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Abstract—The fault injection in ciphers operation is a very
successful mechanism to attack them. The inclusion of elements
of protection against this kind of attacks is more and more
necessary. These mechanisms are usually based on introducing
redundancy, which leads to a greater consumption of resources
or a longer processing time. This article presents how the
introduction of placement restrictions on ciphers can make it
difficult to inject faults by altering the clock signal. It is therefore
a countermeasure that neither increases the consumption of
resources nor the processing time. This mechanism has been
tested on FPGA implementations of the Trivium cipher. Several
tests have been performed on a Spartan 3E device from Xilinx
and the experimental measurements have been carried out with
ChipScope Pro. The tests showed that an adequate floorplanning
is a good countermeasure against these kind of attacks.

Index Terms—Fault Attack, Stream Cipher, Trivium, FPGA
implementation, countermeasure.

I. INTRODUCTION

The amount of information exchanged daily in communica-

tion networks is growing in an exponential way. A substantial

percentage of this information is sensitive. It must therefore

be protected in order to avoid malicious use. Cryptography

provides techniques, mechanisms and tools for confidential-

ity, authentication, integrity and non-repudiation. It has been

applied for data exchange across large systems. However,

nowadays there is an increasing number of devices with scarce

resources and low power consumption, e.g. those suitable for

the Internet of Things (IoT). In [1] and [2], the authors pointed

out the importance of challenges related to security in the

IoT, showing the relevance of secure implementations under

strong constraints of power consumption and area, among

other aspects. Indeed, the number of lightweight cryptography

implementations has significantly increased in recent years.

In this context, the use of stream ciphers is one of the

best options because of their limited impact on the available

resources. However, the behaviour of a device must be first

comprehensively studied and tested against different attacks

in order to know its security level.

With the aim of carrying out security improvements in

crypto systems, like the stream cipher Trivium [3], it is

necessary to test them and study their vulnerabilities. Since the

work presented by Boneh et al. [4], one of the most widely

used methods for studying vulnerabilities of crypto systems

is the use of side channel attacks. Boneh et al. presented

a theoretical model to break cryptographic circuits based on

random fault injection on hardware implementations. They

proved that some encryption algorithms are vulnerable against

fault injection attacks. Street et al. [5] presented a review of

low-cost attacks based on fault analysis for Smart Cards as

well as for different cryptographic systems (RSA, DES and

other block ciphers). By applying Differential Fault Analysis,

they retrieved the key of the DES cipher by using between

one and ten ciphertexts. These works showed the fault attack

effectiveness over cryptographic systems through the study of

faulty system outputs.

After these first works, the study of the vulnerabilities of

the cryptographic devices is performed in theoretical mode

using mathematical formulations known as Differential Fault

Analysis (DFA). The works [6]–[8] applies DFA for the

Trivium stream cipher. The possibility of retrieving the secret

key from a transient fault injection in the cipher inner state

is studied in these works. In the attack scenario, the main

assumption is the possibility of injecting one faulty bit in the

internal register of the cipher, from which the attacker is able

to determine the cipher inner state in a specific clock cycle

thanks to the difference between the proper and faulty key

stream.

In order to perform these kind of fault injections there are

different techniques previously presented in the literature. In

[9] and [10] a guide of the main techniques is presented. One

of the most used is the manipulation of the system clock signal

[5], [11], [12]. This low cost technique allows to introduce

transient faults in crypto systems in an effective way through

the increase of the clock frequency in a specific clock cycle

with a short clock pulse, which causes that the circuits of

the design do not work properly, producing setup and hold

violations.

Once that the cryptographic device vulnerabilities are de-

termined, the next point of interest is the countermeasure.

The works [9], [10], [13] present different hardware counter-

measures like component redundancy, but in these works the

possibility of using a correct design and implementation of the

crypto circuit as a countermeasure to reduce the vulnerability

it is not considered. Due to that, a study of strategic floorplan-

ning as a practical countermeasure is presented in this paper.

This countermeasure increases the robustness of the crypto

system against fault attacks.
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A. Previous works

In previous works different studies have been presented

about the Trivium stream cipher vulnerability to fault attacks.

In [14]–[16], the vulnerability of FPGA implementations of

the Trivium stream cipher against the fault injection by the

manipulation of the clock signal is studied in a practical way.

These studies conclude that the most vulnerable elements of

the internal state for the introduction of faults are the flip-

flops whose input comes from feedback signals. These signals

are generated by combinational functions and therefore have

a greater delay. In addition, the vulnerability is independent

of the key and the initialization vector.

B. Our contribution

This paper presents a study of the relationship between the

placement of the cryptographic circuit and its vulnerability to

fault attacks. If some positioning constraints are imposed on

the place & route tool, it is possible to reduce the delays in the

feedback signals, increase the maximum operating frequency

and, therefore, make it difficult to inject faults in the circuit.

Due to that, in this paper the correct floorplanning of the circuit

components is considered as an active countermeasure against

fault attack. These conclusions are verified by experimental

measurements of FPGA implementations of the cryptographic

circuit.

C. Paper organization

The rest of the paper is organized as follows. Section

II presents briefly the Trivium stream cipher. Section III

introduces fault attacks and vulnerabilities of Trivium cipher

against those attacks. Section IV presents the floorplanning

as a practical countermeasure and why it is a good option

in this scenario. Section V presents experimental results, with

several floorplanning options and comparisons between results

obtained from timing simulations. Finally, some conclusions

are presented in Section VI.

II. TRIVIUM STREAM CIPHER DESCRIPTION

The Trivium stream cipher [3] is one of the eSTREAM

project finalist. It is a synchronous cipher designed to generate

up to 264 bits of key stream from an 80-bit secret key and

an 80-bit initialization vector (IV). The cipher architecture

is based on three shift registers with 288 bits in total, as

well as combinational logic to provide feedback. Like in other

synchronous stream ciphers, the underlying algorithm begins

with the load of 288 bits into the shift register (internal state)

including one secret key, one initialization vector and a stream

of zeros and ones. Before generating a valid key stream,

the cipher needs to run during 1152 clock cycles. From that

moment on, it generates a valid pseudo-random bit sequence.

The 288 bits of the internal state are distributed along three

shift registers with different lengths. The first shift register has

93 bits, the second one is made up of 83 bits and the third

has 111 bits. The feedback for each shift register is generated

with AND and XOR operations. The key stream is the result

of XOR operations on some bits in the shift register. Fig. 1

shows the schematic of the Trivium internal structure.

0 65 926968 9190

a3 k3

a1

161 176171170 175174

a1 k1

242 287264263243 286285

a2 k2

Key

stream

k1

k2

k3

t3

t1

t2

93

a2

a3

177

Fig. 1. Schematic representation of the Trivium stream cipher.

III. FAULT ATTACKS AND CIPHER VULNERABILITIES

As explained in Section I, one of the most useful methods

in order to study the cipher vulnerabilities is to perform side

channel attacks. In works [14]–[16] the Trivium stream cipher

vulnerabilities against clock signal attacks are studied. This

technique allows the fault injection inside the inner state of the

cipher Trivium, thanks to that it is possible to retrieve secret

information that endanger the system security. This technique

consists on introducing short pulses in the clock signal of the

cipher. These short pulses in the clock imply a frequency above

the maximum operating frequency of the cipher. With these

attacks, errors in the transmission of data between the flip-

flops are produced.

In [16] it is shown that it is possible to produce fault in-

jections in experimental mode. This system consists of a state

machine that allows the selection of a random secret key and

initialization vector, insertion clock cycles and result sampling

after the attacks. The creation of the short clock pulses is

achieved through the combination of two clock signals, one of

them fast and the other slow, where multiplexing both signals

allows to introduce short pulses. The generation of both signals

is done by using a device provided by Xilinx called Digital

Clock Manager (DCM), which allows to produce clocks with

different frequencies from an input clock. The frequencies of

the generated clocks can be lower but also higher than the

frequency of the input clock.

On the other hand, in order to multiplexing the clock signals,

another component provided by Xilinx is used, this component

is called BUFGMUX . It is a special multiplexer used to

switch between different clock signals and guarantees the

generation of a clock signal without glitches.

One important factor when the fault attacks are carried

out on Trivium stream cipher is its own internal structure.

Implemented by nonlinear shift registers, this cipher is able

to work at frequencies very near to the maximum frequency

of the technology where is implemented. This involves the

problem of having to generate short pulses with frequencies

faster than the maximum supported by the device where the
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TABLE I
FAULTS POSITIONS ON THE CIPHERS FOR EACH KEY/IV PAIR AND INSERTION CYCLE.

Key 1 IV 1 Key 1 IV 2 Key 2 IV 1 Key 2 IV 2

Insertion cycles Trivium 1 Trivium 2 Trivium 1 Trivium 2 Trivium 1 Trivium 2 Trivium 1 Trivium 2

1200 0 - 1 1 93 - - -

1300 1/0 1 1 1 1 - - -

1500 93/1/0 1/0 0 - 1 1 1 1

1750 0 0 1 - 0 - 0 -

cipher is implemented. In this case, transitions with times

slightly faster than the maximum times allowed by the FPGA

are necessary. Therefore the fault injection must be done very

carefully, ensuring that small pulses are not filtered by the

FPGA. In the experimental tests, the maximum frequency of

the Spartan-3E FPGA is 311 MHz while the frequency used

to inject faults is 316.66 MHz.

Table I shows the positions of the internal state in which

faults have been introduced after the attacks carried out in

four different insertion cycles. This Table shows the results

obtained from two copies of the Trivium (Trivium 1 and

Trivium 2) implemented using the defaults options of the place

& route tool. Both Triviums are subjected to the same attacks,

under the same conditions. The cases where a ′′
−

′′ appears

mean that after the attacks no errors were injected into the

internal state. On the other hand, when more than one number

appear indicates that after an attack, the faults were introduced

in several positions at the same time.

As it can be seen, for different pairs of key and IV and

different clock cycles, it is possible to inject faults in the

internal state of the Trivium cipher. The results show that

the flip-flops that tend to fail are those whose input signal

comes from feedback lines or the next flip-flop. This is

because combinational operations introduce a greater delay to

those inputs. These flip-flops are at positions 0, 93 and 177,

although in the tests performed this last flip-flop did not fail.

In the FPGA, the clock signals are distributed by special lines

designed for low skew and high fanout, but the signals for

data transmission have a bigger delay they could even have a

quite different delay between them. If the route of the signals

is not balanced or well distributed, the length of the signal

that connects the output of one flip-flop with the next one

in the shift register could be an important factor from the

vulnerability point of view.

If it becomes more difficult to insert faults in flip-flop with

inputs from feedback, then the cipher vulnerability to this

type of attack can be reduced. One way to achieve this is

to introduce placement restrictions, both on the cipher and on

the other circuits of the system.

IV. FLOORPLANNING AS A COUNTERMEASURE

The floorplanning of a circuit affects its timing behaviour.

Therefore, as it has been mentioned above, floorplanning

options could reduce delay times making the fault injection

more difficult, and thus serve as a countermeasure against fault

attack. This countermeasure is based on reducing the routing

distances between flip-flops with critical paths reducing the

delay time of that path.

The constraints and rules used to carry out the implemen-

tation have a great importance when a system is implemented

on FPGA. So it is very important to know the guidelines

to be followed in order to drive the synthesis and place &

route tools towards the target. In most cases, the hardware

designer does not impose good constraints, which results in a

bad placement from the security point of view. The tools try

to implement the system complying with timing constraints

and using as few resources as possible. However, for FPGA

technologies, placement tools tend to extend the design over

the entire device. The hardware designer of crypto-circuits

must take into account the place & route not only in terms

of efficiency, but also in terms of cryptographic security.

In order to improve cryptographic security, it is possible

to use timing and/or floorplanning constraints to guide the

place & route tool. Timing restrictions are the most common

mechanism to achieve a reduction in delays on critical paths.

In this article we focus on how placement restrictions can

improve performance. As an example, we have studied the

position of flip-flop 0 in the FPGA device. As it can be seen

in Fig. 1 the input value of flip-flop 0 is a logic operation

that depends on the output of flip-flops 287, 285, 286, 242

and 68. Fig. 2 (a) shows how these flip-flops are placed in a

dispersed area on the FPGA when floorplanning is free (there

is not placement restrictions). On the contrary, Fig. 2 (b) shows

that these flip-flops are placed closer on the FPGA when the

aim is to protect the system against attacks. For this particular

example, the PlanAhead tool has been used to define an area

for the position of these critical flip-flops.

As it can be seen, both placements are different, being in

the case (a) a design with big data transmission delays at the

input of the flip-flop 0. In the case (b) having guided the

floorplanning, the flip-flops are placed in a smaller area and

closer to each other. In this case the timing delay is smaller

than in the case (a) and the fault attack is more difficult.

The next section presents different floorplanning strategies and

explores the effectiveness of some of them to avoid attacks by

faults injections.
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Fig. 2. Example detail of the positions between flip-flop 0 and its critical
feedback flip-flops.

V. RESULTS

This section presents the results of four FPGA floorplanning

strategies for the Trivium stream cipher. The implementations

have been done in a Spartan 3E FPGA. The implemented

design includes, in addition to the Trivium, a state machine

that controls the load of the key and IV, the Trivium operation

and the injection of the fault by inserting a small pulse into

the clock signal. The generation of floorplanning restrictions

has been done with the Xilinx PlanAhead tool, which allows

to select the area of the device where the design is placed.

The place & route has been made within the Xilinx ISE

environment and to check the positions in which the designs

have been placed, the FPGA Editor tool from Xilinx has been

used. The analysis of the injected faults, and the positions in

which they have been introduced, have been done by sampling

the data from the Trivium state register using ChipScope Pro.

The timing simulations have been carried out with ISIM.

The FPGA implementation of the Trivium stream cipher

can work at the maximum frequency of the device. Therefore,

to inject faults in the cipher internal state could be necessary

to exceed the frequency limitations of the device. Although

difficult, it is possible to inject faults if the maximum oper-

ation frequency of the cipher is slightly above the maximum

frequency of the device. But if the maximum frequency of

operation of the cipher is well above the maximum frequency

of the device, then it is not possible to inject faults.

Implementations have been made with four different floor-

planning restrictions, which have been called free floorplan,

bad floorplan, forced floorplan and strategic floorplan. The

results obtained from these restrictions have allowed to de-

termine the guidelines to follow for a correct floorplanning.

The results obtained are presented in five subsections. Subsec-

tions A to D describe each FPGA floorplan strategies, while

subsection E presents a comparison of maximum frequencies

obtained by timing simulation.

For each floorplanning restriction, 100 tests have been

carried out experimentally. In those tests, a small pulse has

been introduced into the clock signal of the cipher and it has

been checked whether faults have been introduced and their

position.

A. Free floorplan

The first floorplanning strategy is to impose no placement

constraint to the design. Fig. 3 shows a representation of the

area of the device on the left and the placement obtained by

the free floorplanning strategy on the right. White dots indicate

a used CLB.

As it can be seen in this Figure, the design has been

placed using most of the available area of the device. As it

has been explained above, this placement causes that critical

components are separated by large distances. The distance

between all components is also big. The tool does not reduce

more the delays because the circuit operates at the maximum

frequency of the device in which it has been implemented. The

experimental tests show that this implementation is vulnerable

to clock signal attacks, because it is possible to inject faults

in the Trivium cipher.

B. Bad floorplan

The design to be implemented has three main modules:

the Trivium, the State Machine that controls the Trivium and

the clock glitch generator. In this second option, a placement

restriction for each component is imposed, as it is shown on the

left in Fig. 4. The constraints force the tool to place the circuit

in positions that do not comply timing restrictions because

they are too far away from each other. The result is a bad

distribution of the components because the tool does not follow

the placement rules as it can be seen on the right in Fig. 4.

Despite of achieving a reduction in the area, the tool

produces a bad design. The ciphers may not work properly.

The experimental tests show synchronization errors, resulting

in bad operation.

C. Forced floorplan

In the third floorplan strategy the designer uses constraints

on the component placement too strong (the area for the

components is very small) and therefore the tool will be unable

to achieve them. In Fig. 5 it can be seen on the left the area

restriction for each module and on the right the placement

obtained by the tool.

When the designer uses such too strong constraints the tool

assumes that it is not possible to achieve them and therefore

tries to place the components in the indicated areas but ignores

the area constraint imposed by the designer. This kind of

strategy leads to a correct placement but the designer can not

control whether the tool decision is correct or not. Hence it is

possible to achieve the same result that in the bad floorplan

case. In this case it is not possible to guarantee the operation

of the device since the tool tries to achieve the constraints

but does not get it. Due to this, this kind of practice is not

recommended from the point of view of vulnerability to the

fault injection because, as in the case that no floorplanning

restrictions were imposed, the tool decides the placement of

the different components. The experimental tests show that it

is possible to introduce faults.
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Fig. 3. FPGA area and free floorplanning without constraints.

Fig. 4. FPGA area with constraints and bad floorplanning.

D. Strategic floorplan

In this case, the designer knows the area for each compo-

nent, so the modules can be fitted in the area imposed by

the floorplan restrictions. The relative position of the modules

is not too big. The floorplanning achieves the strategy of the

designer perfectly. The result of this case can be seen in Fig.

6 where, on the left, it is the placement area imposed by the

designer while, on the right, it is shown the result obtained

after the placement. It can be observed how the tool achieves

the designer aim, placing the components in their selected

areas and occupying the desired area. Following this strategy,

the designer is able to place the components according to their

aims, reduce the distance between components and improve

the timing behaviour. Therefore to minimize the vulnerabilities

against fault attacks is possible because in the experimental

tests it was impossible to introduce faults in the Trivium

operation of this implementation.

The vulnerability reduction is achieved because of the

reduction of the distance between the critical components, with

the consequent reduction in the delay of critical paths. Thus,

small pulses in the clock signal do not introduce errors. In

order to inject faults it is necessary that the small pulses in

Fig. 5. FPGA area with constraints and forced floorplanning.

Fig. 6. FPGA area with constraints and strategic floorplanning.

the clock signal have higher frequencies. The frequency must

be so high that the pulses are filtered by the FPGA, making

the fault injections impossible.

E. Post-routed Simulations

Once the strategies to place the components in the FPGA

have been analysed experimentally on the device, we will

analyse the vulnerability of the four implementations using

timing simulations and compare the results with those obtained

experimentally.

The implementation with the highest maximum operating

frequency will be the least vulnerable. Logic timing simula-

tions have been used to test the maximum operating frequency,

but it is necessary to take into account that logic timing

simulations are usually very pessimistic in its timing results.

The timing simulations will show bigger delays than the real

ones of the FPGA device. The maximum operating frequency

of the device is 311 Mhz.

In Table II it can be seen the maximum operating fre-

quencies obtained by logic timing simulation for the four

implemented floorplan strategies.

The strategic floorplan presents a maximum frequency

around 298 MHz, which would make it less vulnerable to

!
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TABLE II
MAXIMUM FREQUENCIES OBTAINED FOR EACH FLOORPLAN USING

TIMING SIMULATIONS.

Floorplan Maximum frequency (MHz)

Free 226,190

Bad 268.338

Forced 258,503

Strategic 298.743

attacks by manipulation of the clock signal. On the other hand,

the forced and bad floorplans present a notable reduction of

maximum frequency, being 258.503 MHz and 268.338 MHz

respectively. This frequency reduction is due to the inadequate

placement of the components of the ciphers. Finally, there is

the case of timing simulation of the free floorplan strategy

where the tool does not receive any constraints from the

designer. In this case, the maximum frequency is 226,190

MHz. This result does not follow the trend of the previous

results since it should work faster in simulation than the forced

and bad designs but lower than the strategic one. This could

be verified through the experimental tests on the FPGA, where

this floorplan was able to operate at higher frequencies than

the bad and the forced but at a lower frequency than the

strategic one. This result through simulation is opposite to the

results obtained in the experimental implementation in FPGA,

where it could be seen that free floorplan works at higher

frequency than the forced and bad strategies. This result is

because, as previously explained, the Xilinx simulation tool is

very pessimistic in terms of time delays and it is possible that it

generates errors that do not appear in a real implementation.

These results show that timing logic simulations cannot be

used as a confident way to analyse the vulnerability of FPGA

implementations against clock signal fault attacks.

VI. CONCLUSIONS

In this work, a countermeasure against clock fault attacks

of Trivium stream cipher implemented in FPGA has been

presented. The imposition of FPGA placement restrictions

has been proven to be a way to reduce the vulnerability

against fault attacks. After analysing the vulnerabilities of

Trivium stream cipher implemented in FPGA, the results show

that the weakest points are the flip-flops whose inputs are a

combinational function of the output of several flip-flops.

With a floorplan strategy, it is possible to reduce the

timing delays of critical paths and achieve an increase in the

maximum frequency of the ciphers, making difficult the fault

injections. The results obtained were carried out experimen-

tally and using timing simulations.

It has been shown that the imposition of placement restric-

tions for cipher circuits in the place & route tool is a valid

mechanism to reduce the vulnerability of ciphers against faults

attacks through the clock signal. However, it is necessary that

the selected areas are large enough for the placement of the

device.
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