
Virtual Laboratory for Digital Signal Processing

Javier A. Guerra

Department of Electronic Technology

Universidad de Sevilla

Seville, Spain

jgcoronado@us.es

Antonio Garcia

Department of Electronic Technology

Universidad de Sevilla

Seville, Spain

antgar@us.es

Samuel Dominguez-Cid

Department of Electronic Technology

Universidad de Sevilla

Seville, Spain

sdcid@us.es

Diego Francisco Larios

Department of Electronic Technology

Universidad de Sevilla

Seville, Spain

dlarios@us.es

Juan Ignacio Guerrero

Department of Electronic Technology

Universidad de Sevilla

Seville, Spain

juaguealo@us.es

Carlos Leon

Department of Electronic Technology

Universidad de Sevilla

Seville, Spain

cleon@us.es

Abstract—Digital Signal Processor is a useful tool for
learning and practice about filters for digital signals. The
practices of the subject “Procesado Digital de Señales”
made the students learn how to use it, and how to run
some algorithms. But the hardware and laboratory
restrictions and the complexity of subject provoked some
availability problems of digital signal processor
platforms. An effective solution is the creation of a virtual
laboratory which connects to the real hardware, as
explained in this document.

Keywords— Virtual Laboratory, Digital Signal Processor,

Algorithm, Practice.

I. INTRODUCTION

In the Electronic Engineering degree, taught at “Escuela
Politécnica Superior”, University of Sevilla (Spain), there is a
subject in the last course called “Procesado Digital de
Señales” (PDS). PDS is focus on learning general concepts
about digital systems and signals and learning and apply some
techniques in digital filter design. It also allows students to
learn the theory of Digital Signal Processor (DSP). This theory
is complemented by laboratory practices, where it is used a
particular DSP for the implementation of these practices. The
largest part of the subject is regarding signal transformation.
In that, they learn about Discrete Fourier Transform (DFT)
and some of its implementations, as Fast Fourier Transform
(FFT) and Inverse Fast Fourier Transform (IFFT). Z transform
and inverse Z transform is also learnt in courses.

Apart from theory lessons, students must do some
practice lessons to pass the subject. In these practice lessons,
they are engaged in implementing some filters and signal
transformations, such as those mentioned above.

II. PROBLEM ISSUE

Having laboratories to do research and subject practices
could be one of the best ways to get the students to improve
their education for every self-respecting University. A
compete laboratory allow students to put into practice
theorical teaching and obtain their own point of view of the
obtained knowledge, like what happens in the real use case.
Unfortunately, it is impossible to enable all the hardware and
software required for all the practices and research at the
same time. Also, due to schedule and space reasons, it is
complicated to obtain access to the laboratory at any given
time. So, in case of isolated research or trying a single-
handedly practice, they need to wait until there is some spare
time in laboratory. For this reason, any alternative that allows
using the laboratory hardware or software is always an

advantage. In this case, what it is proposed is the use of a
Virtual Laboratory (VL) as solution.

The idea behind this solution is the subject of extensive
research. The most widespread alternative implies using
specific software for modelling the needed components for
the virtual laboratory [1] or even using mobile applications
designed for this specific aim [2].

Regarding signal processing, there has been some
interesting research in the last year. Some of them are
referring to creating a virtual instrumentation laboratory [3]
or using a mathematical approach regarding Fourier theory
[4]. Nevertheless, all of them imply accessing the computer
locally, which is the downside to overcome. In addition, the
proposed architecture to solve the bottleneck in case of many
petitions to the VL is an addition to other similar publications.

In this sense, we propose a general solution that can be
accessible from any device with a web browser, with no need
to stay in the same place that the computer that runs the VL
software.

III. HARDWARE IMPLEMENTATION

The C5505 DSP

TMDX5505EZDSP [5] is one of the DSP boards that it is
proposed to use in practices. It is a device with 16-bit fixed
point DSP development USB connection. A USB port
provides enough power to allow an ultra-low-power C5505
processor to work, so an external power source is
unnecessary.

This board allows a fast and easy evaluation of any C5505
processors. This tool has also an XDS510 emulator. This
emulator is used to measure the source code debugging
capacity and supports Code Composer Studio software.

2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE)

Fig. 1. TMDX5505EZDSP board.

TMS320C5505 is one of the lowest power 16-bit
processor devices, but it can process 16 million of
instructions per second (MIPS) and its onboard memory is up
to 320 KB. All these specifications, and others like a Fast
Fourier Transform (FFT) computer hardware accelerator,
provides a higher integration than other comparable devices
in the same price range. Therefore, C5505 is a base device for
a large signal processing range application, such as voice
recorders, musical instruments, portable medical solutions, or
security applications. Therefore, we choose the
TMDX5505EZDSP board. The diagram of the
TMS320C5505 USB Stick is shown on Fig. 2.

Regarding peripherals, the TMS320C5505 has many
serial interfaces, such as four integrated Integrated Interchip
Sound (I2S), an Inter-Integrated Circuit (I2C), a Serial-Port
Interface (SPI) and a Universal Asynchronous Receiver-
Transmitter (UART). It also has four Direct Memory Access
(DMA) controllers, and a Universal Serial Bus (USB) 2.0. All
these connections make the device resourceful and suitable
for this purpose.

The C6713 DSK

The TMS320C6713 [6] Digital Starter Kit (C6713 DSK)
board, made by Texas Instruments, is the second board that
is used in practices and is implemented in this VL. It is called
a DSK because the C6713 DSP come on a board with some
additional components, such as audio codec, several types of
memory or peripherical control, as it is shown on Fig. 4. All
these components made the DSK a great initiation and
experimentation platform for signal processing applications
development.

Fig. 3. TMS320C6713 DSK board.

The C6713 DSK board is connected to a personal
computer (PC) with Windows as its operative system (OS)
through the USB port. Thus, it is possible to load, deploy and
debug the applications of the board. It has an AIC23 stereo
codec to handle the analog inputs and outputs. This codec has
a sample logic up to 96 kHz and a 32-bit resolution.

Fig. 4. TMS320C6713 block diagram.

Fig. 2. TMS320C5505 USB Stick diagram [6].

TMS320C5505 block functional diagram.

TMS320C5505 block functional diagram.

2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE)

The TMS320C6713 works at 225 MHz, which means up
to 1800 MIPS and 1350 mega floating-point operation per
second (MFLOPS). This DSP generation is built for high-
precision applications, such as professional audio edition,
medical applications or diagnostic and monitoring methods.

IV. SOFTWARE IMPLEMENTATION

All these hardware devices need software prepared to
send the specific code to the C550 DSP or the C6713 DSP
(from now on, DSPs). In this case, the chosen software is
Code Composer Studio (CCS). CCS [7] is an Integrated
Development Environment (IDE) which provides a wide
range of functionalities to help programming. It enables the
design, implementation and testing phases, providing a
C/C++ compiler, a source code editor, a programming project
management environment, a debugger and many other
characteristics for programmers.

Fig. 5. Code Composer Studio.

CCS is based on Eclipse, another IDE. Because of this, it
has the possibility of adding new packages, modules or plug-
ins, which enable new functionalities to CCS.

Although there are newer versions than the one used in
this paper, for this purpose the used version of this program
is 4.0.

V. THE VIRTUAL LABORATORY

This solution is made on a web-based platform, which
could serve students and professors. “Procesado Digital de
Señales” has a very important component of programming,
and it could be complex for students without experience in
programming. The Virtual Laboratory is proposed to make
up for lack of experience in programming tasks. In this way,
there is no need to access the laboratory. The computer is
connected to use the resources that are provided by the DSPs.

Within the web-based platform, the authenticated user has
an interface, called as Students’ Virtual Laboratory (SVL),
which is programmed to be as a middleware between the user
and the DSPs command-line access. Because of that, the
computer that has the C5505 DSP and the C6713 DSP
running on it. The computer does not need any external
peripherical, such as a monitor, a keyboard or a mouse. If the
authenticated user is a professor, the Professors’ Virtual
Laboratory (PVL) interface is shown. The PVL provides

tools to make the student tracking, including the students’
doubts queries and responses.

Students’ Virtual Lab (SVL)

The SVL has three main areas:

• The student identification.

• The practices configuration.

• The source code section.

In the student identification much information is
included: name, last name, identification card number, and e-
mail address are mandatory information, the students could
optionally add a description, in which the students could
propose doubts or observations. The practice configuration
compounds: the practice number and target device.

The complete source code of each practice is provided in
the laboratory session and in the Virtual Learning Platform of
the University of Sevilla. Thus, the students know the files
and places in which they must make a modification, and they
do not need to completely write all the required code to run a
DSP algorithm. Instead, they just need to specify the practice
number and the target device, and the front end automatically
inserts the code in the correct place into the source code file.

Fig. 6. Students’ Virtual Laboratory front-end.

To avoid unwanted access to critical part of the code that
could allow an execution of malicious code, the student only
has access to write in certain part of the code, indicated by
the number of selected practice and the target device. The
user cannot write in a forbidden part of the source code,
because the front-end controls the insert place and identifies
the infinite loops by checking the loop condition.

The code writing area does not have to be just one. In fact,
several practices need the code to be written in more than one
place in order to run the algorithm. Hence, the SVL can add
one or more text areas and selection controls, to select the
target of the text area below, with the specific parts of the
code. Thus, in these areas the user can write to run the
algorithm and overcome the practice. There is also the
possibility to upload a text file with the source code.

Professors’ Virtual Lab (PVL)

The PVL has several sections:

• General statistics.

• Tracking of practices.

• Detailed tracking of students.

2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE)

Fig. 7. Professors’ Virtual Laboratory front-end, general statistics.

The general statistics (Fig. 7) shows the information about
the number of connections, periods of operation, performed
practices, pending practices, number of students, and average
number of tries by student.

The tracking of practices (Fig. 8) shows information
about the different tries in each practice, how many practices
have been successfully run and how many have been
unsuccessfully run by infinite loops, abnormal termination or
incorrect results.

Fig. 8. Professors’ Virtual Laboratory front-end, tracking of practices.

The detailed tracking of students (Fig. 9) allows to check
and deep into advances of each student, showing the source
code of different tries, results, and the possible doubts
provided in the general description text area. The professor
could response to these doubts directly using the own
interface. This response is sent by e-mail to the student.

Fig. 9. Professors’ Virtual Laboratory front-end, tracking of students.

VI. THE SVL ARCHITECTURE

Once the Virtual Laboratory has been described, we
proceed to describe the complete process from an overall
perspective, as is shown on Fig. 10.

The workflows are as follows: a student uses their
personal computer (PC) to access to the website the SVL is
hosted. This includes the use of some input/output peripherals
like keyboard and mouse. The connection between the PC of
the student and the remote Virtual Laboratory is through
Hypertext Transfer Protocol (HTTP) to a specific domain.

The abovementioned remote SVL has been logically
divided into two parts, apart from the web front-end where
the student writes their algorithms. The first part consists of a
queue manager (QM), whose work as an intermediate layer
that filters the incoming requests to the remote PC that has
the DSP running on it.

The QM oversees all incoming requests, manages them,
and transfers them to the DSP program only when is
completely available to run them. Thereby, the QM protects
the system from any possible overflow of incoming requests
from the students.

Fig. 10. Virtual Laboratory schema overview.

2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE)

The remote PC accepts the algorithm sent by the QM to
be processed. This PC has both TMS320C6713 DSK and
TMDX5505EZDSP boards connected by USB. Thus, the run
program, which has a command-line interface, loads the
algorithm in the appropriate DSP. Only one of those DSP
could be in running mode in each try. The created architecture
cannot run different algorithms in both DSP in the same
iteration.

The chosen DSP executes the selected program and
generates a result. This result is sent to the student, so it goes
the other way around, until it shows up in one of two ways:
by email or by the front-end, using for them the protocols
Simple Mail Transfer Protocol (SMTP) or HTTP
respectively.

In case the students chose to receive the code from the
execution of their code by email, it is necessary that they first
provide the email, whether it is the college intern or their
own. This option may not be as intuitive as receiving the code
directly in the main web page, but it makes sure that the
response will be returned and accessible for the student in
their mailbox, although the response would take some time to
be sent.

On the other hand, it is possible to receive the response
directly on the front-end web page. If the student chose that
option, in most cases it will be faster than the email option,
but it is possible to take a long time to show the solution. It is
due to the QM and the amount of the requests it must process.
If the stack of requests in the QM is too full, the DSP needs
some time to process each request, and it is not possible to
estimate the elapsed time to execute the desired request and
return it to the student.

Additionally, the QM manages the information of
practices sent by students. Thus, the QM oversees recover
after server breakdown. At the same time, the information of
all practices is stored in a database, based on MySQL.

In both cases, the student receives the raw response to the
execution of its algorithm, which fits with any of the
proposed practices abovementioned.

VII. THE PVL ARCHITECTURE

Apart from the previous perspective, the PVL has a
different schema for the professor (Fig. 11) In this hidden
schema, the professor has access to all the logs, which have
been written each time a student uses the SVL to test their
algorithms. For this purpose, the remote PC has its own
specific access, separate from the SVL normal access.

Thus, the professor has complete control of every single
line of code the students write. This allows the teacher to
follow the practices of each student in a personalized way. In
this case, it is necessary to grant full access to the remote PC,
so it is done by a secure shell (SSH) access.

Fig. 11. PVL architecture for the Virtual Laboratory

The professor does not connect through QM. However,
the professor could modify the queue constraints and order,
although this option is provided by the command line. In this
command line, the professor could remove practices which
could jam up the QM or, even, the CCS.

VIII. PRACTICES SCHEDULING

The laboratory contents are structured into seven
practices, which they could be run in both devices
(TMS320C6713 DSK and TMDX5505EZDSP):

• Practice 1. Introduction to real-time digital signal
processing. This practice is about DSP architecture,
identification of different parts of DSP device, and
introducing the CSS Interface Development
Environment (IDE).

• Practice 2. Implementation and fundamentals of DSP.

• Practice 3. Design and implementation of FIR filters.

• Practice 4. Design and implementation of IIR filters.

• Practice 5. Analysis on frequency domain and the
discrete Fourier transform.

• Practice 6. Digital Image Processing.

• Practice 7. A real application of DSP. According to
the student’s identification number, the student would
have to develop an application related to: adaptive
filtering, digital signal detection, digital signal
generation, adaptive echo cancellation, speech signal
processing, audio signal processing, and digital image
processing.

The contents and wording of practices are provided by
means of Virtual Learning Platform of University of Seville,
which is only available for students enrolled in PDS.

Additionally, the wording of practices is complemented
by Matlab and GNU Octave implementation, in order to
provide a simulated and visual approach to introduce the
concepts of the practice for students. Matlab and GNU
Octave provides different tools to analyze the algorithm and
results, which could improve the learning process of students.

IX. RESULTS

Once implemented the VL, some functional test have
been carried out, obtaining the following average execution
times per student:

• The load of the algorithm in the program takes about
30 seconds.

• The minimal execution and return of information,
which is in case of an error, takes about 90 seconds.

• In case of success in execution, the execution time
depends of the practice been carried out. This time
takes from about 10 minutes in the shortest practice,
to about 26 minutes and 50 seconds in the case of the
longest practice, because of the analysis of a 10-
minute audio track during execution.

In summary, these runtimes via VL are close to the
runtimes of the corresponding computer in the laboratory,
which time gap of less than a minute in all cases.

2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE)

X. CONCLUSIONS

The present paper provides a tool to remotely run
practices of PDS. The SVL front-end allows students to run
their practices as they need. The PVL front-end allows
professors to make the following and reviewing of the
students’ practices. Additionally, the student receives the
information and results about the practice by means of e-mail,
having the possibility to propose doubts and commentaries.

Thus, the proposed tool is a very useful tool not only for
the student, but for professors too. Additionally, it provides
access to the technology used in the practices, which could be
expensive for a student. Because of the way this VL has been
made, it is possible to export to for use in other institutions.
In this case, it is needed to load the application into the server
and storing the front-end into the domain of the institution.

In the current scenario, in which the world is dealing with
a sanitary emergency (provoked by an epidemic virus) or in
the case of online education empowerment, it could be a good
support to continue with the education of students in case of
quarantine of professors or students.

XI. FUTURE WORKS

The future works is centered on:

• The generalization of front-end to add new practices
and optional contents.

• Add front-end for remote administration of QM, CCS,
and MySQL. Currently, this is performed by means
command-line interface.

• Makes different analytics to provide advanced results
in the practices and following of the students’
evolution.

• Add a tool to online assistance for students when they
are writing the source code, detecting infinite loops,
mistakes, unknown instruction or names, etc.

• Add additional authentication process, including
Lightweight Directory Access Protocol (LDAP) and a
link with Virtual Learning Platform of University of
Seville.

XII. REFERENCES

[1] A. A. Sutchenkov and A. I. Tikhonov, “Electrical Engineering
Materials Virtual Laboratory,” in 2018 IV International Conference on

Information Technologies in Engineering Education (Inforino), Oct.

2018, pp. 1–4, doi: 10.1109/INFORINO.2018.8581843.
[2] W. Zheng, L. Feng, B. Liu, P. Fu, and J. Qiao, “Development of virtual

laboratory application structure in Android cellphone for distance

learning,” in 2017 First International Conference on Electronics
Instrumentation Information Systems (EIIS), Jun. 2017, pp. 1–5, doi:

10.1109/EIIS.2017.8298575.

[3] R. Arsinte, T. Sumalan, and E. Lupu, “On the use of Virtual
Instrumentation concepts in the test of Embedded signal processing

applications,” in 2017 International Symposium on Signals, Circuits

and Systems (ISSCS), Jul. 2017, pp. 1–4, doi:
10.1109/ISSCS.2017.8034916.

[4] K. H. Cheong and J. M. Koh, “Integrated Virtual Laboratory in

Engineering Mathematics Education: Fourier Theory,” IEEE Access,
vol. 6, pp. 58231–58243, 2018, doi: 10.1109/ACCESS.2018.2873815.

[5] Texas Instruments, “TMS320C5505 Fixed-Point Digital Signal

Processor Datasheet.” Sep. 2013, Accessed: Jan. 09, 2020. [Online].
[6] R. Gummattira, P. Baltz, and N. Seshan, “TMS320C6713 Digital

Signal Processor Optimized for High Performance Multichannel

Audio Systems,” p. 12.
[7] “CCSTUDIO Code Composer Studio (CCS) Integrated Development

Environment (IDE) | TI.com.” http://www.ti.com/tool/CCSTUDIO.

2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE)

