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Abstract: The application of two guaranteed estimation methods on the estimation of a
quadrotor position is presented in this paper. A discrete time system model used for the position
estimation is supposed, whereas GPS measurement is performed with greater sampling time.
Firstly, guaranteed algorithms are applied in order to compute the feasible set of positions where
the quadrotor is likely to be found. Subsequently, the estimation is corrected and improved by
using the GPS sensor measurement.
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1. INTRODUCTION

A quadrotor is an aerial vehicle which has four coplanar
motors. The forces and torques that are applied over this
kind of vehicles are shown in Fig. 1.

Fig. 1. Sketch of main forces and torques applied on a
quadrotor.

It is a continuous system whose position measurement in
outdoors environment is usually performed by a GPS in
discrete mode. In case that the UAV position would like to
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be known at times lesser than the GPS sample period, a
discrete observer could be used for its estimation. Thereby,
two sampling times can be assumed, one due to discrete
observer implementation, T , and the other due to GPS
measurements, tsynchro, being T < tsynchro.

The proposed time frame is represented in Fig.2: at start-
ing time t1, the estimation of the position through the
equation model as well as the GPS signal measurement are
available. Until tsynchro seconds later, the GPS measure-
ment is not available again. Meanwhile, in the intermediate
sample times, every T seconds, the estimation based on the
equation of system model is used.

Fig. 2. Different sampling times for the position estima-
tion.

It is also interesting how to deal with the possible uncer-
tainties, since the models have diverse uncertainties which
may come from various sources, such as unmodelled sys-
tem dynamics, inability to measure disturbances such as
wind, ground effect, etc. Also it is likely to have uncertain-
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ties due to sensor measurements, whose problem is shown
in Fig.3. Fig.3a shows the case wherein a completely accu-
rate measurement is considered, while the case in which an
inaccurate sensor is assumed is depicted in Fig.3b. More
in detail, the shadowed zones in these figures represent all
the possible vehicle trajectories provided by the observer,
while the points at the synchronization instants are the
measure provided by the GPS sensor; finally, the dashed
lines represent the actual vehicle trajectories. It can be
observed in Fig.3a how the estimation is accurately up-
dated with the refreshed GPS measure. However, Fig. 3b
depicts how the measurement points do not coincide with
the actual trajectory at those synchronization instants,
due to sensor inaccuracy.

(a)

(b)

Fig. 3. GPS measurement examples.

A lot of possible methods for the position estimation
of autonomous vehicles can be found in the literature
(see, for example, Abbott and Powell (1999), Räısi et al.
(2012), Farrelly and Wellstead (1996), Scholte and Camp-
bell (2002) and Brunke and Campbell (2002), among oth-
ers). Based in the classification carried out in Combastel
(2003), three main approaches may be stood out:

(1) The Luenberger observers approach, where uncertain-
ties are not explicitly considered.

(2) Estimators based on the statistical behavior, such
as Kalman filter, that presupposes noise with some
probability function.

(3) Estimators based on guaranteed techniques, which
do not assume any probability function. They are
based on the assumption of bounded variables within
a certain range, i.e., the variables behaves as compact
sets (in Rn are bounded and closed).

The use of some methodologies, such as interval arith-
metics, can be considered as example of the latter type, be-
ing the result of state estimation a compact set in the state
space representing an outer approximation of all the states

that are consistent both with the uncertain model and
the uncertain measurements. Thereby, a statistic study of
the noise is not necessary, which is some times hard to
compute.

Returning to the general case, that kind of observers pro-
vide a compact set whose domain can be represented by
many ways, such as ellipsoids, box (due to using inter-
val arithmetic), parallelotopes or even limited complexity
polytopes, i.e., with a limited number of vertexes and faces.
According to the method used to represent the domain,
the wrapping 1 effect is appreciated in greater or lesser
way, i.e., the method is more or less conservative in terms
of how it delimits the feasible set. It is not the same to
enclose it by a box with sides parallel to the axes, than
by a parallelepiped or by a zonotope. In Fig.4, the set of
possible states as well as two external bounded boxes can
be observed: the black one, which consists in a box with
sides parallel to the axes (assuming horizontal and vertical
axes), and the green one, characterized by a parallelepiped
whose sides are not parallel to the axes. It can be seen how
the last one tries to adapt in a better way to the shape of
the possible state set. The solution obtained by the first
box is more conservative than the one obtained by the
parallelepiped.

Fig. 4. Example of fitting of possible state set.

In this work, an observer that estimates the state of a
quadrotor UAV (position and linear velocity components)
for times between updated GPS measurements is pre-
sented. The remainder of the paper is organized as follows.
Section 2 presents the model of the system. In Section 3,
the algorithms used are introduced. Afterwards, in Section
4, simulation results are presented. And finally, the main
conclusions are drawn in Section 5.

2. SYSTEM MODELING

In general, let us consider a discrete time system with
uncertainties both in the model and the measurement:

{
xk+1 = f(xk, wk)
yk = g(xk, vk)

(1)

where xk ∈ Rn is the state system vector, yk ∈ Rp is
the output vector, wk ∈ Rnw represents modeling errors
and disturbances and finally, vk ∈ Rpv represents the noise
measurements vector.
1 The wrapping effect is the fact to add more solutions than the
real one. It is due to use a method to bound so conservative, and
therefore a possible state set bigger is obtained than the real state
set that the system could achieve.
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For the methods to be employed in the resolution of
the estimation, the uncertainties are assumed bounded
between a certain values, regardless of the statistical
distribution. Therefore, wk ∈ W , vk ∈ V and x0 ∈ X0

are assumed.

By particularizing (1) in the case that a quadrotor spatial
position is desired, starting from Newton’s second law, by
considering all forces are grouped in one only component.
Being analogous the expressions for the three axes, only
the expression for the component x is considered, its
expression is ẍ = Fx

m . By moving to space state, two states
can be defined, x1 = x and x2 = ẋ

A system described by the position and the velocity is
given in R6:




ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6



=




ẋ
ẏ
ż

Fx

m
Fy

m
Fz

m




(2)

where x, y, z are the position coordinates, ẋ, ẏ, ż are the
linear velocities, m is the vehicle mass and Fx, Fy, Fz are
the forces applied into each axis respectively.

By expressing (2) in a discrete form:




x1k+1

x2k+1

x3k+1

x4k+1

x5k+1

x6k+1



=




x1k + Tx4k

x2k + Tx5k

x3k + Tx6k

x4k

x5k

x6k



+




T 2

2

Fx

m
T 2

2

Fy

m
T 2

2

Fz

m

T
Fx

m

T
Fy

m

T
Fz

m




(3)

where T is the sample time.

The applied forces are shown in a schematic way, if a
quadrotor rotational subsystem is included, the applied
forces can be expressed as:

Fx = (cosφ cosψ sin θ + sinφ sinψ)u+Ax

Fy = (cosφ sinψ sin θ − sinφ cosψ)u+Ay

Fz = (cosφ cos θ)u+Az

(4)

being φ, θ, ψ the Euler’s angles (roll, pitch and yaw re-
spectively), u the total thrust and Ai the disturbance
in the correspondent axis i. However, in (3) a simplified
notation is used where these angles or the thrust are not
mentioned, because this task is the goal of the attitude
controller that is not considered in this work. Therefore,
the forces Fx, Fy, Fz needed for the traslational movement
are calculated and then, with theses forces the rotational
controller calculates the angles and torques references.

After introducing the system, the resolution of the problem
is tackled. Given the system, its position trough a discrete
time model and some measurements is estimated. The
model has uncertainties and the measurements could have
uncertainties or not, according on the case of study.

3. ALGORITHMS

Two cases of study are shown below: interval arithmetic
and zonotopes. The movement in the plane XY is con-
sidered, the state variables of (3) are realigned and the
components corresponding to axis z are not used.

3.1 Intervalar Arithmetic

The idea of using interval arithmetic as guaranteed esti-
mation method arises from the knowledge of the existence
of limits of the uncertainties. For instance, there are a
maximum and minimum mass, but the value is not known
exactly because it can change slightly, imagine that a
radiocontol (rc) plane with a engine instead of a motor,
the amount of gas will change during the flight.

Once the application goal has been presented, the re-
aligned system from (3) is given by:



x1k+1

x2k+1

x3k+1

x4k+1


 =



x1k + Tx3k

x2k + Tx4k

x3k

x4k


+




T 2

2

Fx

m
T 2

2

Fy

m

T
Fx

m

T
Fy

m




(5)

where x1 is the position x, x2 is the position y, x3 is the
velocity ẋ and x4 is the velocity ẏ. The rest of the notation
is the same as the one used in (3).

To deal with the problem, an adaptation of the algorithm
presented in Jaulin (2002) is used. This algorithm used
interval arithmetic to estimate de state of an autonomous
system (xk+1 = f(xk)). Being x a vector, [x] is a vector
composed by intervals, it is called a box. �f() is the
inclusion function of f(). The algorithm can be sketched
as follows:

• Step 1: [x̂](t2) = [x](t1) + (t2 − t1)�f([x](t1))

• Step 2: [v] = [x](t1) ∪ [x̂](t2)

• Step 3: [w] = inflated([v], αω[v] + β)

• Step 4: [x](t2) = [x](t1) + (t2 − t1)�f([w])

where ω[v] is the length of its greater side and the inflated
operation consists in given a box, [x], and a escalar, ε:

inflated([x], ε) = [x1 − ε, x1 + ε]× ...× [xn − ε, xn + ε]

As a negative result of using this kind of so conservative
method is the wrapping effect. A black box bounding the
function f is observed in Fig.4, this box clearly has areas
which do not belong to the image of function f .
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The source of model uncertainty is assumed as the fact
that the mass can change, m. Due to this fact, an interval
is obtained, in which the different states can be found.

The inclusion function 2 of (5) is computed as follows (for
simplicity the subscripts k are omitted ):

�f([x]) =




[x1, x1] + T [x3, x3] +
T 2

2
[
1

m
,
1

m
]Fx

[x2, x2] + T [x4, x4] +
T 2

2
[
1

m
,
1

m
]Fy

[x3, x3] + T [
1

m
,
1

m
]Fx

[x4, x4] + T [
1

m
,
1

m
]Fy




(6)

being T the sample time, α = 0.1 and β = 0.0001. In
the calculation of ω[v], states are separated according to
coordinate represented, i.e., x1 and x3 on one side and x2

and x4 on the other one. Then it is applied to each pair
separately, by using the larger of each pair.

3.2 Zonotopes

The idea is to use another procedure that let a guaranteed
estimation whose result can be less conservative enclosure.
Once again the knowledge of a limit in the uncertainty is
the initial assumption. However, this time a rectangular
shape or box is not assumed. In this case a more complex
shape is allowed, specifically zonotopes.

In this approach, the following system obtained from (3)
is used:



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
 =



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x2k + Tx4k

x3k

x4k


+




T 2

2

Fx

m
T 2

2

Fy

m

T
Fx

m

T
Fy

m




(7)

where x1 is the position x, x2 is the position y, x3 is the
velocity ẋ, and x4 is the velocity ẏ. The rest of the notation
is the same as the one used in (3).

According to the algorithm shown in Bravo (2004), the
following steps are considered:

• Step 1: Use an inclusion function in order to narrow
the trajectory of the uncertainty nonlinear system.

• Step 2: Calculate a bound of the consistent state set.

• Step 3: Calculate a tight bound of the intersection set.

The Kühn method Kühn (1998) is used for step 1. This
method provides a zonotope that encloses the possible
system state. A strip for variable set of feasible states is
estimated from the measurements obtained in the second
step. And finally, in the step 3, intersection between

2 According to other authors can be represented as [f ]

zonotope and strip is calculated. Thereby, how to calculate
a strip for a possible states is shown below.

The way to obtain a state set through a measurement
is more detailed in Bravo (2004). As many strips as
output component are necessary, output is defined as
yk = g(xk, vk), where xk ∈ Rn is the system state and
vk ∈ Rpv is the measurement noise.

A measurement yk ∈ Rp is assumed, a consistent states
set with the measurement is given and denoted as Xyk

:

Xyk
= {x ∈ Rn : yk ∈ g(x, V )}

Xyk
(i) is defined as consistent states set with the i-th

component of yk:

Xyk
(i) = {x ∈ Rn : yk(i) ∈ gi(x, V )}

where gi(x, V ) denote the i-th component of g(x, V ).

Taking into account the preceding definitions the following
hold:

Xyk
⊆

p⋂
i=1

Xyk
(i)

The reason for using a strip to outside bound of an interval
is demonstrated in Bravo (2004). This paper only focuses
in the result and the procedure to obtain a strip from a
measurement.

A zonotope X̂k and a measurement yk are assumed. The
middle of an interval or its center is defined by mid(). By
using interval arithmetic a vector ci ∈ Rn and the scalars
si, σi ∈ R must be obtained such that:

• ci = mid
(
�∇xgi(X̂k, V )

)

• cTi X̂k − gi(X̂k, V ) ⊆ [si − σi, si + σi]

then, ifXe
yk
(i)=

{
x :

∣∣cTi x− yk(i)− si
∣∣ ≤ σi

}
, the intersec-

tion between the zonotope X̂k and the i-th consistent
states set belongs to the intersection between the zonotope
X̂k and the i-th strip Xe

yk
(i):

X̂k

⋂
Xyk

(i) ⊆ X̂k

⋂
Xe

yk
(i)

4. SIMULATIONS RESULTS

Once the estimate algorithms have been introduced, in this
section some simulation results are presented.

4.1 Simulation results with Interval Arithmetic

One advantage of the use of intervals is that the intersec-
tion between two intervals is still an interval. However, this
fact does not happen with zonotopes.

For the first case of study, the applied force consists
in a rising step, followed by a falling step of the same
magnitude in order to get the initial control signal. Fig.5
shows the simulation results when non uncertainties mea-
surement is considered. The simulation has two different
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The source of model uncertainty is assumed as the fact
that the mass can change, m. Due to this fact, an interval
is obtained, in which the different states can be found.

The inclusion function 2 of (5) is computed as follows (for
simplicity the subscripts k are omitted ):
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(6)

being T the sample time, α = 0.1 and β = 0.0001. In
the calculation of ω[v], states are separated according to
coordinate represented, i.e., x1 and x3 on one side and x2

and x4 on the other one. Then it is applied to each pair
separately, by using the larger of each pair.

3.2 Zonotopes

The idea is to use another procedure that let a guaranteed
estimation whose result can be less conservative enclosure.
Once again the knowledge of a limit in the uncertainty is
the initial assumption. However, this time a rectangular
shape or box is not assumed. In this case a more complex
shape is allowed, specifically zonotopes.
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where x1 is the position x, x2 is the position y, x3 is the
velocity ẋ, and x4 is the velocity ẏ. The rest of the notation
is the same as the one used in (3).

According to the algorithm shown in Bravo (2004), the
following steps are considered:

• Step 1: Use an inclusion function in order to narrow
the trajectory of the uncertainty nonlinear system.

• Step 2: Calculate a bound of the consistent state set.

• Step 3: Calculate a tight bound of the intersection set.

The Kühn method Kühn (1998) is used for step 1. This
method provides a zonotope that encloses the possible
system state. A strip for variable set of feasible states is
estimated from the measurements obtained in the second
step. And finally, in the step 3, intersection between

2 According to other authors can be represented as [f ]

zonotope and strip is calculated. Thereby, how to calculate
a strip for a possible states is shown below.

The way to obtain a state set through a measurement
is more detailed in Bravo (2004). As many strips as
output component are necessary, output is defined as
yk = g(xk, vk), where xk ∈ Rn is the system state and
vk ∈ Rpv is the measurement noise.

A measurement yk ∈ Rp is assumed, a consistent states
set with the measurement is given and denoted as Xyk

:

Xyk
= {x ∈ Rn : yk ∈ g(x, V )}

Xyk
(i) is defined as consistent states set with the i-th

component of yk:

Xyk
(i) = {x ∈ Rn : yk(i) ∈ gi(x, V )}

where gi(x, V ) denote the i-th component of g(x, V ).

Taking into account the preceding definitions the following
hold:

Xyk
⊆

p⋂
i=1

Xyk
(i)

The reason for using a strip to outside bound of an interval
is demonstrated in Bravo (2004). This paper only focuses
in the result and the procedure to obtain a strip from a
measurement.

A zonotope X̂k and a measurement yk are assumed. The
middle of an interval or its center is defined by mid(). By
using interval arithmetic a vector ci ∈ Rn and the scalars
si, σi ∈ R must be obtained such that:

• ci = mid
(
�∇xgi(X̂k, V )

)

• cTi X̂k − gi(X̂k, V ) ⊆ [si − σi, si + σi]

then, ifXe
yk
(i)=

{
x :

∣∣cTi x− yk(i)− si
∣∣ ≤ σi

}
, the intersec-

tion between the zonotope X̂k and the i-th consistent
states set belongs to the intersection between the zonotope
X̂k and the i-th strip Xe
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4. SIMULATIONS RESULTS

Once the estimate algorithms have been introduced, in this
section some simulation results are presented.

4.1 Simulation results with Interval Arithmetic

One advantage of the use of intervals is that the intersec-
tion between two intervals is still an interval. However, this
fact does not happen with zonotopes.

For the first case of study, the applied force consists
in a rising step, followed by a falling step of the same
magnitude in order to get the initial control signal. Fig.5
shows the simulation results when non uncertainties mea-
surement is considered. The simulation has two different
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sampling times, a synchronization time of 1 second (the
GPS refreshing measurement time) and a sampling time of
20 milliseconds, which corresponds to the observer period.

Fig. 5. Coordinate X without uncertainties in GPS.

For the second case of study, GPS measurement is con-
sidered unreliable. In this case, the use of a differential
GPS with a accuracy of ±0.2m is assumed. Simulation
results can be observed in Fig.6. As well as in the first
case, the synchronization time is also 1 second and the
observer sampling time is 20 milliseconds.

Fig. 6. Coordinate X with uncertainties in GPS.

4.2 Simulation results with Zonotopes

As in the preceding subsection, only results on axis x are
displayed. The applied force also consists in a rising step,
followed by a falling step of the same magnitude in order to
get the initial control signal, reaching then a steady state.

Simulations have been carried out considering two differ-
ent conditions too: an accurate GPS signal and a GPS

accuracy of 0.2 meters. The results are shown in Fig.7 and
8 respectively.

The behavior of the zonotope could be appreciated in
Fig.7. At the beginning the region defined by the zonotope
grows until the reliable measurements are received. In
those moments the zonotope size is reduced.

In the final case of study, an inaccurate GPS measurement
is considered. The results are shown in Fig. 8, where a non
drastic reduction is observed.

5. CONCLUSIONS

In this paper an application of two guaranteed estimators,
one based on interval arithmetics and other based on
zonotopes, on a quadrotor has been presented.

The application of guaranteed algorithms is due to the
fact that a continuous system is considered together with
a discrete position measurement, whose sampling times
are greater than the sampling time used in the system
model. Thus, if only the sensor information is used, there
will be time periods where the system will be in open-
loop, which may be dangerous taking into account that the
system is unstable. In order to have a position estimation
during these periods of time, an uncertainty model has
been considered and the feasible states that system can
reach have been contemplated.

In this case the estimation with interval arithmetic looks
a better performance than the one obtained with the
zonotope approach. It could be due to the model used,
the uncertainties considered or even how the algorithms
deal with those uncertainties. As future work will aim to
improve the algorithm with zonotopes in order to get a
better performance than the one presented in this work.
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Fig. 7. Zonotope X Ẋ without uncertainties in GPS.

Fig. 8. Zonotope X Ẋ with uncertainties in GPS

IFAC ACNAAV 2015
June 10-12, 2015. Seville, Spain

72


