′
eiδ+

n t ′′ + σ−eiδ−
n+2t eiδ+

n+1t ′
eiδ−

n t ′′
. (A26)

After calculating the integral we obtain that the Hamiltonian is

H (3)
A (t ) =

∞∑
n=0

�n�n+1�n+2

{
1

δ+
n (δ−

n+1 + δ+
n )

(eiδ(3)
+nt − eiδ+

n+2t ) + 1

δ+
n δ−

n

(ei2(ω+γ )t − eiδ+
n+2t )

}
σ+|n + 3〉〈n| + H.c (A27)

+�n�n+1�n+2

{
1

δ−
n (δ+

n+1 + δ−
n )

(eiδ(3)
−nt − eiδ−

n+2t ) + 1

δ−
n δ+

n

(ei2(ω−γ )t − eiδ−
n+2t )

}
σ−|n〉〈n + 3| + H.c., (A28)

where δ
(3)
+n = δ+

n+2 + δ−
n+1 + δ+

n = 2ω + δ+
n+1 and δ

(3)
−n = δ−

n+2 + δ+
n+1 + δ−

n = 2ω + δ−
n+1. Ignoring the resonances δ+

n+2 or δ−
n+2

that correspond to the first-order processes, and 2(ω ± γ ) which is only zero at the point of the spectral collapse, we are left with

H (3)
A (t ) =

∞∑
n=0

�n�n+1�n+2

{
1

2δ+
n (ω − γ )

σ+eiδ(3)
n+t + 1

2δ−
n (ω + γ )

σ−eiδ(3)
n−t

}
|n + 3〉〈n| + H.c., (A29)

where the three-photon Jaynes-Cummings and anti-Jaynes-Cummings resonances are easily identified as δ
(3)
n+ = 0 and δ

(3)
n− = 0,

respectively. In a simplified way, Eq. (A29) is rewritten as

H (3)
A (t ) =

∞∑
n=0

(
�

(3)
n+σ+eiδ(3)

n+t + �
(3)
n−σ−eiδ(3)

n−t
)|n + 3〉〈n| + H.c., (A30)

where �
(3)
n+ = g3√(n + 3)(n + 2)(n + 1)/2δ+

n (ω − γ ) and
�

(3)
n− = g3√(n + 3)(n + 2)(n + 1)/2δ−

n (ω + γ ), as shown in
the main text.

APPENDIX B: DISSIPATIVE EFFECTS

In the main text we performed the analysis for a closed
quantum system, without considering dissipative effects that
may appear in a realistic scenario. In the following we show
how a dissipative term like the one considered in Eq. (B1)
affects the k-photon interactions studied in the main text.
The dynamics will be described by a master equation of the
form

ρ̇ = −i[H, ρ] + κ (2aρa† − a†aρ − ρa†a), (B1)

where H is the Rabi-Stark Hamiltonian in Eq. (1), ρ is the
density matrix describing the state of the system, and κ is
the coupling constant associated with the dissipative term
affecting the bosonic mode. It is expectable that the coherent
population exchange will decrease due to the latter. However,
in Fig. 5 it is shown that the three-photon selective interactions
survive for realistic dissipative couplings such as κ/ω = 10−3

or κ/ω = 10−4 [1]. For κ/ω = 10−3 (κ/g3 = 1), Pe,8 ≈ 0.1
is the maximum population obtained for state |e, 8〉, while for
κ/ω = 10−4 (κ/g3 = 0.1) this value increases to around 0.6
and more than one oscillation can be observed. In the same
manner, to observe a five-photon interaction with g/ω = 0.1,
a dissipative coupling κ/ω < 10−5 (κ/g5 < 10−5) will be
required.

APPENDIX C: DERIVATION OF THE RABI-STARK
HAMILTONIAN IN TRAPPED IONS

In this section we will explain in detail how to derive the
effective Hamiltonian in Eq. (10) from Eq. (9),

HA(t ) = −i
η�r

2
aσ+e−iδr t − i

η�b

2
a†σ+e−iδbt

+ eiφS gSσ+ + H.c. (C1)

At this point the vibrational RWA has been applied, however,
for a precise understanding of the effective dynamics we need
to consider the following additional terms that have been
ignored, so that the total Hamiltonian is H = HA + HB, where

HB(t ) = −�r

2
σ+e−i(−ν+δr )t − �b

2
σ+e−i(ν+δb)t

+ iηeiφS
�S

2
σ+(ae−iνt + a†eiνt ) + H.c. (C2)

The first two terms are the off-resonant carrier interactions
of the red and blue drivings which are usually ignored given
that �r,b  ν. The last term represents the coupling to the
motional mode of the carrier driving. This term does not
commute with the first and second terms. In addition, they
all rotate at similar frequencies (as δr, δb  ν). As a con-
sequence, these terms produce second-order interactions that
cannot be ignored as we will see in the following. The second-
order effective Hamiltonian is

H (2)(t ) = −i
∫ t

0
H (t )H (t ′)dt ′

= −i
∫ t

0
(HA(t ) + HB(t ))(HA(t ′) + HB(t ′))dt ′. (C3)
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FIG. 5. Three-photon interactions with dissipative effects for g/ω = 0.1, γ /ω = −0.4, ω0/ω = 2.317, and initial state |g, 5〉. In (a), (d),
and (g) the time evolution of populations Pg,5 (solid) and Pe,8 (dashed) is shown for κ/ω = 0, κ/ω = 10−4 and κ/ω = 10−3, respectively. In
(b) and (c), (e) and (f), and (h) and (i) the time evolution of populations Pe,n and Pg,n is shown, for κ/ω = 0, κ/ω = 10−4 and κ/ω = 10−3,
respectively.

We are only interested in terms arising from
∫ t

0 HB(t )HB(t ′)dt ′ whose oscillating frequency is δr or δb. These are

−�r

2
σ+e−i(−ν+δr )t

∫ t

0
dt ′(−iη)

�S

2
e−iφSσ−ae−iνt ′ = −η

�S�r

4ν
σ+σ−e−iφS e−iδr t a, (C4)

−�b

2
σ+e−i(ν+δb)t

∫ t

0
dt ′(−iη)

�S

2
e−iφSσ−a†eiνt ′ = η

�S�b

4ν
σ+σ−e−iφS e−iδbt a†, (C5)

iη
�S

2
eiφSσ+a†eiνt

∫ t

0
dt ′

(
−�r

2

)
σ−ei(−ν+δr )t ′ = η

�S�r

4(ν − δr )
σ+σ−eiφS eiδr t a†, (C6)

iη
�S

2
eiφSσ+ae−iνt

∫ t

0
dt ′

(
−�b

2

)
σ−ei(ν+δb)t ′ = −η

�S�b

4(ν + δb)
σ+σ−eiφS eiδbt a, (C7)

−�r

2
σ−ei(−ν+δr )t

∫ t

0
dt ′(iη)

�S

2
eiφSσ+a†eiνt ′ = −η

�S�r

4ν
σ−σ+eiφS eiδr t a†, (C8)

−�b

2
σ−ei(ν+δb)t

∫ t

0
dt ′(iη)

�S

2
eiφSσ+ae−iνt ′ = η

�S�b

4ν
σ−σ+eiφS eiδbt a, (C9)

−iη
�S

2
e−iφSσ−ae−iνt

∫ t

0
dt ′

(
−�r

2

)
σ+e−i(−ν+δr )t ′ = η

�S�r

4(ν − δr )
σ−σ+e−iφS e−iδr t a, (C10)

−iη
�S

2
e−iφSσ−a†eiνt

∫ t

0
dt ′

(
−�b

2

)
σ+e−i(ν+δb)t ′ = −η

�S�b

4(ν + δb)
σ−σ+e−iφS e−iδbt a†. (C11)

If we assume that 1/(ν ± δ j ) ∼ 1/ν and reorganize all the terms, we get that the second-order effective Hamiltonian is

H (2)
B (t ) ≈ η

�S�r

4ν
(ie−iφS e−iδr t a + H.c.)σz − η

�S�b

4ν
(ie−iφS e−iδbt a† + H.c.)σz, (C12)

which can be incorporated to the first-order Hamiltonian in Eq. (C1), giving

Heff (t ) = −i
(
2g(1)

r σ+ − g(2)
r e−iφSσz

)
ae−iδr t − i

(
2g(1)

b σ+ + g(2)
b e−iφSσz

)
a†e−iδbt + �0

2
σ+eiφS − η2 �S

2
a†aσ+eiφS + H.c., (C13)

where g(1)
r,b = η�r,b/4 and g(2)

r,b = η�S�r,b/4ν and �0 = �S(1 − η2/2). Now, if we assume φS = 0 or π and move to a frame

w.r.t. �DD
2 σx, we obtain (below � ≡ �DD for clarity)

HI
eff = ωR

0

2
σ+ ∓ η2 �S

2
a†aσ+ − i

[
g(1)

r (σx + iσye−i�tσx ) ∓ g(2)
r σze

−i�tσx
]
ae−iδr t

− i
[
g(1)

b (σx + iσye−i�tσx ) ± g(2)
b σze

−i�tσx
]
a†e−iδbt + H.c., (C14)
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where �DD = ±�0 − ωR
0 for φS = 0 and φS = π , respectively. Using that

σye−i�tσx = cos (�DDt )σy − sin (�DDt )σz = σ̃+ei�DDt + σ̃−e−i�DDt , (C15)

σze
−i�tσx = cos (�DDt )σz + sin (�DDt )σy = −i(σ̃+ei�DDt − σ̃−e−i�DDt ), (C16)

where σ̃± = (σy ± iσz )/2, and that the detunings are chosen to be δr = �DD + ωR and δb = �DD − ωR, Eq. (C13) is rewritten as

HI
eff = ωR

0

2
σ+ ∓ η2 �S

2
a†aσ+ + [

g(1)
r (−iσx + σ̃+ei�DDt + σ̃−e−i�DDt ) ± g(2)

r (σ̃+ei�DDt − σ̃−e−i�DDt )
]
ae−i�DDt e−iωRt

×[
g(1)

b (−iσx + σ̃+ei�DDt + σ̃−e−i�DDt ) ∓ g(2)
b (σ̃+ei�DDt − σ̃−e−i�DDt )

]
a†e−i�DDt eiωRt + H.c., (C17)

where all terms rotating with ±�DD or higher can be ignored using the RWA. After the approximation we have that

HI
eff = ωR

0

2
σx ∓ η2 �S

2
a†aσ+ + (

g(1)
r ± g(2)

r

)
σ̃+ae−iωRt + (

g(1)
b ∓ g(2)

b

)
σ̃+a†eiωRt + H.c., (C18)

which, in a rotating frame w.r.t −ωRa†a, transforms to

HII
eff = ωR

0

2
σx + ωRa†a + gJC(σ̃+a + σ̃−a†) + gaJC(σ̃+a† + σ̃−a) ∓ η2 �S

2
a†aσx, (C19)

where gJC = η�r (1 ± �S/ν)/4 and gaJC = η�b(1 ∓ �S/ν)/4, depending on the choice of the phase φS = 0 or φS = π .
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