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Abstract. This paper describes a LQG/LTR controller for a solar distributed collector
field. When designing a LQG controller it is easy to take into account the trade—off
between quick response and avoiding oscillations which is typical of many control
problems. The improved robustness reached with the loop transfer recovery LTR allows
for good behaviour of the resulting system even when the working conditions are far
from the ones the LQG controller has been designed for. The controller also employs
serial compensation to cope with measurable external disturbances. The real resulting
behaviour is shown by means of experimentation on the plant.
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1. INTRODUCTION

Solar power provides an energy source which varies in-
dependently and cannot be adjusted to suit the desired
demand. Although solar radiation does have predictable
seasonal and daily cyclic variations it is also affected by
unpredictable variations caused by atmospheric condi-
tions such as cloud cover, humidity and air transparency.
When using solar power as a primary heat source the
major aim is to maximize the usage of the available en-
ergy maintaining desired operating conditions for the
process involved. With the distributed collector field
concerned, solar radiation is focussed by mirrors onto
a pipe through which oil flows. The energy collected
is transferred to a storage tank, which can be tapped
when conditions demand, onto either a steam generator
for electrical power generation or the heat exchanger of
a desalination plant.
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The prime control requirement is to maintain the outlet
oil temperature of the field at a constant value. Since so-
lar radiation cannot be adjusted this can only be achieved
by adjusting the oil flow, and the daily solar power cy-
cle characteristic is such that the oil flow has to change
substantially during operation. This leads to significant
variations in the dynamic characteristics of the field such
as response rate and time delay. Some control schema
have been tested at the plant during the last five years
(Camacho et al., 1994a), (Camacho et al., 1994b). The
LQG/LTR control approach allows changes in dynamic
characteristics to be compensated for whilst maintain-
ing the desired control performance with a high degree
of robustness.

This article presents a control structure in which the
controller is an LQG. This type of controller works well
when the state is accessible but its robustness is weak-
ened when an observer is introduced. In order to solve
this problem it is proposed that the design should be
modified so as to recuperate the stability margins in ef-



fect when the state is accessible. In the literature this
procedure is called Loop Transfer Recovery (LTR). The
use of this methodology leads to more robust controllers
(Doyle and Stein, 1979), (Rubio and Aracil, 1990). The
application of this approach is covered and results ob-
tained by simulation using a non-linear model! of the
plant and results from the plant itself are presented.

The paper is organized as follows: in section 2 a brief de-
scription of the distributed collector field is given. Sec-
tion 3 is dedicated to presenting the control structure
used. In section 4 the controller design procedure and
simulation studies are given. Section 5 presents results
obtained when applying the LQG/LTR controller to the
distributed solar collector field. Conclusions are given in
section 6.

2. SYSTEM DESCRIPTION

The system considered corresponds to the ACUREX dis-
tributed collector field of the ssPs solar plant, located
in Almeria (Southern Spain). The main objective of the
distributed field is to collect solar energy by heating oil
passing through the field. The field consists of 480 dis-
tributed solar collectors. These collectors are arranged
in 20 rows which form 10 parallel loops, as indicated
schematically in Fig. 1, and lie along an east west axis.
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Fig. 1. Schematic Diagram of Collector Field

The collector uses a parabolic surface to concentrate a
direct normal beam onto the receiver tube which is lo-
cated at the focal point of the parabola. The heat trans-
fer fluid is pumped through the receiver tube and picks
up the heat transferred though the receiver tube walls.

The field is also provided with a tracking system which
causes the mirrors to revolve around an axis parallel to
that of the pipe enabling the varying inclination of the
sun to be followed. The cold inlet oil is extracted from
the bottom of the storage tank and is passed through
the field using a pump located at the field inlet. This
fluid is heated and then introduced into a storage tank
to be used for electrical energy generation. The system
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is provided with a three way valve located at the field
outlet that allows the oil to be recycled whithin the field
until its outlet temperature is adequate for entering into
the top of the storage tank. Each of the loops mentioned
above is formed by four twelve module collectors, suit-
ably connected in series. The loop is 172 metres long,
the active part of the loop measuring 142 metres and
the passive part 30 metres.

3. CONTROL STRUCTURE

High order linear models of the field have been obtained
taking into account the frequency response of the plant,
showing antiresonance characteristics (Camacho et al.,
1994b), but in the development of the robust LQG/LTR
controller a low order model is used to show that even
when the model uncertainty is high, the robust control
scheme proposed provides very good results and a low
order controller.

In this way, a simple linear model for control purposes
relating changes in fluid flow, the adjustable input vari-
able, to changes in outlet temperature is used (Camacho
et al., 1992). Observations of step responses obtained
from the plant indicate that in the continuous time do-
main behaviour can be closely approximated by a first
order transfer function with a time delay:

8Ty

(1 +7s)

The time delay 74, time constant r and gain K of the
system vary with the oil flow-rate and at the lower oper-
ational flowrate the delay is approximately twice that of
at the maximum flow rate. It has been shown (Camacho
et al., 1992), that one way of accommodating this vari-
ation in time delay is to use a model of the form:

g(s) =e”

,2(b0 +ble1)

9(z) = = (1 —az"1)

3.1 Series Compensation

In order to define input and output signals of the LQG/-
LTR, some aspects have to be taken into account.

The control signal used is the oil flow. The outlet tem-
perature of the plant, however, is also influenced by
changes in system variables such as solar radiation and
fluid inlet temperature. Hence, dynamically, the outlet
temperature 7, can be expressed as a nonlinear func-
tion f of oil flow u;, solar radiation 7 and inlet tem-
perature Ti,: To = f(uy,I,Tin). The mathematical model
which accounts for these additional influences dynami-
cally, even when linearized, is complex, especially when



considering that the variation of the inlet temperature
(T:n) produces a change in the outlet temperature after
a variable delay time (depending on the flow).

One simple approach which reduces the complexity of
the model is to make use of the known operating charac-
teristics of the field. Studies have been carried out which
incorporated approximate transfer functions in the feed-
forward term but the benefits provided were not con-
sidered to justify the added complexity or uncertainty
involved. So, in order to account for the disturbances, a
series feedforward controller was introduced (Camacho
et al., 1992), directly calculated from steady-state rela-
tionships (steady-state energy balance), which makes an
adjustment in the flow input, aimed at eliminating the
change in outlet temperature caused by the variations
in solar radiation and inlet temperature. The calculation
employed is:

0.7869 I — 0.485 (u ~ 151.5) — 80.7
Us =
! (u — Tin)

where u; is the oil flow, « is the temperature set-point
given by the LQG/LTR, T, is the inlet oil temperature
and 7 is the effective solar radiation. The feedforward is
placed in series with the LQG/LTR. and thus, the out-
put signal of the LQG/LTR controller is the increment in
the set point temperature for the feedforward term and
not the oil flow (this is calculated by the feedforward
controller).

3.2 LQG/LTR Controller

It has been observed that the Linear Quadratic Gaus-
sian Controller (LQG) method worked well when very
precise mathematical models were used, but the method
was extremely sensitive to imprecisions in the parame-
ters and to structural modifications. One outstanding
property is that the closed loop transfer function ob-
tained when the state is directly accessible, so that the
Kalman filter (KBF) is not necessary, is the same as if
this last module were included. That is, the closed loop
is the same as if the observer were inexistent; there is no
influence on the global transfer function of the system.
This gave the idea that the observer was irrelevant in
the design of the closed loop system. However, as was
discovered at the end of the seventies, although it is true
that the observer does not affect the closed loop trans-
fer function it noticeably affects the open loop transfer
function. This influence can be extremely damaging to
the robustness of the system (in fact it can greatly re-
duce the stability margins).

The LQR and LQG regulators

Given the plant model:
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x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k)

The purpose of the LQR regulator is to determine the
control signal u in order to minimize the following func-
tional:

N-1
J = x5Hexy + Z (xT (k)Qex(k) + uT (k)Reu(k))
k=0

with: Qe =QF >0, R.=RI>0

x and xy being the state and the final state vectors re-
spectively. The LQG problem is presented which is based
on the separation theorem, according to which the con-
trol strategy can be divided into two parts:

(1) An optimum control problem, from which the reg-
ulation by feedback of state variables is obtained.

(€]

K. is found by iteration of the well known Riccati
equation.

An optimum filtering problem which solves the ob-
servation using the Kalman filter, whose correspond-
ing dynamic is given by the system:

u=-K:x

()

%(k + 1) = A%(k) + Bu(k) + Ko(k +1) [y(k+1) —

C(Ax(k) + Bu(k))] (2)
where K, is obtained from a Riccati equation dual
to the previous one.

The resulting structure is shown in Fig. 2.

Fig. 2. Block diagram of the LQG regulator

Loop Transfer Recovery (LTR)

Asymptotic recovery techniques have been developed for
continuous time, minimum phase systems (Doyle and
Stein, 1979). There are design techniques which allow for
excellent robustness properties. To dispose of a similar
procedure for discrete time systems is, therefore, desir-
able, even though the LQR discrete controller does not



have the same properties as present in the continuous
case, such as stability margins.

The solution of the controller LQR is a linear feedback of
the state vector and gives rise to the open loop transfer
function: Gror(z) = K.®B where & = (21 — A)~1.

By mathematical manipulation in Fig. 2, the transfer
function of the open loop Grgc(z), can be obtained and
this depends on the parameters of the control law and
of the Kalman filter, which in turn depend on the costs
assigned to resolving the control and observation prob-
lems. It is a well known fact that the closed loop transfer
function never varies, thus the closed loop temporary
specifications solved by the application of the control
law will continue to be fulfilled. However, the open loop
transfer function becomes:

Groe(z) = [Ko(I - KoC)zI — (A — BK)(I - Ko C) !
(A - BK.)K, + KcK,] C®B

With this situation the stability margins have changed,
and in most cases this variation usually goes into ac-
tion by greatly deteriorating the phase margin of the
compensated system, causing it the consequent loss of
robustness.

To solve the problems presented by the deterioration of
robustness caused by the introduction of the observer,
the method known as LQG/LTR has been proposed. The
idea of loop transfer recovery at the input LTR-i is to
modify the covariance matrices of the Kalman Filter
so that the open loop transfer function of the system
with the LQG controller approximates Grgr(z), which
has good robustness properties. This can be achieved,
in the case of minimum-phase systems in the following
way:

Qo = QS + quBT

R, =R!

As ¢% - oo, the open loop transfer function of the LQG
problem approaches the LQR one.

In the case of discrete systems (Maciejowski, 1985), it
can be shown that for minimum phase systems such as
det(CB) # 0 and using the filtered version of the Kalman
filter as observer, perfect recuperation is obtained acting
on the parameters of the LQR. In any case, when these
conditions are not fulfilled, the same procedure usually
leads to improvements of robustness.

4. CONTROLLER DESIGN

The effect of the loop transfer recovery on the increase
in robustness of the controlled system has been anal-
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ysed first. The controlled system could be expected to
be less sensitive to changing dynamics due to set point
variations or unmodelled dynamics in this way.

In order to carry out the design of the LQG/LTR con-
troller a linear model must be considered first. In this
case, the reduced order model proposed in (Camacho et
al., 1992) and considered in section 3 has been employed.

In order to show the advantages of the LTR method,
the controller has been designed considering a model of
the plant: G(z) = 0.122/(1 — 0.92~1), which corresponds to
high flow operating conditions. The model has been aug-
mented with an integrator in order to avoid static errors
and the controllable canonical form has been used. The
weighting matrices of the LQ problem have been used
equal to: Q. = CTC; R, =17, where C is, as usual, the
output matrix of the internal description of the plant.
The value R. = 17 has been chosen from simulation stud-
ies in order to achieve good tracking characteristics.

Since it is not possible to obtain an estimation of the
noises corresponding to the Kalman filter (amongst other
facts, the internal description used has no physical mean-
ing), the covariance matrices of the Kalman filter have
been chosen arbitrarily. In concrete, a LTR-i form has
been used: Q, = BBT; R, = p where B is, as usual, the
input matrix of the internal description of the plant and
p is a design parameter. According to the LQG/LTR the-
ory, decreases of p will, probably, result in robustness
increases.
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Fig. 3. Simulation with p =01

The behaviour of the simplified linear model G(z) with
a design value of p = 0.1 has been tested both at the de-
sign point (maximum flow) and at the extreme point
(minimum flow, which corresponds to the same transfer
function augmented with z—! (Camacho et al., 1992)).
Simplifying assumptions have been made, because fixed
values of by, b1 and a have been considered in the reduced
order model shown in section 3. As can be seen in Fig.
3, the behaviour of the controlled system is influenced
by changes at operating point. If a value of p = 10710 is
chosen in the design, the controlled system is less sensi-



tive to changes at the operating point (Fig. 4), as is to
be expected.

1000
samples x T

Fig. 4. Simulation with p = 10-10

4.1 Simulation studies

In order to develop a LQG/LTR controller for the dis-
tributed solar collector field, a model corresponding to
an identification of the step-response of the system at a
concrete operating condition (oil flow equal to 8 1/s) has
been chosen. This model would be very different under
other conditions, but, due to the robustness of the con-
troller, stability and good set point tracking is obtained
under different operating conditions. The model results
to be equal to:

0.0272 + 0.052
23 091222
As mentioned previously, the model is augmented with
an integrator and the controllable canonical form is used
as internal description of G(z) = -2=G1(z). The weighting

z—1

matrices of the LQ problem stated above have been used.

Gi(z) =

In Fig. 5 the Nyquist diagram of the model used for
design purposes with the LQG controller is represented,
with different values of p. It can be seen that, as p de-
creases, the phase margin of the controlled system in-
creases (or any other robustness measure).

— p=0.000)
e w20

——— i

Imz)

Fig. 5. Nyquist diagram of the model with the LQG/LTR
controller for different values of p
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The plant can be described by a set of nonlinear dis-
tributed parameter equations describing energy and mass
balance. A nonlinear distributed parameter model was
developed so that the control scheme could be tested
by simulation. Under certain conditions (Berenguel et
al., 1994), the temperature in the field can be given by
the following equations:

memAm%

o = InoD = H1G(Tim — Ta) = LH(Tm — Tf)

aT .OT
prlA,_b_tL + prfq—an— = LHt(Tm - Tf)

where the subindex m refers to the metal and s to the
fluid. The rest of the parameters are as follows: p: den-
sity, C: field capacity, A: transversal area, T: outlet tem-
perature, I: solar radiation, n,: optical efficiency, H;:
overall thermal loss coefficient, D: mirror width, H;: co-
efficient of metal fluid transmission, G: exterior diameter
of the pipe line, L: inner diameter of the pipe line, ¢: oil
flow rate. These equations are only applicable to the ac-
tive zones of the field, that is, those parts of the pipe line
where solar radiation is collected. Parts of the field, pas-
sive zones, exist where it is not possible to collect solar
energy due to geometrical conditions, as is the case of
the joints between the modules. These zones constitute a
considerable part of the field and they are characterized
by having nil irradiance and different loss constants.

The above equations were used to simulate the system in
a computer dividing one of the loops into one hundred
pieces and using a model of concentrated parameters
for each piece. The model was contrasted to the real
data obtained from the field (Berenguel et al., 1994).
The parameters of the model were adjusted so that they
reproduced the behaviour of the system.

Fig. 6 corresponds to a simulation (set point and out-
let oil temperatures) of the same controllers with the
distributed nonlinear model of the plant.

7 12.7
local time (hours)

2.7 13.7

Fig. 6. Simulation of the LQG/LTR controller for different
values of p

The value of p=0.00001 has been chosen to obtain a
good trade-off between robustness and desired shape



of the step response. Results of simulations are good
compared to other controller approaches including adap-
tive schemes (Camacho et al., 1992), (Camacho et al.,
19944a). In this case, the lack of adaptive behaviour is
compensated for by the high robustness of the controller.

5. PLANT RESULTS

The proposed control scheme has been tested at the so-
lar plant. Above all, one aspect in the development of
the LQG/LTR controller used should be stressed, that
is the excellent results obtained in the first tests per-
formed at the plant. This fact can be observed in the
figure showing the first test performed at the plant. Fig.
7 (outlet oil temperature, inlet oil temperature, set point
temperature, solar radiation and oil flow respectively)
corresponds to a step-response test (19/09/95), cover-
ing a wide range of oil-flow conditions (from 1.8 to 6
1/s). As can be seen, good set-point tracking and dis-
turbance rejection was obtained, with null steady state
error (due to the fact that the controller is implemented
including integral action). The rise time was of about 8
minutes without overshoot in a change of 10 degrees at
the set point.

6. CONCLUSIONS

A method to design a controller with a LQG/LTR struc-
ture has been shown. This method has proved to have
better properties of robustness than the original LQG
method making it possible to use the LQG in more situ-
ations. The validity of this controller has been proved by
simulation and by different tests on a solar power plant.
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