
Experimental and Timing Analysis Comparison of
FPGA Trivium Implementations and their

Vulnerability to Clock Fault Injection

F.E. Potestad-Ordóñez, C.J. Jiménez-Fernández, M. Valencia-Barrero
Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC/Universidad de Sevilla)

Email: {potestad,cjesus}@imse-cnm.csic.es,{manolov}@dte.us.es

Abstract—The security of cryptocircuits is today threatened
not only by attacks on algorithms but also, and above all, by
attacks on the circuit implementations themselves. These are
known as side channel attacks. One variety is the Active Fault
Analysis attack, that can make a circuit vulnerable by changing
its behavior in a certain way. This article presents an experimental
fault insertion attack on an FPGA implementation of the Trivium
stream cipher. It also compares the faults introduced with the
faults expected after a timing analysis. The results show that this
implementation is vulnerable to such attacks, and also that it
is not possible to estimate the position of the inserted faults by
means of timing analysis.

Keywords—Fault Attack, Stream Cipher, Trivium, FPGA imple-
mentation.

I. INTRODUCTION

Improvements in cryptographic algorithms have led to the
evolution of more sophisticated attacks aimed at breaking their
security. Apart from classic attacks on algorithms it is now
necessary also to consider a second type of attack which
focusses on the physical hardware device that implements the
cryptographic algorithm. With the information obtained from
circuit operation, such as power consumption and electronic
radiation, it is possible to threaten the safety of the whole cryp-
tosystem. These kinds of attacks are known as Side Channel
Attacks [1], and can take two forms. Firstly, there are Side
Channel Analysis attacks, such as Correlation Power Analysis
(CPA) and Differential Power Analysis (DPA) attacks, which
attack the circuit by measuring power consumption during
circuit operation. And secondly, there are Active Fault Analysis
attacks, like Differential Fault Analysis (DFA) and Differen-
tial Fault Intensity Analysis (DFIA) attacks, which involve
injecting faults during the circuit operation by modifying the
operating conditions.

One of the earliest studies into Active Fault Analysis was
presented by Boneh et al, who described a fault attack on the
RSA cryptosystem [2]. Since then, the same technique has
been applied successfully in many other cryptographic algo-
rithms, including symmetric key systems like block ciphers
and stream ciphers (including Trivium).

Some analyses of the Trivium stream ciphers vulnerability
to Active Fault Analysis attacks can be found in literature
[3]-[8], but none of them evaluate Triviums vulnerability
on a specific hardware implementation. This paper therefore

presents an experimental analysis of the behavior of FPGA
Trivium cipher implementations when subjected to fault in-
jection through variation of the clock signal. It also presents
a comparative analysis of the experimental results obtained
after the attack and the expected results obtained through
simulation and timing analysis: that is to say, the fault positions
of the Trivium inner state obtained experimentally and the fault
positions predicted by the timing analysis. The results show the
vulnerabilities of these implementations against this type of
attack and demonstrate the impossibility of determining fault
injections from simulation results.

The rest of the paper is organized as follows. Section
II introduces the architecture of the Trivium stream cipher,
reviews the different theoretical Fault Injection techniques
applicable to the Trivium cipher and explains the experimental
fault injection technique used. Section III describes the FPGA
implementation of the Trivium and the fault injection system.
Section IV presents the results obtained when our system
was used against the Trivium stream cipher and Section V
compares the experimental results and the results predicted by
the timing analysis and simulation. Finally, Section VI presents
some conclusions.

II. FAULT ATTACKS ON TRIVIUM STREAM CIPHER

A. Trivium Stream Cipher

The Trivium stream cipher [9], one of the finalists in
the eSTREAM project, is a synchronous cipher designed to
generate up to 264 bits of key stream from an 80-bit secret key
and an 80-bit initialization vector (IV). Its architecture is based
on three shift registers, totaling 288 bits, and combinational
logic to provide non lineal feedback. Like other synchronous
stream ciphers, the algorithm needs to be initialized by loading
the 288 bits of the shift registers (inner state) with one secret
key, one initialization vector, zeros and ones. Before generating
a valid key stream, the cipher needs to run for 1152 clock
cycles. From then on, it starts generating a valid pseudorandom
bit sequence (key stream).

The 288 bits of the inner state are distributed in three shift
registers of different lengths. The first shift register has 93 bits,
the second 83 bits and the third 111 bits. The feedback for each
shift register is generated with AND and XOR operations. The
key stream is the result of XOR operations on some of the bits
in the shift register. Fig. 1 shows a schematic representation
of the Trivium cipher.



B. Theoretical Fault Injection in Trivium

The Trivium stream cipher has been studied and analyzed
theoretically to determine its vulnerability to fault injection
side channel attacks. One of the first analyses was the work
presented by Hojsı́k and Rudolf [3], who carried out a Dif-
ferential Fault Analysis (DFA) attack. The DFA technique is
a side channel attack in which an attacker is able to inject
a fault into the encryption or decryption process. In other
words, a fault is injected into the ciphers inner state. This
technique assumes that an attacker is able to change only one
bit of the inner state. In [3], two different techniques based on
the same aim but using different mathematical formulations
were presented. The second technique was the more efficient,
successfully retrieving the secret key with 43 fault injections.
The same authors later presented a new attack called the
Floating Fault Analysis of Trivium [4], in which they reduced
the number of fault injections to an average of 3.2. Yupu,
Juntao, Qing and Yiwei [5] used those studies to improve
the cryptographic analysis and retrieve the secret key and
initialization vector with an average of only 3.7 fault injections.

In [6], an Improved Differential Fault Analysis of Trivium
was introduced, capable of retrieving the secret key with two
fault injections over the inner state. A new analysis, called the
Mutant Differential Fault Analysis of Trivium (MDFA) based
on [3], was presented in [7], where it was affirmed that it
is possible to break the system with only one fault injection.
Another reference was the work entitled Improved Multi-Bit
Differential Fault Analysis of Trivium [8], which showed an
improvement on the system constraints described in [5] and
made it possible to attack the system using different fault
models, injecting a fault in an unknown cycle. In this attack,
the secret key was retrieved with four fault injections.

All these references share the same assumption: that in
order to retrieve the secret key and initialization vector it is
necessary to inject only one fault bit into any of the three
registers of the stream cipher. According to this assumption,
if an attacker is able to inject that single fault bit, then the
cipher implementation will be vulnerable to fault injection
attacks. However, none of the papers mentioned experimentally
measured the possibility of such a fault injection.

C. Fault Injection Technique

As explained above, an experimental mechanism had to
be developed to inject faults into Trivium implementations
and measure the number of faults injected. Many practical
techniques exist for injecting faults over different devices. As
described in [10], faults can be injected through variations in
supply voltage, temperature, white light, laser beams, X-rays,
ion beams and variations in the external clock. The technique
chosen in the tests was based on the insertion of short pulses in
the clock signal. This technique increases the clock frequency
in one specific, preselected clock cycle: thereby injecting a
fault and making the device unable to operate correctly.

The technique we used was studied, among others, in [11],
with theoretical analysis and practical experiments on an AES
block cipher, and in [12], which showed a fault injection attack
with short pulses in the clock signals of different block ciphers.
In [13] the same technique was used to attack an FPGA
implementation of the AES block cipher. Taking into account

Fig. 1. Schematic representation of the Trivium stream cipher.

the theoretical models of the Trivium ciphers vulnerability to
fault injections reported in literature and described in Section
II-B, the mechanism we developed had to be able to insert
only one fault in the inner state to be effective.

III. FPGA IMPLEMENTATION DESCRIPTION

A. Fault Injection System Design

To inject faults over the Trivium stream cipher, a system
was designed that would generate a pulse in the clock signal.
This system was presented in [14]. Since in order to generate
a short pulse in the clock signal it was necessary to know the
maximum frequency at which the cipher implementation was
able to work, the specific characteristics of FPGA implemen-
tations had to be taken into account. On one hand, FPGA uses
a dedicated line for clocks, with the aim of guaranteeing high
efficiency in the implemented circuit. This produces very low
skew and low delay in the clock signal. As explained previ-
ously, stream ciphers comprise flip-flops connected in serial
mode with some combinational logic to generate the feedback
signals and the key stream. This structure is very simple, so
FPGA stream cipher implementations are very fast and are
able to work at high frequencies. In our tests, Trivium stream
ciphers could operate at the maximum frequency supported by
the FPGA.

To inject a fault into the stream cipher, it is therefore
necessary to induce a short pulse in the clock signal at a
frequency higher than the maximum operating frequency of
the FPGA (as explained above). This forces the system to
operate with frequencies above the FPGAs maximum operating
frequencies, but at the same time, the maximum frequency
cannot be exceeded too much because, if it is, the FPGA could
filter out the short pulse.

The system to be developed posed three problems: a)
frequencies well above the maximum could not be used,
because they would be filtered by the FPGA, b) although a



clk_in_DCM

clk_out_DCM_1

clk_out_DCM_2

control

faulty_clk
stable

signal

stable

signal

signal

change

pulse

Fig. 2. Timing diagram to obtain the short pulse.

frequency slightly above the maximum was needed to insert
a fault in the Trivium, the overall system of control and
measurement had to operate at a frequency much lower than
the maximum, and c) it had to be ensured that the faults were
being introduced only into the Trivium and not into the rest
of the system.

With these considerations in mind, different tests were
carried out to determine the maximum operating frequency of
the Trivium stream cipher implemented on FPGA. The tests
involved increasing the operating frequency to the maximum
level at which the cipher would work. The device used was
a Spartan 3E XC3S500E with a maximum working frequency
of 311 MHz. The test results showed that the Trivium stream
cipher implemented on this FPGA could work at up to 316
MHz. At higher frequencies, the cipher began to work er-
roneously. The short pulse frequency chosen to inject faults
over the cipher was therefore 316.66 MHz. This frequency
satisfied all the pre-requisites, being slightly higher than the
maximum frequency and thus suitable for fault injection, but
without causing the whole system to malfunction.

Different possible fault frequencies were studied until the
optimum frequency was found. The frequency finally selected
as optimal was the frequency at which it was possible to enter
more effective faults. If that frequency was slightly increased,
the number of injected faults also increased, thus reducing
effectiveness.

The system for injecting faults over the stream ciphers com-
prised a finite state machine that controlled the running status
of the ciphers, like the load of secret key and initialization
vector, normal running by generating n bits of the key stream
and reset the cipher. The state machine controlled the cycle
where the short pulse was added to inject the fault in the inner
state, and made it possible to select the clock cycle where
the inner state was sampled. To analyze the stream cipher
inner states, the cipher design was modified to allow the inner
state register to be sampled and analyzed in search of fault
injections. The state machine also controlled the subsystem
for generating the short pulse. To insert the short pulse in
the clock line, the state machine chose between two clock
signals: one of them was an optimum operating frequency for
the whole system and data sampling process, and the other
was the frequency used, only in one clock cycle, to inject
faults into the inner state. The clock frequency of the state

machine was lower than the maximum operating frequency
of the FPGA, thus ensuring that the control system worked
without any errors.

A short pulse can be generated in a signal in different
ways. One way is by means of a logical operation between
two shifted signals. Due to the particular structure of FPGA
devices, however, it is very difficult to control delays in
combinational, generated signals with the precision needed
for this application. This method is therefore not suitable for
FPGA. Another method is to generate a high frequency clock
and switch it with a low clock frequency. This technique
can be implemented in FPGA devices thanks to their specific
resources, to generate high frequency clock signals and choose
between two clock signals.

To generate the short pulse on the clock signal, a Digital
Clock Manager (DCM) (available in Xilinx FPGA devices)
was used. The DCM can generate clocks with different fre-
quencies from an input clock, allowing generation not only
of clocks with lower frequencies than the input clock, but
also of clocks with higher frequencies. In the system we
developed, the DCM was used to generate a clock with an
optimal frequency for the whole system and for Trivium, and
another clock with a frequency above the maximum frequency
of the device. Considering that the maximum frequency of the
Spartan 3E XC3S500E device is 311 MHz, a clock of 316.66
MHz was generated because in tests it was found that Trivium
fails at that frequency.

Several tests were carried out to verify that the clock signal
of 316.66 MHz was being generated correctly. With these
two clock signals, one with optimal frequency and the other
with the fault frequency, the entire system could be controlled
and the short pulse generated that would allow the fault to
be injected into the stream cipher. Switching between the
two clock signals was done using a clock signal multiplexer,
making it possible to switch between two clock signals without
generating additional pulses. Fig. 2 shows the timing diagram
for the clock signal generation with the short pulse. For only
one pulse to be introduced into the fault clock when switching
between the two clocks, the frequency of the optimal clock
had to be a quarter of the fault frequency.



flip-flop 1

D Q

MUX flip-flop 2

D Q

CLK1 CLK2

CLK

DATA

CONTROL

q

Fig. 3. A schematic image of the Trivium Stream Cipher inner state.

B. Trivium implementation on FPGA

After explaining the fault injection system for the Trivium
Stream Cipher, it is necessary to take into account the char-
acteristics of the Trivium implementation on FPGA. These
characteristics mainly affect the way the cipher loads the
secret key and initialization vector. In this case, loading is
done in parallel. Subsequently, in the FPGA implementation,
a multiplexer is placed between each flip-flop in the inner state.
The shift register that makes up the inner state is not a serial
flip-flop to flip-flop structure, but rather constitutes a flip-flop
to multiplexer to flip-flop structure. Fig. 3 shows a schematic
representation of two flip-flops in this kind of implementation,
with the multiplexer visible between them. One result of this
implementation is that the shift registers are slower than the
flip-flop to flip-flop structure due to the fact that the output
data is not immediately available at the input of the next flip-
flop. The Trivium design was modified to provide access to the
inner state in order to analyze the result of the fault injections,
but this modification implied no change in the implementation.

Other factors taken into account were the influences of
placement and routing on the fault injection. Differences in
the placement and routing of a circuit cause different internal
delay times, which may introduce faults in different positions.

IV. RESULTS

The fault injection system was designed in VHDL and
implemented with the ISE 14.7 Xilinx tool on a Spartan 3E
XC3S500E FPGA. The data was sampled with ChipScope
Pro Analyzer. As explained above, the design of the Trivium
cipher was modified for the tests in order to access the ciphers
inner state register. One additional register was introduced and
used to copy the Trivium inner state for later analysis. To
analyze routing dependency and behavior against the same
attack, three copies of the Trivium cipher were implemented
in the device in parallel mode. The short pulse was injected
in two of them while the third remained fault-free. In other
words, there were two ciphers with fault injection and another
that worked properly. The fault-free inner state of the third
Trivium was compared with the inner states of the other two
Triviums in order to detect the fault injections.

As mentioned earlier, to test the systems vulnerability to
fault attack only one fault needed to be injected into the inner
state of the stream cipher. With this in mind, a fault injection
would be considered effective or successful when a fault
was injected into any of the ciphers three shift registers and
this injection comprised only one wrong bit. In cases where
the fault injections produced more than one wrong bit, the

injection in question would be considered as an unsuccessful
attack.

Table I shows the bit positions of the cipher shift registers
where faults were injected during the tests. Results are shown
for four random pairs of secret keys and IVs, and the pulse was
injected in four different clock cycles. Trivium 1 and Trivium
2 represent the two implementations of the Trivium where the
pulse was introduced in the clocks. When no number appears
in a cell, this means that no error was injected in the cipher
shift register for that key and IV pair in that clock cycle. When
more than one number appears, it means that in this case the
fault was injected into the shift register in the same cipher at
different positions and at the same time. These cases represent
attacks where the fault injection was deemed unsatisfactory due
to the fact that more than one fault was injected. As can be
seen, the bit positions that tended to fail were the same in the
different tests, thus demonstrating that it is the positions in the
inner state that make the stream cipher vulnerable. With this
in mind, these components were analyzed in order to find the
relationships between vulnerability and routing, signal delay
and signal skew.

To analyze the repeatability of the fault injection, approxi-
mately 1600 tests were carried out. The results obtained show
that the faulty bit positions tended to be the same for all
tests under these conditions. One point of interest is that the
positions that failed were those nearest to the bits used by the
stream cipher to do logic operations or provide key stream
generation feedback.

Tables II, III and IV show the different positions of the
faults introduced for the same keys and IVs and for different
insertion clock cycles. It can be seen that, under the same
conditions, the ciphers display different types of vulnerability.
There are evidently different types of fault injections in the
same case, but those injections show it is always the same
flip-flops that tend to fail.

The results show that placement and routing affect the
positions where the faults are introduced, and therefore, by
extension, also affect the vulnerability of the implementation.
Another interesting point extracted from the results is that it
was possible to introduce an effective fault for all four pairs
of keys and IVs presented. In two of these cases, Key 2 IV
1 in Trivium 2 and Key 2 IV 2 in Trivium 2, the fault was
injected only in insertion cycle 1500, but in others cases it was
possible to inject the fault in several cycles.

V. TIMING ANALYSIS AND COMPARISON WITH THE

RESULTS OBTAINED EXPERIMENTALY

With the aim of designing an implementation capable of
resisting the attacks presented in this paper, an analysis was
made of delays in the bits that failed with the post-route data.

The flip-flops that failed were expected to be those with the
greatest delays in their input paths. Using timing restrictions
on those paths would therefore reduce their vulnerability. The
timing analysis with the post-route data was carried out using
both static analysis tools and post-route timing simulation.
In the static analysis, the delay in the path from the output
of one flip-flop to the input of the next was studied, taking
into account clock skew and flip-flop setup time. In the



TABLE I. FAULTY BITS POSITIONS ON THE CIPHERS FOR EACH KEY/IV PAIR AND INSERTION CYCLE.

Key 1 IV 1 Key 1 IV 2 Key 2 IV 1 Key 2 IV 2

Insertion cycles Trivium 1 Trivium 2 Trivium 1 Trivium 2 Trivium 1 Trivium 2 Trivium 1 Trivium 2

1200 2 - 3 3 96 - - -

1300 3/2 3 3 3 3 - - -

1500 96/3/2 3/2 2 - 3 3 3 3

1750 2 2 3 - 2 - 2 -

TABLE II. POSITIONS OF THE INJECTED FAULTS TYPE 1, TYPE 2 AND TYPE 3 ON EACH CIPHER.

Key 1 IV 2 Fault Type 1 Fault Type 2 Fault Type 3

Insertion cycles Trivium 1 Trivium 2 Trivium 1 Trivium 2 Trivium 1 Trivium 2

1200 96/3/2 3 3/2 3 3 3

1300 3 3 - - - -

1500 2 - - - - -

1750 3 - - - - -

TABLE III. POSITIONS OF THE INJECTED FAULTS TYPE 1 AND TYPE 2
ON EACH CIPHER.

Key 1 IV 1 Fault Type 1 Fault Type 2

Insertion cycles Trivium 1 Trivium 2 Trivium 1 Trivium 2

1200 2 - - -

1300 3/2 3 3/2 -

1500 96/3/2 - 96/3 3/2

1750 2 2 2 -

timing simulation analysis, it was possible to measure the
time between the change at the output of one flip-flop and
the change at the input of the next flip-flop.

The static timing analysis generated a report with the
highest delay paths. According to this report, the path with
the highest delay was the connection between the output of
flip-flop 218 and the input of flip-flop 219 in Trivium 2. This
test result suggested that the first candidate to fail when a
short pulse was injected in the clock line would be flip-flop
219. However, as can be seen, this flip-flop was not affected
by the attack.

The timing analysis results presented in Tables V, VI and
VII are organized by bit pairs. The timing and post-route
analysis needed to be done between the faulty bit (flip-flop
X) and the previous bit (flip-flop X − 1). That is to say, if
a fault was injected into flip-flop X , that fault could be due
to the routing or to skew and delay in the signals between
the previous bit and the faulty bit. For example, if previous
tests showed that position number 2 tended to fail, the timing
relationship between the previous flip-flop (bit 1) and the faulty
flip-flop (bit 2) was analyzed.

Table V shows the results of the timing analysis of the
bit pairs that failed in Trivium 1. The results were obtained
from static and dynamic analysis of the paths between the
bits represented. The Max Delay column shows the maximum
delay of the path between the output of one flip-flop and
the input of the next one, as obtained by static analysis. The
column marked O-I Delay shows the delay time between the
output of a flip-flop and the input of the next, as measured

TABLE IV. POSITIONS OF THE INJECTED FAULTS TYPE 1 AND TYPE 2
ON EACH CIPHER.

Key 2 IV 1 Fault Type 1 Fault Type 2

Insertion cycles Trivium 1 Trivium 2 Trivium 1 Trivium 2

1200 96 - - -

1300 3 - - -

1500 3/2 3 3 3

1750 2 - - -

by post-route simulation (or dynamic delay). The aim of this
analysis was to check the dependency between the faults
introduced and the delay in the paths. Table V shows the
delays obtained for the input paths of the bits where errors
were injected: bits 2, 3 and 96. But the table also shows the
delays for two paths (between flip-flops 125 and 126 and flip-
flops 96 and 97) that never had failures. The delays in the input
signals of the bits that failed were expected to be greater than
the delays of the bits that did not fail, but the data obtained
by static timing analysis and timing simulations shows that in
Trivium 1, the delay from bit 96 to bit 97 was greater than the
delay in the faulty bits.

The same analysis was carried out for Trivium 2, and the
results are shown in Table VI. The faulty bits for Trivium 2
were the same as those that failed in Trivium 1, although their
input delays were slightly different. Like Table V, Table VI
shows the delays between flip-flops 125 and 126 and flip-flops
96 and 97. The delay from bit 125 to bit 126 was greater in
Trivium 2, but bit 126 did not fail in any of the tests. As can
be seen, the two Triviums produced different results due to the
different routing on the FPGA, but the behavior of the faulty
bits was quite similar in both of them.

Table VII shows the delay time of the clock signal for each
flip-flop shown in Tables V and VI, for Trivium 1 and Trivium
2. In all cases this delay was much smaller than the delays in
input signals. The results show that, for both Triviums, the bit
pairs that did not display any vulnerabilities had delays that
were higher than or similar to those of pairs vulnerable to
glitch insertion in the clock line.



TABLE V. ANALYSIS OF FAULTY BIT TRANSITION TIMES AND

COMPARISON WITH NON FAULTY PAIR BITS FOR TRIVIUM 1.

Static Analysis Post-route Analysis

From Bit To Bit Max Delay (ns) O-I Delay (ns)

1 2 2.215 1.490

2 3 2.253 1.529

95 96 1.968 1.243

96 97 3.047 2.322

125 126 2.154 1.434

TABLE VI. ANALYSIS OF FAULTY BIT TRANSITION TIMES AND

COMPARISON WITH NON FAULTY PAIR BITS FOR TRIVIUM 2.

Static Analysis Post-route Analysis

From Bit To Bit Max Delay (ns) O-I Delay (ns)

1 2 2.503 1.766

2 3 2.217 1.488

95 96 2.449 1.725

125 126 3.143 2.423

96 97 1.997 1.253

In the light of these analyses, it can be concluded that
it is not possible to use timing analysis to estimate the bits
that will fail after a fault attack based on the alteration of the
clock signal. The behavior of the implemented circuit when
subject to such an attack can only be shown by experimental
measurements. The introduction of timing restrictions does
nothing to reduce the implementations vulnerability.

VI. CONCLUSIONS

This paper presents an experimental fault attack, carried
out by changing the clock signal on FPGA implementations
of the Trivium stream cipher. This type of attack endangers
the security of the Trivium cipher because it can modify only
one bit of the inner state. Experimental results were compared
with the results expected from the timing analysis of the
implemented circuit. The comparison showed that the flip-
flops in which faults were introduced experimentally did not
correspond to the flip-flops with the greatest delays in their
input signals and, therefore, did not correspond to the bits
which would be expected to fail first. These results show that
pre-implementation analyses are not valid when designing a
robust implementation resistant to fault injections involving the
insertion of a pulse in the clock line. The only valid analysis
capable of determining the vulnerabilities of Trivium ciphers
implemented on FPGA is therefore to subject the system to
fault injection and identify its weakest points in experimental
mode, prior to designing specific circuits to eliminate this
vulnerability.

ACKNOWLEDGMENT

This work was partially supported by the Spanish Ministry
of Economy and Competitiveness (with support from the Euro-
pean Regional Development Fund - FEDER) under contracts
CITIES (TEC2010-16870), CESAR (MEC TEC2013-45523-
R), LACRE (CSIC 201550E039) and MISAL (CSIC).

TABLE VII. ANALYSIS OF CLOCK DELAY FOR FAULTY BITS AND

COMPARISON WITH NON FAULTY BITS.

Trivium 1 Trivium 2

Bit Clock Delay (ps) Clock Delay (ps)

2 117 149

3 122 136

96 142 163

126 132 133

97 178 165

REFERENCES

[1] S. Patranabis, et al., ”Using State Space Encoding To Counter Biased
Fault Attacks on AES Countermeasures”, Constructive Side-Channel

Analysis and Secure Design (COSADE’15), 2015.

[2] D. Boneh, R.A. DeMillo, R.J. Lipton, ”On the Importance of Checking
Cryptographic Protocols for Faults”, Lecture Notes in Computer Science,
vol. 1233, pp. 37-51, 1997.

[3] M. Hojsı́k and B. Rudolf, ”Differential fault analysis of Trivium”, Fast

Software Encryption (FSE’08), pp. 158-172, 2008.

[4] M. Hojsı́k and B. Rudolf, ”Floating fault analysis of Trivium”, Interna-

tional Conference on Cryptology in India (INDOCRYPT’08), pp. 239-
250, 2008.

[5] Y. Hu, et al., ”Fault analysis of Trivium”, Designs, Codes and Cryptog-

raphy, vol. 62, no 3, pp. 289-311, 2012.

[6] M.S.E. Mohamed and J. Buchmann, ”Improved differential fault analysis
of Trivium”, Constructive Side-Channel Analysis and Secure Design

(COSADE’11), pp. 147-158, 2011.

[7] M.S.E. Mohamed and J. Buchmann, ”Mutant Differential Fault Analysis
of Trivium MDFA”, International Conference on Information Security

and Cryptology (ICISC’14), pp. 433-446, 2014.

[8] P. Dey and A. Adhikari, ”Improved Multi-Bit Differential Fault Analysis
of Trivium”, International Conference in Cryptology in India (IN-

DOCRYPT’14), pp. 37-52, 2014.

[9] C. De Canniere and B. Preneel, ”Trivium, A Stream Cipher Construction
Inspired by Block Cipher Design Principles”, eSTREAM, ECRYPT
Stream Cipher Project.

[10] H. Bar-El, H. Choukri, D. Naccache, et al., ”The Sorcerer’s Apprentice
Guide to Fault Attacks”, Proc. of IEEE, vol. 94, pp. 370-382, 2006.

[11] M. Agoyan et al., ”When clocks fail: On critical paths and clock
faults”, Smart Card Research and Advanced Application (CARDIS’10),
pp. 182-193, 2010.

[12] T. Fukunaga, J. Takahashi, ” Practical fault attack on a cryptographic
LSI with ISO/IEC 18033-3 block ciphers”, Fault Diagnosis and Toler-

ance in Cryptography (FDTC’09), pp. 84-92, 2009.

[13] Y. Ren, A. Wang, L. Wu, ”Transient-Steady Effect Attack on Block
Ciphers”, Cryptographic Hardware and Embedded Systems (CHES’15),
pp. 433-450, 2015.

[14] F.E. Potestad-Ordóñez, C.J. Jiménez-Fernández, M. Valencia-Barrero,
”Fault Attack on FPGA implementations of Trivium Stream Cipher”,
International Symposium on Circuits and Systems (ISCAS’16), pp. 562-
565, 2016.


