
Received September 25, 2020, accepted October 26, 2020, date of publication October 29, 2020,
date of current version November 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034770

An Easy-to-Use Multi-Source Recording and
Synchronization Software for Experimental Trials
MANUEL MERINO-MONGE , ALBERTO J. MOLINA-CANTERO ,
JUAN A. CASTRO-GARCÍA , (Graduate Student Member, IEEE),
AND ISABEL M. GÓMEZ-GONZÁLEZ , (Senior Member, IEEE)
Departmento de Tecnología Electrónica, ETSI de Informática, Universidad de Sevilla, 41012 Seville, Spain

Corresponding author: Manuel Merino-Monge (manmermon@dte.us.es)

ABSTRACT A typical routine in many scientific studies consists of recording data from devices and
identifying which segment of data corresponds with an experimental interval. However, many current
applications have been designed to obtain and save data from one single device, and synchronizing data with
the markers that delimit the test phases can be difficult. To address this issue, we have developed LSLRec,
which is based on Lab-Streaming Layer, a C++ library that allows data synchronization. LSLRec is an
easy-to-use, open-source, multi-platform, recording system developed on Java that can save data from several
devices at the same time, while maintaining synchronizationwith the experimental phasemarkers. It supports
three explicit sync methods: the first uses one-integer-channel input Lab-Streaming Layer streams. The
others use TCP/UDP socket messages and allow any existing software that generates sync markers through
TCP/UDP messages to be used under the same conditions. In LSLRec, the markers are saved together with
input data, facilitating the process of linking data with test stages. A prerequisite for recording software is
to guarantee suitable timing performance, with no data loss and an easy user interface. These features were
assessed for LSLRec, with no data loss detected for 20 hours (25 sessions). We evaluated performance by
measuring timestamp deviations for sync marker and input data. The sync methods exhibited an average of
deviations of around−34µs (which is more than acceptable, e.g., in studies involving living beings), whereas
the absolute value of deviation for one-channel data was lower than 40µs. Finally, we assessed the system’s
usability with the technology acceptance model 3 survey (6 volunteers). Subjects saw the software as useful,
and intended to use it in the future. In conclusion, LSLRec is a useful tool for those who need to record data
from multiple sources, and maintain synchronization with experimental phases with low delay.

INDEX TERMS Recording system, several source devices, lab streaming layer, data synchronization, multi-
platform, open source.

I. INTRODUCTION
Data acquisition and analysis are common tasks in scien-
tific practice, helping us to learn about our environment
and improve our interaction with it. A wide range of disci-
plines study and analyze information from different sources:
the estimation of P- and S-wave velocity of seismic waves
[10] in geology; the sensing of cell culture [34] in biol-
ogy; or the analysis of physiological signals for human-
computer interaction [13] in engineering. These disciplines
all need to use commercial and/or custom-made acquisi-
tion devices with application programs to deliver data with

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

different numeric formats, block sizes and sampling rates.
It is not always easy for the experimenter to collect data
and synchronize them with experimental phases, time inter-
vals or simple events, when several devices and programs
are running at the same time, as with multimodal interfaces
[20]. To illustrate this, in [26], [27] two different systems
were proposed to allow people with disabilities to access
a computer. The former modulates the level of attention
through an electroencephalography (EEG) sensor, whereas
the latter requires residualmovements detected by accelerom-
eters or flex sensors. Both systems run with an augmentative-
alternative-communication application based on the linear
scanning of a panel of ideograms shown on a computer
screen. This type of application delivers an event when a new

200618
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0204-4544
https://orcid.org/0000-0002-2256-0127
https://orcid.org/0000-0003-1128-6879
https://orcid.org/0000-0002-6041-1480

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

ideogram is highlighted. Data and events from sensors and
the application have to be synchronized to delimit the period
of time associated to each highlighted ideogram. A similar
situation is described in [37] where authors searched for iden-
tified emotional states, through EEG signals, with subjects
having to watch affective pictures for several seconds [41].
Every segment of collected data also had to be associated
to each projected image. Other examples include handling a
wheelchair [2], moving the screen cursor [36] or typewriting
[21], [25]. In short, the researcher needs a platform capable of
simultaneously recording data coming from multiple sources
and accurately aligning the acquired data segments with the
experiment phases.

A. RECORDER SYSTEMS - STATE OF ART
Information sources and their essences are varied. For bio-
electrical signals, a reliable recording software is necessary in
addition to the appropriate hardware. Awide range of systems
exists for harvesting data [5]. Table 1 contains some examples
of recording systems.

1) BCI2000
One consolidated system is BCI2000: a general-purpose soft-
ware designed to record, process, and produce control events
from biosignals, focusing particularly on brain-computer
interfaces (BCI) [39]. This software has real-time capabili-
ties, guaranteeing no data loss, the use of markers based on
User Datagram Protocol (UDP) for data segmentation, and
the possibility of adding other tests or forms of computer
interaction. However, its usefulness is limited because it does
not support multiple acquisition devices during experimental
tests, the number of compatible devices is limited and it is not
easy to program new applications for BCI2000, and the code
reuse is limited.

2) BCI++
BCI++ [33] is a free and open-source framework based
on C++, for data recording and the development of BCI
applications. It consists of two modules that communicate
via Transmission Control Protocol (TCP): a graphic user
interface (to create and manage procedures based on 2D/3D
graphic engine) and a hardware module for data acquisition,
storage, visualization, and real-time processing. The latter
allows the acquisition of up to 255 signals from a single
device chosen from a compatible hardware list, so, it is not
possible to simultaneously record data from two or more
devices [23]. Moreover, there is currently no explicit mecha-
nism capable of marking different experimental stages.

3) LAB-STREAMING LAYER AND LAB RECORDER
Lab-Streaming Layer (LSL) takes a different approach to the
previous systems. It separates the data acquisition platform
from the graphical user interface. According to their authors,
LSL is ‘‘a system for the unified collection of measurement
time series in research experiments that handles both the
networking, time-synchronization, (near-) real-time access

as well as optionally the centralized collection, viewing and
disk recording of the data’’.1 LSL is a multi-plaftorm library
(Windows/Linux/MacOS, and 32/64 bits of computer archi-
tecture) that provides a unified interface to record data with
several different programming language interfaces (C/C++,
C#, Python, Matlab, and Java) with a broad set of sup-
ported devices (Emotiv [12], g.USBamp, g.HIamp, Tobii
[16], Kinect [45], Serial port inputs, etc.) and allowing the
use of multiple acquisition devices at the same time.

LSL stores data in a customized-length network buffer
(360 seconds by default or 36-thousand samples for irregu-
lar rate). The buffered data are then transferred using local
network multicast destination Internet Protocol (IP) and TCP
protocols, so the sources and the recording system have
to be connected to the same local network, since this IP
forces a network without middle routers. The TCP protocol
guarantees a reliable, ordered, error-checked delivery and
retransmission of lost/failed packets. Hence, data loss is only
caused by the LSL’s buffer overflow. However, its reliability
limits usefulness for real-time applications because of net-
work latency (delay in data reception) and a more complex
protocol header which causes longer processing time.

Each device connected to the LSL cloud uses a dedicated
stream through which data flow and are temporally buffered
along with a timestamp, enabling the synchronization of
multiple input streams [17], [38] with a timing error of less
than 1 ms. This time synchronization is performed through a
local high-resolution computer clock2 and by measuring the
clock offset using the network time protocol (NTP), which
estimates the round-trip-time (RTT) between senders and
collectors. By adding RTT to every sample timestamp the
communication delay is corrected.

LSL designers have developed a C++ software to record
data from LSL streams: Lab Recorder (LR).3 However,
the application has limited use, because the number of possi-
ble user actions is limited: select/unselect streams, start/stop
recording session, and set the output file path. Additionally,
the user has to select several live LSL streams, start and
stop the recording manually, and all the streams (data and
timestamps) are saved in the same file with the extensible data
format (XDF) format developed by NASA [31]. Furthermore,
the different experimental phases must be demarcated using
a specific, separated stream, such that its timestamps delimit
the data for a test stage.

4) OPENSIGNALS (r)EVOLUTION
Another system based on the same perspective as described in
the section above is OpenSignals (r)evolution (ORE).4 ORE

1Developed by Christian Kothe from the Swartz Center for Computational
Neuroscience, Institute for Neural Computation, University of California
San Diego, USA. Code available at: https://github.com/sccn/
labstreaminglayer[Accessed on March 08, 2019]

2The developers anticipate that the clock’s resolution is better than a
millisecond on PC hardware.

3Available in May, 2020, version 1.13.0: ftp://sccn.ucsd.edu/
pub/software/LSL/Apps/

4Available in September, 2019: https://bitalino.com/en/
software

VOLUME 8, 2020 200619

https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
ftp://sccn.ucsd.edu/pub/software/LSL/Apps/
ftp://sccn.ucsd.edu/pub/software/LSL/Apps/
https://bitalino.com/en/software
https://bitalino.com/en/software

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

TABLE 1. Recording Systems. Symbol meanings: OSH - Officially supported hardware; SHC - Supported hardware by the community; NPD - Number of
paralleled devices from which data is simultaneously recorded; TS - The total number of signals could be simultaneously recorded from all connected
devices; u unstable devices; ⊗ adding new hardware is not possible; � unknown;∞ no limit; ∗ username-password required; § available precompiled
executable.

allows real-time data processing, visualization, synchronous
recording of up to 3 simultaneous devices, data storing with
an output file format based on ASCII text or HDF5 [9], and
including LSL as data server. However, the usefulness of this
software is limited because the list of compatible hardware
only includes 4 devices, the source code is not available
and a Bluetooth connection between LSL and the device is
required.

5) OpenViBE
OpenViBE is another well-known recording, open-source
software that separates the data acquisition server from the
client application, allowing sync markers between them [22].
It supports a wide variety of hardware and applications and
can include LSL streams since OpenViBE version 2.2.0 5 as
an active device. However, using LSL has several limitations:
two streams maximum (data and marker sources) and the
numeric format of data and marker are limited to 32-bit float
and integer respectively.

There are examples in research where the use of multi-
ple devices for data acquisition is necessary. For example,
in the affective computing (AC) field some features must
be obtained from several signals [29] like EEG, electrocar-
diogram, skin temperature, electrodermal activity [8], facial
expressions [19], speech audio [35], etc., and using an ad-
hoc user interface for eliciting emotions. Only ORE and LR
would allow multiple devices operating at the same time but
their use for a study like AC, due to their restrictions, would
be very difficult to implement.

A key point in any study is deciding how to obtain the
data for subsequent analysis. One of the main contributions of
this work is a multi-platform, open-source software that pro-
vides researchers with a reliable tool for synchronizing and
storing data from the equipment used in the lab. This allows
the researcher to concentrate on the experimental protocol
rather than getting sidetracked by data collection issues. It is
also important to highlight that this software combines the
marking of data segments with data acquisition of multiple
devices in (near-) real time. Other features of this software
include: synchronization is compatible with existing software
based on signaling through TCP/UCP text messages; data
encryption is available; the start/stop recording process can
be automated; and the maximum input data rate is also esti-
mated.

5Available in May, 2020; http://openvibe.inria.fr/

The rest of this article is structured as follows. Design
details are given in the Section II, and we then assess its
capabilities in Sections III and IV. Its comparison with the
above-mentioned systems was ruled out due to their restric-
tions (synchronization method and/or the limitation in cap-
turing data from multiple sources). Section V contains the
discussion of the results and a comparison between LR and
our system, and conclusions are presented in Section VI.

II. LSL RECORDER DESIGN
LSRec6 is a multi-thread, cross-platform software (Figure 1),
based on a previous work,7 developed using Java technology
(version 1.7).8 Its main features include:
1) Real-time capacity: Any data acquisition systems must

guarantee an adequate response time to avoid data loss
and high latency. LSRec’s performance depends on
three factors: its design, the capacity of LSL and the
operative system. The design of LSRec is based on
modules, creating independent non-blocking threads
for each one, whichminimizes the communication time
among them. In addition, a module to estimate the
network communication delay and delimit different
experimental stages is implemented to minimize the
error of marker alignment. Data acquisition depends
on LSL’s performance, that contains a data collection
process that runs in almost real-time. The operative
system determines the performance in data’s writing
actions to hard disk when new data become available.

2) Scalability: Number of streams, their channels, sam-
pling rates, or sync markers are not limited by LSRec
design, but by the capacities of the Java virtual
machine,9 the operating system and/or the hardware.

LSRec works as follows: Firstly, the experimenter must
select the signal streams and the synchronization method that
will link data segments to each experimental stage before
starting the recording. Then, LSRec creates N+1 threads that
store the incoming data from the N selected streams and
sync input markers. Any external user application can send

6Code available in May, 2019: https://github.com/
manmermon/LSLRecorder

7https://github.com/manmermon/CLIS
8 Dependencies: Java Swing as user interface, JFreeChart (version 1.0.19)

and JCommon (version 1.0.23) to plot data, LSL (version 1.13.0), JavaNative
Access (version 5.1 - LSL’s requirement), ICMP4J (version 1020) to estimate
the RTT, and Apache Commons Compress (version 1.19) to save data.

9Java limitations: slower and more memory-consuming than other pro-
gramming languages such as C/C++, and garbage collector limits the per-
formance because all threads are stopped to allow this one to be executed.

200620 VOLUME 8, 2020

http://openvibe.inria.fr/
https://github.com/manmermon/LSLRecorder
https://github.com/manmermon/LSLRecorder
https://github.com/manmermon/CLIS

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

FIGURE 1. LSRec ’s user interface. A) Control region. Its main elements are: start / stop recording, refresh
input LSL streams, selection of sync method to link data and experimental stages, activate special messages
to handle the start/stop of recording session by input messages, and recording state. B) Socket settings
when sync markers come from TCP/UDP text messages. The user has to register the expected input text
messages, and select TCP or UDP, IP address and port. C) Log with received input sync messages. D)
LSL-stream settings: output data format, text with general description to save with data, adding extra
information in a specific input stream to save jointly with data, encrypting data, activating the plotting of a
stream, establishing chunk size and interleaving process, and selection of data or sync-marker streams. E)
LSL-stream details (to save jointly with input data) and input data plot to check they are correct.

sync markers either through a specific LSL stream or via text
messages over a socket connection. When the trial finishes
and data are aligned to sync marker, data files are finally
compressed.

LSRec has five different components based on modular
architecture and component-based design methodology (Fig-
ure 2): main coordinator, streaming data supervisor, syn-
chronization thread, data receivers, and encoders. These are
based on the SOLID principle [32]: single responsibility,
open/closed, Liscov substitution, interface segregation, and
dependency inversion.

A. MAIN COORDINATOR
This component is the general system manager, and its main
tasks are to check the settings, launch/stop the recording pro-
cess, and report an estimation of the communication network
delay to the streaming data supervisor (SDS) by redirect-
ing the sync markers received from registered input socket
messages.

B. STREAMING DATA SUPERVISOR
This element creates all data receiver threads from the user’s
selected LSL streams (one for each selected stream), and
another single thread to collect the received sync mark-
ers from synchronization threads (Section II-C) and reports

FIGURE 2. LSRec design. Five main components: main coordinator to
start/stop recording, data-stream supervisor to save input data through
receiver threads, synchronization thread to register the
experimental-stage markers, data receivers, and output format encoders.

the state of data receiver thread to the main coordina-
tor. In addition, when the data recording is stopped, this
supervisor initiates the encoder threads to transform the
temporary binary data files to final compressed output
files.

VOLUME 8, 2020 200621

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

C. SYNCHRONIZATION THREAD
Every single LSL stream is formed by samples and times-
tamps. The timestamps are obtained from the clock of the
system where LSL is running. In the same way, sync markers
also have timestamps. Data segmentation is performed by
comparing temporal points in sync markers to data stream
timestamps. LSRec does this operation for the experimenter
by automatically interleaving data and sync markers, gener-
ating a unique output data set with both of them.

In LSRec, the syncmarkers and their timestamps are stored
in a single independent binary file that is employed in the
encoders to delimit the different test stages (Section II-E).
The markers can be either TCP/UDP socket text messages
(sync socket) or one or more 32-bit-integer LSL streams from
a single channel (LSL synchronization) (Figure 2). In the first
option, LSRec acts as a server without any client limitation
with the experimenter having to register all expected mes-
sages. In this process, LSRec assigns a sync marker, a 32-
bit integer with a value that is a power of two, to each
message. During the operation, when the sync socket receives
a message, this is firstly redirected to the main coordinator
that checks if it is registered. If so, its associated sync marker
is then sent to SDS jointly with its timestamp. Note that the
input socket message must end with the new-line character
(\n). In the second option, LSL synchronization, the user must
select one or more LSL input sync streams. Each received
integer value is considered as a sync marker, and sent straight
to SDS. In this strategy, unlike sync socket, markers are not
limited to powers of 2, since these values are not set by LSRec
but by the user, who must establish the appropriate values.
Note that marker sources are unlimited in both synchroniza-
tion procedures, making it possible to coordinate two or more
independent trial systems.

Each received sync marker from a LSL stream has a times-
tamp, meaning an additional process to estimate the time the
marker was sent is not needed. Instead, the socket message
has to calculate its timestamp. This is obtained from socket
delay calculator. This subtracts the half of RTT from the time
themessage is received. RTT is the shortest time from 4 type 8
(echo) ICMP messages. The aim of this is a better estimation
of the moment the marker was sent.

Unlike other recording software, such as LR, the start
and stop actions can be automated using two special sync
markers: values 1 and 2. Thus, when the user activates this
mode, LSRec starts in standby mode (without recording
data). The recording session starts to retain data when sync
marker 1 is received (or the message ‘‘__start\ n’’ using sync
socket), and the recording process ends with sync marker 2
(or ‘‘__stop\n’’ message). This leads to better control of the
trials.

D. DATA RECEIVER
Users can select several LSL input data streams, with LSRec
creating an independent data receiver thread (DRT) for each
one. The input arrays data and timestamps are stored in a

FIGURE 3. Interleaving process and sync marker alignment. An example
for the input array of 3 channels and chunk size of 4 elements. The
marker M is the result of a bitwise OR operation between the markers m1
and m2. The input data is firstly shaped as a 2D matrix with interleaved
values by rows. The next step is the alignment of sync markers. The
marker’s timestamps are compared with data timestamps to determine
their rows in the data matrix.

temporal binary file as soon as possible. Each LSL stream
may be formed by one or more channels where each one,
in turn, can contain chunks of several samples, so that a sort-
ing process may be necessary if interleaved data is required.
This operation is done in the encoder module to prevent it
from affecting the data recording.

Keeping the data in a volatilememorymay lead to their loss
due to an accidental shutdown of the computer/software or an
out of memory error. The temporary output binary files have
been designed to overcome this problem by directly storing
the data on the hard disk. Note that the real-time capacity of
LSRec is limited by the operativing system, which determines
the performance in data’s writing actions into hard disk as
new data become available. LSRec’s File menu includes an
option to assess these writing actions for each selected input
stream, allowing the estimation of the maximum data rate.
If any of these estimated rates are smaller than the input
sampling rate, there could be data loss due to an overflow
in the LSL’s buffers.

LSRec only collects data from different streams, while the
other software take responsibility for setting and running the
LSL streams to send data. The Appendix A shows an example
code of the process to create an output data stream.

E. ENCODERS
As the recording process finishes, an encoder thread (one for
each stream) generates an output file. The encoder performs
three processes: data interleaving, aligning of data with sync

200622 VOLUME 8, 2020

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

markers, and storing data in the output file. The first two tasks
are sketched in the Figure 3.

The interleaving process is performed if the user selects
this option before starting the recording. LSRec handles data
as a matrix, where the columns are the channels and the
rows contain the received data, and this presupposes that they
are interleaved in the input array with respect to channels,
if not, they need sorting. For example, an LSL stream of 3
channels and chunk size of 4 produces an input array that has
12 elements (Figure 3). The first, fourth, seventh, and tenth
positions belong to channel 1; the second, fifth, eighth, and
eleventh locations corresponds to channel 2 data; and the rest
belong to channel 3 data. These are sorted as a 4× 3 matrix,
in which a column for the sync markers (CSM) is added. The
default value for each cell of this new column is zero, which
means that there has been no change in the trial since the
previous sync marker was received.

The next step is to align data with the sync markers, which
have been placed in chronological order beforehand. They are
sorted in 5-mebibyte blocks. Each sync marker is inserted in
the CSM, in the first row that has a greater or equal timestamp.
If several syncmarkers are assigned to the same row, a bitwise
OR operation takes place. For this reason, each bit in a sync
marker is considered as a flag. It should be noted that the input
integer markers with LSL synchronization are not restricted to
the power of 2, so the user has to set the correct values bearing
in mind the bitwise OR operation.

A final aspect is to reduce the space transferring the
data to disk for which there are many different compres-
sion techniques. One with a good compression ratio is the
GZIP algorithm [18], which receives a byte array and returns
another much shorter one. However, memory problems may
arise if the input binary array is too long. To address this
issue, the compression technique can be applied to segments
of shorter lengths, with data being fragmented into smaller
pieces. In LSRec, the input binary data file is read byte by
byte and moved into a 10 mebibytes (10MiB) queue (this size
is based on Winrar software10). The data matrix is queued
item by item according to row order. When the queue is full,
data is compressed, stored in the output file, and the queue
emptied. This process is repeated until all bytes are read. The
Appendix B describes a template of the encoder process.

F. SIGNALS
LSL was designed to record signals at uniform or nonuni-
form sampling rates. Therefore, LSRec, which is based
on LSL can record signals attained at regular rate (elec-
troencephalogram, electromyogram, skin temperature, audio,
video, etc.) or asynchronously (computer-mouse-pointer
movements, keystrokes, events like turning on/off a light
switch, etc). An example of this is shown in [7] (chapter 7),
where participants in the experiment took part in several game
sessions using Kinect and the application registered 4 signals

10Available in March, 2019, version 5.50: https://www.winrar.
es/

at a regular sampling rate (electrocardiogram, two channels of
electrodermal activity, and the skin temperature) and another
coming from Kinect (skeleton points) and the game events.
All of them were at an irregular rate.

To decrease the possibility of data loss, the LSL’s network
buffer length is set to 100 million samples when a sampling
rate is undefined; otherwise, such a length is limited up to
360 seconds for each channel in the input stream. For exam-
ple, the buffer size of a 10-Hz-sampling-rate input stream
with 3 channels will be of 10800 samples (360× 10× 3).

G. SYSTEM REQUIREMENTS
LSRec has been designed using Java 7 and testing on Win-
dows 10. Java Development Kit (JDK) 8 or greater must
be installed for LSRec to work correctly, and 20-MB free
disk space is required along with LSL’s dll file. Furthermore,
LSRec requires a minimum of 80 MB RAM memory space
and fulfills the requirements of the operative system itself,
these include a Pentium 2 266 MHz processor, with at least
450 MB of free hard disk and 128-MB RAM memory.

H. USE CASE EXAMPLES
LSRec is a general-purpose recorder system with different
options to make it easier to capture and analyze experimental
data. These options are described below.

1) ADDING EXPERIMENTAL DETAILS
Different tests can be performed in the same study and LSRec
allows details to be added like, for example, difficulty level
during the analysis of the cognitive load from arithmetic
activities [24], [40], or certain device settings such as the
value of the reference resistance [6], which may change
among subjects, when transforming voltage to conductance
in electrodermal activity [3]. Thus, extra information about
experimental settings is sometimes necessary for further data
analysis. General test details and specific device information
are written down in the Description field and stream’s extra
button in area D in Figure 1. The experimental description is
inserted in all input LSL streams, whereas the extra details
of an input data source are only added in that specific stream.
Thus, each output file contains all the information required to
conduct the analysis successfully.

2) DATA ENCRYPTION
One important aspect to be considered when experimenting
with people is data privacy. The collected informationmust be
protected against external agents and, for this reason, LSRec
supports data encryption (section C). The experimenter can
select the encrypt box and start data recording (Encrypt
checkbox in the area D in the Figure 1). A pop-up window
will appear to apply for the key that will be used to encrypt
the data in the encoders (section II-E).

3) SETTING SYNC METHODS
LSRec implements different sync mechanics for signaling
experimental stages and input data. The user has to select the

VOLUME 8, 2020 200623

https://www.winrar.es/
https://www.winrar.es/

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

method to be used in the trial (Figure 1, area A): socket and
LSL streams. The former setting consists of: transport layer
protocol (TCP/UDP), IP address (not restricted to localhost
address), port number (from 1025 up to 65535), and expected
input messages. When LSL streams are selected, the socket
setting is ignored and the user has to choose which input
streams emit the sync markers (Sync checkboxes in the area
D in the Figure 1). Note the sync streams cannot be selected
as data source (the last column in the area D of the Figure 1),
and these are only available in 32-bit-integer streams of one
single channel.

4) STREAMS’ SETTINGS
The stream setting consists of: the data chunk size, activat-
ing the interleaved data during the encoding process, and
selecting the input data stream (or sync). LSRec has not
implemented any automatic process to find new devices. The
user must execute this action by clicking the button Refresh
LSL.

5) CHECKING INPUT STREAMS
Some devices require the input data to be checked before-
hand to prevent a test from failing. For example, when using
wearable systems, a noisy signal can be recorded due to low
battery. Each input stream has a plot button, such that each
channel is drawn in an independent figure. This way, clicking
on this button allows stream settings and data quality to be
checked.

6) START/STOP RECORD
The recording process starts/stops normally by clicking the
Play/Stop button (Figure 1, the area A). Another alternative is
utilized by the Special input messages. When this function is
activated, data are recorded after a start message is received.
In the same way, the reception of a stop message terminates
the recording process. These messages have been indicated
in the Section II-C.

7) ESTIMATION OF MAXIMUM INPUT DATA RATE
The operativing system determines the performance in data’s
writing actions into hard disk as new data become available.
If the time spent performing these actions is less than the input
sampling period, there will be no missing data. LSRec allows
users to assess these times to avoid data loss.

The researcher must select the input streams that will be
recorded and then, the option Writing test, in the File menu
(Figure 1, area A). Data are recorded for one minute after
which the average time values for writing are shown.

III. SYSTEM TESTING
Three main aspects were explored in the assessment of
LSRec: timing performance, percentage of missing samples
and software usability. As explained above, each experimen-
tal phase must be correctly identified by the sync markers.
Minimizing the time deviation between the data and the
generation of sync markers is necessary in many studies,

otherwise the data analysis could be invalidated. This is the
case for experiments involving evoked potentials, such as
P300 or N100 [30], in which incorrect signaling influences
the averaging of epochs and, consequently, the estimation
of the evoked potential itself. We designed the first test in
this study to measure these deviations. The software also
had to ensure that all data generated and received during
the experiment were correctly captured and stored: in other
words, that there were no missing data. This was the aim
of the second test. A final, but no less important aspect,
concerned the usability of the application in terms of how
difficult or easy it was for an experimenter to use LSRec.
It is important to gauge the degree of acceptance of a specific
technology as this has a direct bearing on the success of future
implantation.

In the following sections, we give details of the tests
conducted to answer these questions. To execute the tests,
we used a single PC with 3.00-GHz Intel Core i5-2320
(4 cores, 4 threads, and 6MB of CPU cache), 8 GB
RAM, a serial ATA hard disk of up to 156 MB/s of write
speed, and 64-bit Windows 10 (Education edition - ver-
sion 17134.825), and results were analyzed with Matlab
9.0.0.341360 (R2016a).

A. MEASURING SYNCHRONIZATION DEVIATIONS
LSRec has to ensure that calculated timestamps for sync
markers are as close as possible to the time point in which
they were generated. The delay was calculated using all sync
methods, so that only one of them was activated in each
session. The 60-minute recording sessions were repeated
15 times (5 with UDP socket and 5 with TCP socket for
a localhost IP address, and 5 using a sync LSL streaming).
The rate of sync markers was set to 10 messages per second
and the clock’s time was sent in a double, one-channel LSL
stream to evaluate the marker’s delay. At the same time, two
independent 30-channel LSL streams of data were recorded.
Each one sent a uniform-distribution random signal of float
and double data type, with sampling rates set to 256 Hz.
We established these parameters to check that the system
worked correctly with different kinds of streams.

B. PERFORMANCE TEST
To measure the performance of LSRec we designed an exper-
iment with five runs (Table 3). The first three runs used three
different sampling rates (512, 4k and 16kHz) and consisted
of five 60-min recording sessions in which the system clock
was measured. The last two runs consisted of recording a
total of ten 30-minute videos with different frame resolutions
(176 × 144 and 320 × 240 pixels) at 30 frame per second
(FPS) where each frame was sent row by row. Additionally,
two other data streams were recorded for the five runs: the

200624 VOLUME 8, 2020

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

TABLE 2. Items of technology acceptance model 3 (TAM3) survey.

TABLE 3. Performance measurements.

CPU load11 and the point in time in which a new data was
generated (system clock or frame).

C. COMPRESSION
At the same time as the previous tests, we calculated the com-
pression rate for the Captured Long Input Streams (CLIS)
output file (Appendix C) to determine the saved memory
space. The worst case possible was evaluated from uniform-
distribution random streams, whereas the better cases possi-
ble were assessed with signals that show regularity. This is
because CLIS’ compression is based on the GZip algorithm,
which uses Huffman coding. It needs a smaller number of
bits to code deterministic signals than random ones. This way,
we obtained the general interval of compression rate.

D. USABILITY SURVEY
Usability surveys assess a system’s ability to reach its
designed goal [11], measuring ease of use, perceived use-
fulness, and intention to incorporate it into the production
system, etc. For this reason, we evaluated the usefulness of
LSRec using TAM3 [43], which provides a clear picture

11The library Sigar was utilized to register the CPU load. Code avail-
able at: https://github.com/hyperic/sigar[Accessed on Jan-
uary 07, 2020].

of users’ behaviour and their reasons for evaluating a soft-
ware in terms of usefulness and ease of use. Both features
were assessed by scoring (from 1 to 7) system features,
social influences, individual differences, subjective norm,
image, job importance, etc. The TAM3 test consists of a set
of 16 questions, but in this study we used 13 (Table 2). Each
subject filled in the questionnaire after completing a task
guide with different activities (Appendix E), with a secondary
aim: to obtain feedback about the main aspects that need
to be included in the future user guide. With this aim in
mind, the task guide did not contain any information about
how LSRec could be set, and consequently, we removed the
questions from the TAM3 survey about help documentation
(CSE2 and CSE4). The usability test was filled in voluntarily
by 6 researchers in the signal processing field from the Depar-
tamento de Tecnología Electrónica of Universidad de Sevilla
(Spain). None of them had used LSRec before. Subjects were
only given information when they were stuck and did not
know how to continue.

E. UNIT AND INTEGRATION TESTING
LSRec has been developed following the White-box Test-
ing method [1], therefore the software has been assessed
to check whether each element (class, method, function) is

VOLUME 8, 2020 200625

https://github.com/hyperic/sigar

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

TABLE 4. Group correlation from TAM3 survey. The symbols mean: M is average, and SD is standard deviation, * is p-value< 0.05 in the correlation test.

fully functional: the input parameters and the returned data
type and their values have been verified through test cases
for each function, so that each one of them is independent
of the rest. For example, interleaving function needs three
input parameters (Figure 3): data array, number of channels
and chuck size. This was tested using different settings: 1)
null data array; 2) no-null empty data array; 3) no-null, no-
empty data array with number of channels and chunk size
equal to 0 and they both equaled -1; 4) no-null, no-empty data
array whose length was less than the number of channels; 5)
no-null, no-empty data array whose length was greater than
number of channels, but less than chunk size; and 6) no-
null, no-empty data array whose length was divisible by the
number of channels and the chunk size. In integration testing
[4], all units were integrated within a program and tested as
a group, so that subjects were able to supply annotations to
reveal interface failures between the modules/functions. For
example, data interleaving process and sync marker align-
ment were used by encoders to save them in the selected
output format file.

IV. RESULTS
The results of the system testing are described in the two
following sections. Previously, we applied the interquartile-
range method to remove outlier values [Q1 − 1.5(Q3 −
Q1),Q3 + 1.5(Q3 − Q1)], where Q1 and Q3 represent the
lowest and uppermost quartiles respectively.

A. DATA ACQUISITION
The results of the deviation of sync markers are shown in
Figure 4. The central 90% of deviations were congregated in
the range of (−0.068, 0.012) ms for UDP, (−0.090, 0.018)
ms for TCP, and (−0.035, −0.008) ms for LSL, and the
medians were −0.026 ms in UDP, −0.034 ms with TCP, and
-0.019 ms for LSL. In general, sync markers timestamps were
estimated before the point of time that they were generated.
These deviations exhibit a greater spread in TCP, followed by
UDP, and finally LSL. A Kruskal-Wallis analysis indicates
a statistically significant difference between the three sync
methods (p-value< 0.01).

FIGURE 4. Estimation of time deviation of sync markers without outliers.
The quartiles Q1 and Q3 are both negative values, such that, central 50%
of deviations are between -60 and 10 µs. The interquartiles range are
smaller than 35, 60, and 15 µs for UDP, TCP, and LSL respectively. Tails are
not exhibited in data distribution.

The performance tests show no missing data from any
of the 25 sessions was detected (Table 3). The data times-
tamps exhibit an incremental deviation with respect to the
amount of data received per second. The lowest deviations
were obtained using one-channel streams with chunk size
of 1 sample one-channel stream with chunk size of 1 sample
(1CS), in the ±40µs interval. The deviations for video were
calculated subtracting the moment the frame was captured in
source software to the LSL timestamp of the last frame’s row.
For video resolution of 176× 144 pixels, the time range was
±20ms, whereas for resolutions of 320×240 pixels, the devi-
ations were from −27 ms up to 70 ms. Moreover, the CPU
load was always lower than 20%, so that the approximate
average for all tests hovered around 5%.

With respect to the compression rate, the averaged value
obtained from random data was 7.26 (±1.97)%, whereas
system-clock and video signals were 26.81 (±5.12)% and
52.52 (±7.02)% respectively.

B. USER USABILITY SURVEY
The analysis of the TAM3 test gauged subjects’ intention
to use LSRec. The relationships between the survey’s ques-
tions and categories were analyzed by using the Pearson

200626 VOLUME 8, 2020

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

correlation coefficient (ρ), and we applied the no-correlation
hypothesis test. Table 4 shows the survey results by category
(the correlation among questions is included in the supple-
mentary materials). The BI category obtained an average of
6.28(±1.04), showing a statistical relationship with PU (ρ=
0.93, p < 0.05), meaning that subjects intended to use this
software because it was perceived as useful (PU’s average =
6.46(±0.64)). However, LSRec was also perceived as easy
to use (PEOU= 6.33 ± 1.11), in spite of dependencies with
BI or PU were not found. Therefore, the intention to adopt
this software can be put down solely to its usefulness.

On the other hand, the perceived usefulness linked indi-
rectly to the features SN and REL (ρ= 0.82, p < 0.05).
The working environment favorable to using the systemmade
subjects assume that it was suitable. Furthermore, PEOU
showed significant dependency with CSE (ρ= 0.93, p <

0.05) and PEC (ρ= 0.95, p < 0.05) which, in turn, were
indirectly related to PEOU (ρ= 0.91, p < 0.05). The system
was rated as easy to use because users felt that they had
sufficient knowledge to use it correctly and the system was
backed up by their organization.

V. DISCUSSION
Many scientific studies need to coordinate multiple data
sources simultaneously to determine what is happening in
an experiment. Thus, a reliable application software is a key
factor for collecting data from different devices. LSRec and
LR allow good data synchronization from multiple sources
because they are both based on LSL. This library puts a
timestamp on each sample inserted in an output LSL stream.
Our results have shown that the deviation time between times-
tamps is of±40µs for a one-channel stream (Table 3), which
means that a misalignment of 1 or more samples among
different data sources may occur when the sampling rate
exceeds 12.5 kHz. The sampling rate is often much lower
than 12.5 kHz so that only a few misaligned samples can be
found, which is acceptable. For example, in studies concern-
ing evoked potentials, such as P300 or N100 [30], a deviation
of 1 ms is not significant. We find another example when
comparing heartbeat rhythm from an ECG and the recorded
sound from a stethoscope with a sampling rate of 44 kHz for
both signals. In this situation, the desynchronization could be
around 4 samples, which is not very important. The desyn-
chronization is aggravated in multi-channel streams, where
data are captured by chunk lengths greater than 1 sample. For
a video with a rate of 30 FPS and resolution of 176 × 144
pixels, the deviation is between ±20 ms, which means that
the desynchronization is higher than 1 frame from 25 FPS.
This desynchronization worsens for higher resolution video,
to the extent that desynchronization can be detected from 10
FPS with video of 320 × 240 pixels. Nevertheless, no data
is lost, even with a 320-per-240-pixel video with 30 FPS,
where it is equivalent to a sampling rate of 2.3 MHz for
1CS. These results allow us to assert that LSL is an efficient
tool for recording data from different sources with good
synchronization.

LR is a recording software developed by the designers of
LSL which is similar to LSRec: so why should experimenters
use LSRec instead? LR has several pros but also some cons
when compared to LSRec. LR is written in C++, so one
would expect a better use of system resources. However, this
programming language depends on the hardware architecture
and operating system, so the code has to be compiled again
whenever the system changes. LSRec is based on Java, which
uses a virtual machine that makes the software independent of
the system and allows LSRec to be executed on any platform.
The compatibility of LR with existing software is lim-

ited because only one synchronization strategy has been
implemented and in which the experimental-phase markers
must be sent as a separate LSL stream. LSRec supports and
extends this synchronization strategy adding TCP/UDP mes-
sages, which allows the coordination of the input data with
test events from existing experimental applications based on
TCP/UDP transmissions. Hence, LSRec facilitates the com-
bination with research software. Furthermore, LSRec allows
sync markers from more than one source, so one could use
two independent trial systems at the same time. To illustrate
this, let us assume we want to assess the effect of light bright-
ness when performing basic math operations. One system
would generate a sync marker when a new arithmetic activity
was shown, while another would change light brightness and
send another different sync marker.
One exclusive option of LSRec, which is not supported

by LR, is the ability to automatically start/stop data capture
via special input messages, which improves control in exper-
imental trials.
Another drawback with LR is that the data segmentation

process needs the timestamps of data and sync markers to be
aligned to link them with an experimental phase, and this can
be tedious (Figure 5, on the left). LSRec supports this scheme
by saving markers as an input data stream, and it also allows
the joint recording of each sync marker with the received data
array, facilitating the data segmentation process (Section II-E;
Figure 5, on the right).
One of the main drawbacks with LR is that it ignores the

states of the input streams, so that the researcher may not
realize when some of them are inoperative. This feedback is
an important point because there has to be a guarantee that
data are correctly collected during the experimental session.
LSRec stops recording a session when some input streams are
closed or when, for streamswith regular sampling, no data are
received for 3 times the sampling period with an upper limit
of 3 seconds, if the sampling rate is higher than 1Hz. This
allows the detection of device problems caused by low bat-
tery, communication interference, breakdown, etc. Likewise,
this timer is disabled for irregular-sampling-rate streams.
Another topic concerns the output files and the use ofmem-

ory resources. LR directly saves the selected input streams in
the same output file with a format based on XDF. Even if we
are only interested in analyzing one stream, LR obliges us
to load the whole file which may cause memory problems if
it is heavy. In contrast, LSRec generates individual files for

VOLUME 8, 2020 200627

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

TABLE 5. SWOT analysis applied to the software architecture.

FIGURE 5. Data segmentation process. On the left, aligning data and markers using timestamps. On the right, segmentation when markers are saved
together with input data.

each stream, thereby reducing memory problems. The LSRec
format (CLIS) uses the GZIP algorithm as a compression
technique (Appendix C) exhibiting a good compression ratio,
reducing memory space by around 7% for random input data
(worst case) and 52% for the best case.

Other exclusive options in LSRec include: the possibility
of adding extra information to the stream descriptors and a
general description about the recording session can be saved
in output files; plotting a data stream before the experiment
to verify that the devices work correctly; a hard disk write
test by selected stream to determine the maximum sampling
rate from which data can be lost due to the LSL buffer being
filled; and an encoder from the output, temporal binary file to
prevent an experimental session being lost due to a problem
with the system (shutdown, blocking, etc.).

In addition, the CPU load is generally low when using
LSRec (below 12%), so a modest hardware is enough, and
LSRec can be used on other platforms based for example,
on Linux. In fact, LSRec has been run on Ubuntu 18.04 and

a single LSL stream of 128 float channels and irregular
sampling rate. Data were recorded correctly with no loss.

A. SYNCHRONIZATION OF TRIALS
In addition to proper data synchronization, LSRec allows
different experimental tests/stages to be linked with their
corresponding input data. This task can be accomplished by
three explicit sync methods in which markers are saved with
data (synchronization threads), and another where markers
are recorded as a separate input data stream. The explicit
techniques facilitate data segmentation, reducing the prob-
ability of errors in the segmentation process, with a devi-
ation of around ±90µs in more than 90% of cases for
one-channel streams. This deviation is about 130µs in the
worst case (Table 3, sampling rate of 512 Hz: 130µs=
90µs−(−7µs−33µs) = (90µs−(mean512Hz − std512Hz)).
This way, a sync marker exhibits a deviation of 1 sample with
respect to the correct location for a sampling rate of 7.6 kHz,
and this may be aggravated in higher sampling rates.

200628 VOLUME 8, 2020

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

Regarding sync markers, a higher data rate affects LSRec’s
performance, whatever the selected sync method (LSL
streams or socket), because of a reduction of the resources
available in the computer. Likewise, the tests’ rate was set
to 10 messages per second or 100 ms between messages.
We consider that this value is high, since a greater rate is
uncommon in studies based on living beings.

B. SWOT ANALYSIS
All systems have positive and negative aspects that need to
be mentioned. Strengths-Weaknesses-Oportunities-Threats
(SWOT) analysis evaluates the strengths and weaknesses of
a software, highlighting its opportunities and threats [14].
Table 5 contains the elements of a SWOT analysis. The
main weakness and threat of LSRec is that it is based on a
unique external device library, so any variations in that library
may stop the system from working. However, the multi-
platform and open-source code and its modular design struc-
ture enables researchers and programmers to use it in different
operating systems and develop new capabilities. Moreover,
linking the data segments with an experimental phase is
facilitated because the sync methods, and start/stop recording
process can be automated using special sync messages.

C. USABILITY TEST
The analysis of the TAM3 survey shows that subjects
intended to use LSRec because it was perceived as useful,
although the perceived ease of use did not influence this
decision. This may be because LSRec’s settings were not
detailed in the task guide, and subjects had to work out
how to use it. The behavioral intention statements indicate
that users intended to use the system (averages: BI1= 6.17,
BI2= 6.17, and BI1= 6.50). The items in the BI category
exhibited significant dependency on the others. The relation-
ships between BI1 with PU1 (ρ= 0.87, p < 0.05), and BI1,
BI2, and BI3 with PU4 (ρ> 0.92, p < 0.05) support the
intention to adopt the system because it was seen as useful and
with the potential to improve working capacity. Likewise, its
pleasantness of use (BI1, BI2, and BI3 with ENJ2; ρ> 0.94,
p < 0.05), a favorable working environment in which to use
it (BI2 and BI3 with SN1 and SN3; ρ' 0.86 and ρ> 0.93,
p < 0.05), and a correct fit of the system in the user’s
activities (REL1 with BI1 and BI3, and REL2 with BI2 and
BI3; ρ> 0.86, p < 0.05) all reinforce this idea.

With respect to the perceived usefulness, the pleasantness
of use of LSRec directly affected the performance, effective-
ness and usefulness for the users (ENJ2 with PU1, PU3, and
PU1; ρ> 0.84, p < 0.05). At the same time, the social
environment, the fit of the application with the user’s tasks,
and his/her ability to communicate the benefits of the system
led users to find the system useful (PU4 with SN1, SN3,
REL1, REL3, RES2, and RES3; ρ> 0.88, p < 0.05).
Focusing on the perceived ease of use (averages: PEOU1=

6.00, PEOU2= 6.83, PEOU3= 6.33, PEOU4= 6.17),
LSRec was rated as easy to use because users were able to
perform tasks without any supervision (CSE1with PEOU1-3;

ρ> 0.84, p < 0.05), they had control over it and realized that
it was compatible with other systems (PEC1 with PEOU1-
4; PEC2 with PEOU1, PEOU3-4; PEC4 with PEOU1-2; ρ>
0.83, p < 0.05), and the quality of output data was high
(OUT1 with PEOU1-3; ρ> 0.86, p < 0.05).

VI. CONCLUSION
LSRec is an easy-to-use, open-source, multi-platform record-
ing system that can save data from several devices and
experimental phase markers at the same time with different
sampling rates. LSRec was run on Windows 10, two Linux
distributions (Ubuntu 18.04 and Ubuntu 20.04), and Mac
OS X is pending evaluation. Unlike other systems, adding
new data devices is easy and it is not necessary to modify
LSRec’s code. In addition, we implemented different meth-
ods to mark the different experimental stages to record data,
to ease data segmentation. One of these was based on socket
messages, allowing the compatibility with existing software
that send markers using TCP/UDP messages. LSRec allows
sync markers to come from more than one source. This gives
greater flexibility to the system, compared to others where
synchronization mechanics are either missing or are limited
to just one source. On the other hand, LSRec implements its
own output format (Appendix C) which enables data encryp-
tion and reduces the RAMmemory issue. The encode process
can be performed by several parallel threads, leading to a
drastic reduction in time. It also allows users to plot input
signals, add extra information to each stream, and it gives a
general description about recorded data, and the data recovery
process to overcome system problems, for example, system
shutdown. It also supplies a start/stop command based on
sync markers, thereby improving the control of experimental
tests.

This system will keep on improving with new options
being made available, such as new output data files (XDF,
Matlab, etc.), and a user manual based on user annotations.

APPENDIX A
OUTPUT DATA STREAM
LSRec has an unlimited list of supported devices. Data can
be recorded from different devices using official supported
drivers or the community’s contributions, like, Emotiv, Muse,
G.tec g.USBAmp, Nintendo Wii control, mouse and key-
board, Kinect, etc. Furthermroe, unlike other systems such
as BCI2000 or BCI++, new hardware devices can be added
to LSRec without modifications. Other software manages
communication with the hardware device and sends data
through LSL. This way, LSRec only collects data from dif-
ferent streams, while the other software is responsible for
setting and running the LSL streams to send data. Creating
a new output data stream to send data to LSRec is easy. The
following code is a Java example of this process:

S t r i n g name = "myDevice " ;
/ / name of my d a t a s ou r c e

VOLUME 8, 2020 200629

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

S t r i n g v a l u e = " v a l u e " ;
/ / d a t a d e s c r i p t o r

i n t ch = 8 ;
/ / number o f c h a nn e l s = 8

i n t chunk = 32
/ / chunk s i z e

doub l e s r = 100 ;
/ / s amp l ing r a t e = 100~Hz

i n t da taType = LSL . Channe lFormat . f l o a t 3 2 ;
/ / o u t p u t d a t a o f~32− b i t f l o a t

S t r i n g ID = "myuid123456 " ; / / d e v i c e ID

LSL . S t r e amIn fo i n f o =
new LSL . S t r e amIn fo (name , va lue , ch

, s r , da taType , ID) ;
/ / S t ream i n f o rm a t i o n

LSL . S t r e amOu t l e t o u t l e t =
new LSL . S t r e amOu t l e t (i n f o) ;
/ / To make s t r e am i n g d a t a

f l o a t [] o u t p u tDa t a = new f l o a t [ch ∗chunk] ;
/ / o u t p u t d a t a a r r a y

/ / check i f a r e c e i v e r e x i s t s
i f (o u t l e t . have_consumers ())
{
f i l l I nO u t p u tD a t aA r r a y (ou t p u tDa t a) ;

o u t l e t . push_chuck (ou t p u tDa t a) ;
/ / Send d a t a
}

APPENDIX B
OUTPUT FORMAT
LSRec is a free and open-source software which can be
customized by adding new features. The output data format
is a good example. A new output format file may be added
by creating a new class that implements the interface IOut-
putDataFileWriter which defines five functions:

/∗∗
∗ To add me t ada t a i n f o rm a t i o n
∗ @param id , t e x t : me t ada t a i d e n t i f y
∗ and t h e i n f o rm a t i o n s t r i n g .
∗ /
p u b l i c vo id addMetada ta (S t r i n g id , S t r i n g t e x t)
t h rows Excep t i on ;

/∗∗

∗ To w r i t e d a t a t o o u t p u t f i l e .
∗ @param da t a : d a t a t o save .
∗ Cl a s s wi th i n f o rm a t i o n
∗ and o u t p u t d a t a a r r a y .
∗ @Return : t r u e i f d a t a was saved .
∗ Otherwise , f a l s e .
∗ /
p u b l i c boo l e an saveDa ta (DataBlock d a t a)
t h rows Excep t i on ;

/∗∗
∗ Re tu rn : t h e f i l e p a t h .
∗ /
p u b l i c S t r i n g ge tF i l eName () ;

/∗∗
∗ To check i f t h e encode r i s f i n i s h e d .
∗ /
p u b l i c boo l e an f i n i s h e d () ;

/∗∗
∗ F i n i s h t h e encod ing p r o c e s s and
∗ c l o s e t h e o u t p u t f i l e
∗ /
p u b l i c vo id c l o s e () t h rows Excep t i on ;

LSRec splits data into blocks to avoid memory problems.
When a buffer of 10MiB is full, the function saveData(. . .)
is called. LSRec defines a template for this interface, through
a non-blocking function saveData(. . .) that allows the data
segmentation in 10MiB blocks in parallel with the conversion
process. Two output formats are supported: HDF5 [15] and
CLIS, owner output file format described in the Appendix C.

APPENDIX C
CLIS FORMAT
LSRec uses CLIS format version 2.1 to save data into an
output file that contains two parts (Figure 6): header (text in
UTF-8 format) and data block (binary values).

A. CLIS v2 HEADER
The header contains the information necessary to restore
original data. It is split into 3 parts (Figure 6, on the right):
restoration fields, data information data information (DI), and
padding.

1) RESTORATION FIELDS
Block of text lines ending with the special character ‘‘new
line’’ (\n), containing information to restore original data.
In the first line, each field is split by a semicolon. The
first three identify the version, the compression technique,
and size of header in bytes. The last one indicates whether
restoration-field extension is available (true/false), and the
previous one indicates the length (in byte) of DI in the CLIS
header (a zero value means the DI block is not present). The
othermiddle fields in the first text line, (DBFs), are associated

200630 VOLUME 8, 2020

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

FIGURE 6. CLIS v2 file format. On the left, the general scheme, and on the right, the header structure where restoration and info fields are a single text
line respectively.

to data blocks. In these, different subfields are separated by a
comma with the following meaning (in order):
• varName: name of the data stream.
• dataType: three exclusive options: int (integer), float,
and char (character).

• typeBytes: number of bytes of data type. For example,
a double value and a 32-bit integer are identified as
‘‘float,8’’, and ‘‘int,4’’ respectively.

• nCols: data stream is structured as anN×M matrix. This
field identifies the number of columns of the matrix.

• block1ByteLen,. . . ,blockNByteLen: number of bytes of
each input 10MiB-data segment after compression and
encryption in order.

The order in which each data-block field (DBF) appears
indicates their order in the file.

The last field of the first text line of restoration infor-
mation shows whether the extension is available. A value
equal to true indicates complementary information to restore
data blocks is contained in the next text line. Version 2.1 of
CLIS format is compounded by 2 fields separated by a
semicolon. The first one indicates the length (in bytes) of
the saved symmetric-encryption key after the next \n. This
is encrypted, so it is advisable to check that the decryp-
tion key is the same (in the Figure 6, the encryption key
is indicated by the string ENCRYPTED-PASSWORD). The
encrypt process is based on Java’s implementation identi-
fied as AES/CBC/PKCS5Padding. The second field contains
an MD5-checksum code of encrypted-compressed data. The
steps to generate it are: firstly data block (one by one), and
then, CLIS header without the checksum code and padding
(in the Figure 6, the checksum code is indicated by the
string MD5-text).

2) DATA INFORMATION
This is an optional block that includes comments about data.
In LSRec, this block contains LSL streaming information in
XML format. This text is encrypted if the user sets an encrypt
key.

3) PADDING
The number of final data blocks and the length of each one are
unknown at the beginning of the compression and encryption
processes. This means that the number of characters in the
restoration fields is unknown initially. The aim of the padding
is to reserve enough memory space to insert the two previous
header blocks at the beginning of the output file without
overwriting the compressed data blocks. The header byte size
is estimated based on uncompressed data for each 10MiB
segment, and the special character ‘‘carriage return’’ (\r) is
inserted until the estimation is reached.

B. CLIS v2 DATA BLOCK
The data block consists of a sequence of compressed 10MiB-
data segments, which is described in the Section II-E.
LSRec currently supports two compression techniques: GZIP
(default) and BZIP2. Each compressed block is encrypted if
the user sets an encrypt key.

The process to convert the temporary input binary file data
to the output data file is split into 3 parts: 1) insert the padding
to reserve the header, 2) compress, encrypt and save the input
binary data file, and 3) write the header file at the beginning.

In turn, importing CLIS data in Matlab and Python can be
done in the LSRec’s URL.

APPENDIX D
USED TAM3 STATEMENTS
The employed questions of TAM3 survey are showed in
Tables 6 and 7

APPENDIX E
USER TASK GUIDE
LSLRecorder is a Java application based on Lab Streaming
Layer. It records digital signals for offline data analysis.
This test assesses the usefulness of LSLRecorder for signal
processing research.

1) Start the test and fill in the next questions.

VOLUME 8, 2020 200631

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

TABLE 6. TAM3 survey (part 1). Scoring: from 1 (disagree) up to 7 (agree).

a) How many streams are there? What is the name,
data type, number of channels, and sampling rate
of each one? Did you need help?

b) Plot the streams and indicate what the input
stream types are (sinusoidal, sawtooth, or ran-
dom) in each one? Did you need help?

c) Add extra information to each stream with
the next format: type=class, where class is
sinusoidal, sawtooth, or random. Example:
type=linear. Did you need help?

2) Execute the following activity, and refresh the input
streams. Did you need help?
a) Select all streams. Did you need help?
b) Rename the output data file: ‘‘dataXY1.clis’’. The

symbol Xmeans your name and symbol Y is your
family name. Did you need help?

c) Start recording and wait for the capture to end.
What was the start time? How did you know?
What was the end time? How did you know that
the recording was over? Did you need help?

3) Execute the following activity, refresh the input streams
and select all streams.
a) Rename the output data file: ‘‘dataXY2.clis’’. The

symbol Xmeans your name and symbol Y is your
family name.

TABLE 7. TAM3 survey (part 2). Scoring: from 1 (disagree) up to 7 (agree).

b) Select Socket as syncmethod. Did you need help?
c) Set UDP as network protocol, 127.0.0.2 as IP

address, and port number 12345. Did you need
help?

d) Insert the next socket’s input messages: udp1,
udp2, udp3, and udp4. What are the sync markers
of each message. Did you need help?

e) Delete upd3. Refill in the sync markers.
f) Start recording and wait for the capture to end.

How many input messages were received? Why
did the recorder finish? What was the input mes-
sage pattern? Did you need help?

4) Refresh the input streams.

a) Rename the output data file: ‘‘dataXY3.clis’’. The
symbol Xmeans your name and symbol Y is your
family name.

b) Activate special input messages (start/stop
recording). Did you need help?

c) Select Socket as sync method and set UDP as
network protocol, 127.0.0.3 as IP address, and
23456 as port.

d) Preserve previous socket messages table.
e) Clear the input message log. Did you need help?
f) Start recording, execute 03-captura3.vbs, and

wait for the capture to end. How many input

200632 VOLUME 8, 2020

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

messages were received? Why did the recorder
finish? What was the input message pattern?

5) Execute the following activity, and refresh the input
streams.

a) Rename the output data file: ‘‘dataXY4.clis’’. The
symbol Xmeans your name and symbol Y is your
family name.

b) Select all streams. A new stream is detected. Its
name is ‘‘flujo_6’’. Its chunk size is 10 sam-
ples by channel. Data are interleaved, that is, for
3 channels, the 1st sample is from the 1st channel,
the 2nd sample is from the 2nd channel, and the
3rd one is from the 3rd channel, and so on. Set
the chunk size to 10 and active the interleaved.
Did you need help?

c) Plot the stream ‘‘flujo_6’’. Three sine signal must
be plotted, on the contrary, check the settings.

d) Select Socket as sync method and set TCP as
network protocol, 127.0.0.4 as IP address, and
34567 as port.

e) Deactivate special input messages.
f) Clear the input message log, remove all socket

messages and insert the next ones: tcp1, tcp2, and
tcp3.

g) Start recording, and wait for the capture to end.
How many input messages were received? What
was the input message pattern?

6) Execute the following activity, and refresh the input
streams.

a) Rename the output data file: ‘‘dataXY5.clis’’. The
symbol Xmeans your name and symbol Y is your
family name.

b) Select Lab-Streaming Layer as sync method. Did
you need help?

c) Check that special input messages is not selected.
d) Select all streams.
e) Set as synchronization streams those that can be

selected as a syncmethod.What were the stream’s
names? What was the reason for a stream being
set as sync input thread? Did you need help?

f) Clear the input message log, start recording, and
wait for the capture to end. How many input
messages were received? Why did the recorder
finish? What was the input message pattern?

7) Execute the following activity, and refresh the input
streams.

a) Rename the output data file: ‘‘dataXY6.clis’’. The
symbol Xmeans your name and symbol Y is your
family name.

b) Select Lab-Streaming Layer as sync method.
c) Activate special input messages.
d) A new stream is available to set as sync thread.

Deselect the previous sync stream and select this
new one as sync stream. Did you need help?

e) Clear the input message log, start recording, and
wait for the capture to end. How many input
messages were received? Why did the recorder
finish? What was the input message pattern?

ACKNOWLEDGMENT
The authors would like to thank the volunteers from the
Departamento de Tecnología Electrónica of Universidad
de Sevilla (Spain) for assessing LSRec; Patrick Partridge
who thoroughly revised the manuscript; and the anonymous
reviewers for their useful suggestions.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
[1] P. Ammann and J. Offutt, Introduction to Software Testing. New York, NY,

USA: Cambridge Univ. Press, 2012.
[2] R. Barea, L. Boquete, M. Mazo, and E. Lopez, ‘‘System for assisted

mobility using eye movements based on electrooculography,’’ IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 10, no. 4, pp. 209–218, Dec. 2002.

[3] W. Boucsein, D. C. Fowles, S. Grimnes, G. Ben-Shakhar, W. T. Roth,
M. E. Dawson, and D. L. Filion, ‘‘Publication recommendations
for electrodermal measurements,’’ Psychophysiology, vol. 49, no. 8,
pp. 1017–1034, Aug. 2012.

[4] P. Bourque and R. E. Fairley, Eds., SWEBOK: Guide to the Software
Engineering Body of Knowledge, IEEE Computer Society, Los Alamitos,
CA, USA, version 3.0 edition, 2014.

[5] C. Brunner, G. Andreoni, L. Bianchi, B. Blankertz, C. Breitwieser,
S. Kanoh, A. Christian Kothe, A. Lécuyer, S. Makeig, J. Mellinger,
P. Perego, Y. Renard, G. Schalk, I. Putu Susila, B. Venthur, and
R. Gernot Müller-Putz, BCI Softw. Platforms, Berlin, Germany: Springer,
2013, pp. 303–331.

[6] J. A. Castro-Garcia, A. J. Molina-Cantero, M. Merino-Monge, and
I. M. Gomez-Gonzalez, ‘‘An open-source hardware acquisition platform
for physiological measurements,’’ IEEE Sensors J., vol. 19, no. 23,
pp. 11526–11534, Dec. 2019.

[7] J. A. Castro-García, ‘‘Adquisición y procesamiento de señales psiológicas
y sus aplicaciones,’’ Ph.D. dissertation, Dept. Electron. Technol., Univ.
Sevilla, Seville, Spain, Oct. 2019.

[8] G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun, ‘‘Emotion assessment
from physiological signals for adaptation of game difficulty,’’ IEEE Trans.
Syst., Man, Cybern., A, Syst. Humans, vol. 41, no. 6, pp. 1052–1063,
Nov. 2011.

[9] A. Collette, Python and HDF5: Unlocking Scientific Data. Sebastopol,
CA, USA: O’Reilly Media, 2013.

[10] B. R. Cox, A. C. Stolte, K. H. Stokoe, and L. M. Wotherspoon, ‘‘A direct-
push crosshole (DPCH) test method for the in situ evaluation of high-
resolution P- and S-Wave velocities,’’ Geotechnical Test. J., vol. 42, no. 5,
Sep. 2019, Art. no. 20170382.

[11] S. J. Dumas and C. J. Redish, A Practical Guide to Usability Testing, 1st
ed. Exeter, U.K.: Intellect Books, 1999.

[12] M. Duvinage, T. Castermans, M. Petieau, T. Hoellinger, G. Cheron, and
T. Dutoit, ‘‘Performance of the emotiv epoc headset for P300-based appli-
cations,’’ Biomed. Eng. OnLine, vol. 12, no. 1, p. 56, 2013.

[13] S. H. Fairclough andK. Gilleade, Eds.,Advances in Physiological Comput-
ing (Human-Computer Interaction Series). London, U.K.: Springer, 2014.

[14] L. G. Fine, ‘‘The SWOT analysis: Using your strength to overcome weak-
nesses, using opportunities to overcome threats,’’ CreateSpace Independent
Publishing Platform, Scotts Valley, CA, USA, Tech. Rep., 2009.

[15] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, ‘‘An overview
of the HDF5 technology suite and its applications,’’ in Proc. EDBT/ICDT
Workshop Array Databases (AD), 2011, pp. 36–47.

[16] A. Gibaldi, M. Vanegas, J. Peter Bex, and G. Maiello, ‘‘Evaluation of the
Tobii EyeX Eye tracking controller and MATLAB toolkit for research,’’
Behav. Res. Methods, vol. 49, pp. 923–946, Jul. 2017.

[17] K. Gramann, P. Daniel Ferris, J. Gwin, and S. Makeig, Imaging Natural
Cognition in Action. 2014.

[18] N. W. Group, P. Deutsch, and A. Enterprises, GZIP file Format Specifica-
tion Version 4.3, Distribution, RFC, document 1952, 1996.

VOLUME 8, 2020 200633

M. Merino-Monge et al.: Easy-to-Use Multi-Source Recording and Synchronization Software for Experimental Trials

[19] A. Kappas, ‘‘Smile when you read this, whether you like it or not: Concep-
tual challenges to affect detection,’’ IEEE Trans. Affect. Comput., vol. 1,
no. 1, pp. 38–41, Jan. 2010.

[20] F. Kong and Y. Wang, ‘‘Multimodal interface interaction design model
based on dynamic augmented reality,’’ Multimedia Tools Appl., vol. 78,
pp. 4623–4653, Jul. 2018.

[21] S. Kundu and S. Ari, ‘‘P300 detection with brain–computer interface
application using PCA and ensemble of weighted SVMs,’’ IETE J. Res.,
vol. 64, no. 3, pp. 406–414, 2018.

[22] J. Lindgren and A. Lecuyer, ‘‘OpenViBE and other BCI software plat-
forms,’’ in Brain-Computer Interfaces 2: Technology and Applications,
M. Clerc, L. Bougrain, and F. Lotte, Eds. London, U.K.: Wiley, 2016.

[23] Y. Liu, X. Jiang, T. Cao, F. Wan, P. U. Mak, P.-I. Mak, and M. I. Vai,
‘‘Implementation of SSVEP based BCI with emotiv EPOC,’’ in Proc.
IEEE Int. Conf. Virtual Environ. Human-Computer Interfaces Meas. Syst.
(VECIMS), Jul. 2012, pp. 34–37.

[24] M. Merino, I. Gomez, and A. J. Molina, ‘‘EEG feature variations under
stress situations,’’ in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. (EMBC), Aug. 2015, pp. 6700–6703.

[25] M.Merino, I. Gómez, O. Rivera, and J. A.Molina, ‘‘Customizable software
interface for monitoring applications,’’ in Computers Helping People with
Special Needs. ICCHP (Lecture Notes in Computer Science), vol. 6179,
K. Miesenberger, J. Klaus, W. Zagler, and A. Karshmer, Eds. Berlin,
Germany: Springer, 2010.

[26] A. Molina, J. Guerrero, I. Gómez, and M. Merino, ‘‘A new multisensor
software architecture for movement detection: Preliminary study with
people with cerebral palsy,’’ Int. J. Hum.-Comput. Stud., vol. 97, pp. 45–57,
Jan. 2017.

[27] A. Molina-Cantero, J. Guerrero-Cubero, I. Gómez-González,
M. Merino-Monge, and J. Silva-Silva, ‘‘Characterizing computer
access using a one-channel EEG wireless sensor,’’ Sensors, vol. 17, no. 7,
p. 1525, Jun. 2017.

[28] G. C. Moore and I. Benbasat, ‘‘Development of an instrument to measure
the perceptions of adopting an information technology innovation,’’ Inf.
Syst. Res., vol. 2, no. 3, pp. 192–222, Sep. 1991.

[29] L. Muller, A. Bernin, S. Ghose, W. Gozdzielewski, Q. Wang, C. Grecos,
K. von Luck, and F. Vogt, ‘‘Physiological data analysis for an emotional
provoking exergame,’’ in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),
Dec. 2016, pp. 1–8.

[30] R. Näätänen and T. Picton, ‘‘The n1 wave of the human electric and
magnetic response to sound: A review and an analysis of the component
structure,’’ Psychophysiology, vol. 24, no. 4, pp. 375–425, Jul. 1987.

[31] NASA. (2008). XDF: TheExtensible Data Format Based on
XML Concepts. Accessed: Mar. 11, 2019. [Online]. Available:
https://nssdc.gsfc.nasa.gov/nssdc_news/june01/xdf.html

[32] M. Noback, Principles of Package Design: Creating Reusable Software
Components. New York, NY, USA: Apress, 2018.

[33] P. Perego, L. Maggi, S. Parini, and G. Andreoni, ‘‘BCI++: A new frame-
work for brain computer interface application,’’ in Proc. 18th Int. Conf.
Softw. Eng. Data Eng. (SEDE), 2009, pp. 1–6.

[34] P. Pérez, G. Huertas, A. Maldonado-Jacobi, M. Martín, J. A. Serrano,
A. Olmo, P. Daza, and A. Yúfera, ‘‘Sensing cell-culture assays with low-
cost circuitry,’’ Sci. Rep., vol. 8, no. 1, p. 8841, Dec. 2018.

[35] T. Pfister and P. Robinson, ‘‘Real-time recognition of affective states from
nonverbal features of speech and its application for public speaking skill
analysis,’’ IEEE Trans. Affect. Comput., vol. 2, no. 2, pp. 66–78, Apr. 2011.

[36] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. L. D. Silva, ‘‘Mu rhythm
(de) synchronization and EEG single-trial classification of different motor
imagery tasks,’’ NeuroImage, vol. 31, no. 1, pp. 153–159, May 2006.

[37] R. Quesada-Tabares, J. A. Molina-Cantero, I. Gómez-González,
M. Merino-Monge, J. A. Castro-García, and R. Cabrera-Cabrera,
‘‘Emotions detection based on a single-electrode EEG device,’’ in Proc.
4th Int. Conf. Physiol. Comput. Syst. Madrid, Spain: SciTePress, 2017,
pp. 89–95.

[38] P. M. R. Reis, F. Hebenstreit, F. Gabsteiger, V. von Tscharner, and
M. Lochmann, ‘‘Methodological aspects of EEG and body dynamics
measurements during motion,’’ Frontiers Human Neurosci., vol. 8, p. 156,
Mar. 2014.

[39] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and
J. R. Wolpaw, ‘‘BCI2000: A general-purpose brain-computer interface
(BCI) system,’’ IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 1034–1043,
Jun. 2004.

[40] C. Setz, B. Arnrich, J. Schumm, R. La Marca, G. Troster, and U. Ehlert,
‘‘Discriminating stress from cognitive load using a wearable EDA device,’’
IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp. 410–417, Mar. 2010.

[41] R. A. Stevenson and T. W. James, ‘‘Affective auditory stimuli: Character-
ization of the international affective digitized sounds (IADS) by discrete
emotional categories,’’ Behav. Res. Methods, vol. 40, no. 1, pp. 315–321,
Feb. 2008.

[42] V. Venkatesh, ‘‘Determinants of perceived ease of use: Integrating per-
ceived behavioral control, computer anxiety and enjoyment into the tech-
nology acceptance model,’’ Inf. Syst. Res., vol. 11, no. 4, pp. 342–365,
2000.

[43] V. Venkatesh and H. Bala, ‘‘Technology acceptance model 3 and a
research agenda on interventions,’’Decis. Sci., vol. 39, no. 2, pp. 273–315,
May 2008.

[44] J. Webster and J. J. Martocchio, ‘‘Microcomputer playfulness: Develop-
ment of a measure with workplace implications,’’ MIS Quart., vol. 16,
no. 2, p. 201, Jun. 1992.

[45] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. E. Saddik, ‘‘Evaluating
and improving the depth accuracy of kinect for windows v2,’’ IEEE Sensors
J., vol. 15, no. 8, pp. 4275–4285, Aug. 2015.

MANUEL MERINO-MONGE was born in
Seville, Spain, in 1983. He received the master’s
degree in computer engineering from the Uni-
versity of Seville, in 2010, and the Ph.D. degree
from the TAIS Research Group (Technologies for
Care, Inclusion and Health), University of Seville,
in 2015. His research interests include biomedical
signal processing, affective computing, human–
computer interface, augmentative and alternative
communication, and assistive technology.

ALBERTO J. MOLINA-CANTERO was born in
Lucena, Córdoba, in 1967. He received the B.S.
degree in physics with intensification in electron-
ics, in Seville, in 1990, and the Ph.D. degree
from the University of Seville, in 2010. He has
been working as a Professor with the University
of Seville, since 1990. He is the author of five
books, more than 30 research articles, holds three
inventions, and took part in more than ten projects.
His research interests include signal processing,

sensors, and the development of new devices or techniques for helping people
to access a computer.

JUAN A. CASTRO-GARCÍA (Graduate Student
Member, IEEE) was born in Lora del Río, Seville,
in 1986. He received the master’s degree in com-
puters and networks engineering from the Univer-
sidad de Sevilla, in 2011, and the Ph.D. degree
from the TAIS Research Group (Technologies for
Care, Inclusion and Health), University of Seville,
in 2019. His research interests include signal pro-
cessing, sensors, and human–computer interfaces.

ISABEL M. GÓMEZ-GONZÁLEZ (Senior Mem-
ber, IEEE) has been a Senior Researcher and a
full-time Ph.D. Lecturer with the Electronic Tech-
nology Department, Universidad de Sevilla, since
1990. Her teaching is centered on digital electronic
and biomedical technology disciplines in bache-
lor’s and master’s degrees of computer science.
She has directed numerous final career projects
about the design and implementation of serious
games and toys adaptation in order to improve

the cognitive and motor skills of adults and children with cerebral palsy.
She is also the Head of the TAIS Research Group (Technologies for Care,
Inclusion and Health), where she has been managing several Ph.D. thesis and
national research projects related to human–computer interfaces, biosignal
processing, and ambient assisted living.

200634 VOLUME 8, 2020

