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Abstract
Complexity science is the multidisciplinary study of complex systems. Its marked network orientation lends 
itself well to transport contexts. Key features of complexity science are introduced and defined, with a specific 
focus on the application to air traffic management. An overview of complex network theory is presented, with 
examples of its corresponding metrics and multiple scales. Complexity science is starting to make important 
contributions to performance assessment and system design: selected, applied air traffic management case 
studies are explored. The important contexts of uncertainty, resilience and emergent behaviour are discussed, 
with future research priorities summarised.
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1. Introduction
This paper introduces key features of complexity science with a focus on its application to air transportation in 
general, and air traffic management (ATM) in particular. These applications relate to many aspects of 
performance assessment and system design, not least, ultimately, through effective service delivery to the 
passenger. As we will explore, complexity science is the multidisciplinary study of complex systems, of which 
air transport networks and integrated airspace blocks are prime examples. We illustrate the current and future 
capacity of complexity science techniques to make valuable contributions to the management of air transport.

The foundations of complexity science can be traced back to statistical physics, non-linear dynamics and 
information theory (Anderson, 1972). Its focus is on the importance of the heterogeneity of system components 
and on the structure of their interaction. Complex network theory plays a central role in complexity science 
(Newman, 2003; Boccaletti et al., 2006), since all complex systems have many interconnected components. 
Such components interact with and adapt to each other, such that the system exhibits emergent behaviour – the 
hallmark of complex systems. These features cannot be understood from information at the individual agent 
level alone. Complex network theory and its associated metrics and tools presents an apposite approach to 
developing the study of air transport networks beyond what classical techniques have to offer. Indeed, the 
marked network orientation of complexity science lends itself well not only to ATM but also to other transport 
contexts (Angeloudis and Fisk, 2006; Kaluza et al., 2010; Sen et al., 2003).



Our objectives in this paper are firstly to introduce the reader to complexity science and its main facets, before 
illustrating example applications in the air traffic management context. Section 2 introduces these concepts, 
focusing on complex network theory and the metrics it employs. We then discuss the important topic of 
uncertainty in the context of network scales, before developing various ideas related to (network) resilience. The 
more theoretical part of our paper concludes with classifications of emergent behaviour, with supporting air 
transport examples.

Although applied examples of complexity science in air transport modelling are very limited, two such air traffic 
management case studies are summarised in Section 3. Both draw on the analysis of communities in complex 
networks. Our conclusions and an outlook are presented in Section 4.

2. Complexity science

2.1 Complex networks in ATM
Since the origins of the theory and application of complex networks (Albert and Barabasi, 2002), this field has 
experienced tremendous growth. Complex network theory (CNT) has been successfully applied to different 
transportation contexts, including road and (underground) rail. In recent years, there has been a growing interest 
in the use of CNT in air traffic management: for a recent review see Zanin and Lillo (2013).

A network is composed of a set of nodes (vertices) connected pairwise by a set of links (edges). These can be 
directed and/or weighted, i.e. associated with real or integer values. For example, in an airport network, each 
node is an airport and a link directed from a node to another can be weighted by the number of flights or 
passengers in a given time window. By considering sectors or navigation points as nodes, one can build other 
network representations of the airspace with different spatial resolution. Indeed, such is the power of CNT that 
one can assign almost any kind of nodal representation, including those related to delays and the associated 
infrastructural and passenger costs.

The interest in the study of networks stems from the observation that some generic topological properties are 
present in different complex systems, suggesting that some general principles govern the creation, growth, and 
evolution of such networks. Moreover, CNT has introduced a large set of metrics that are able to characterise 
the network and its organisation, thus identifying the critical nodes. Let us examine three examples:

• Degree. The degree of a node is the number of edges connected to it, while its strength is the sum of 
the weights of these edges. The degree (or strength) distribution gives important information about the 
heterogeneity of the nodes. Several empirical analyses of airport networks (Barrat et al., 2004; Guimerà 
et al., 2005) have found that the probability that the degree k (or the strength) is greater than x is 
described by an exponentially truncated power law: P(k > x) = N x-g e–ax, where g is the tail exponent, 
typically between 1 and 2, a is a parameter controlling the rapidity of the exponential decay, and N is a 
normalisation constant. Networks with power-law distributed degrees are termed ‘scale-free’ networks 
(Barabasi, 2009) and have attracted considerable attention in recent years. As a randomly distributed 
network increases in size, the ratio of high-degree nodes to other nodes decreases, whereas in a scale-
free network this ratio remains constant as a function of network size. (We comment on the importance 
in a transport management context below.)

• Betweenness. The betweenness of a node is a centrality measure quantifying how important a node is 
regarding paths inside the network. Node betweenness is defined as the proportion of shortest paths, 
among all possible origins and destinations, that pass through a node.

• Clustering coefficient. The clustering coefficient of a node is the fraction of pairs of its neighbours 
that are directly connected (i.e. the number of triangles in the network). Empirical studies (Guimerà et 
al., 2005; Bagler, 2008) show that airport networks have relatively high average clustering coefficients 
across nodes. This, together with small average shortest path lengths, indicates that airport networks 
have the ‘small-world’ property (Watts and Strogatz, 1998). Indeed, many real world networks 
demonstrate this property: that is, they exhibit a low average shortest path, characteristic of random 
networks, while maintaining the high clustering coefficient found in regular networks.



There exists a strong correlation between the degree of a node, and the quantity of flights and passengers 
managed through it (Barrat et al., 2004; Guimerà et al., 2005; Wu et al., 2006). The more connections a node 
has, the more passengers are likely to use that node to reach their destination, and thus the frequencies of such 
connections strongly increase.

The analysis of the structure of flight networks in air transport, especially when focused on individual airlines, is 
motivated by the aim of defining the most efficient structures for flights for a given airline – both in terms of 
yields (and thus profit) and of passengers’ mobility. For this reason, a large number of studies have focused on 
the long-term dynamics of airport networks, with the aim of investigating the transition from point-to-point to 
hub-and-spoke structures observed first in Europe and the US, and more recently in emerging economies. For 
example, in the European air network between 1990 and 1998, it has been observed (Burghouwt and Hakfoort, 
2001) that medium-sized airports have attracted most of the intra-European traffic, creating specialised internal 
hubs, while intercontinental traffic has also been concentrated, but on different hubs, usually large airports.

The structure of the air transport network strongly affects the capability of a passenger to reach their destination 
from a given origin in the shortest possible time and with fewest changes. However, purely topological metrics 
can be poor indicators for assessing passengers’ needs. In fact, a short path (in terms of number of flights) can 
be (relatively) useless for a passenger if the constituent flights are very infrequent or if their scheduling renders 
the connections unworkable. One can therefore adapt many complex network metrics to describe both direct and 
indirect connectivities for passengers (Cook et al., 2013a; Malighetti et al., 2008; Zanin et al., 2009). We pursue 
this theme in Section 3.2.

CNT is also important in assessing the resilience of the air transport network, i.e. its ability to adjust its 
functioning prior to, during, and following internal and external disturbance. It has been shown that the network 
topology is critical to model failure cascades. Scale-free networks are extremely resilient to random failures. 
However, this comes at a high price, because they are also extremely vulnerable to targeted attacks (Albert et 
al., 2000) and other forms of localised failure. This suggests that a suitable characterisation of air traffic 
topologies and the identification of the most central nodes, according to CNT, can give valuable insights into 
modelling the resilience of the network and identifying critical elements of the system.

Finally, the topologies of air transport networks play an important role, not only for the mobility of people, but 
also for the dynamics of entities that depend on human mobility. An important example is the spread of an 
epidemic, for which air passenger transport constitutes one of the most important vectors for long-range 
spreading. For example, Colizza et al. (2006) used real data on passenger mobility to build a large-scale agent-
based model to predict epidemic spreading worldwide.

We have focused here mainly on the airport network. However, navigation-point networks and sector networks 
are receiving increasing research interest because of their importance in modelling air traffic control (Cai et al., 
2012; Gurtner et al., 2013). In contrast with airport networks, these are geographically constrained and therefore 
(almost) planar. Centrality analyses, for example, can be used to identify potential bottlenecks of the air traffic. 
Moreover, as we will show in Section 3.1, the use of community detection in navigation-point and sector 
networks has been recently suggested (Gurtner et al., 2013) as a means to improve the design of airspaces by 
using a bottom-up, traffic-driven approach.

2.2 The context of uncertainty
The application of complex network theory in air transport must also take account of a fundamental property of 
such operations: uncertainty. Understanding how uncertainty affects the ATM system is key to properly 
modelling and controlling it, and ultimately improving its performance. There are different sources of 
uncertainty that affect ATM, which can be classified into the types shown below (see also Heidt and 
Gluchshenko, 2012).

• Data uncertainty. This type of uncertainty exists when there are known data but with some level of 
uncertainty, and/or when there are imperfect models.



• Data unavailability. In contrast to the previous source of uncertainty, this affects predictions made 
without precise knowledge of the system: knowledge which could be obtained by sharing the necessary 
information, but whereby this is prevented by managerial and/or technological barriers.

• Operational uncertainty. Decisions taken by humans (e.g. managers, pilots and air traffic controllers) 
have a significant influence on operations but are difficult to predict.

• Equipment uncertainty. This type of uncertainty refers to problems with equipment, such as aircraft 
or vehicle breakdown, or other system failure modes.

• Weather uncertainty. Meteorological conditions comprise a wide group of sources of uncertainty 
(Matthews et al., 2009). In particular, adverse weather can introduce high levels of localised or 
widespread uncertainty and poses problems with clear links to resilience (which we discuss in Section 
2.3).

The analysis of uncertainty in ATM must take into account the time horizon under consideration and the 
different scales of the system, because, depending on these, the various uncertainty sources affect the system in 
different ways. According to the time horizon, one can find two types of problem: (1) estimation of the present 
state, e.g. over a short-term time horizon, identifying primary actions for maintaining safety; and, (2) prediction 
of the future state, i.e. with regard to actions over medium- and long-term time horizons, identifying efficient 
planning for flights in the context of weather forecasts and predicted traffic, etc. Three scales of the system can 
also be clearly differentiated:

• Microscale – a single flight. At this smallest scale one must analyse all the uncertainty sources that 
affect the flight, at its different stages. These stages are: (a) strategic, covering the timeframe from 
months before the flight up to two hours before the off-block time, including the filing of flight plans 
but not the flow-management slot allocation process; (b) pre-departure, which includes flow-
management slot allocation (commencing two hours before the flight and continuing up to the off-
block time); (c) gate-to-gate, including the ground phases (such as taxi-in and taxi-out) and the airborne 
phase (where one must consider the dynamics of the aircraft and the changing environment through 
which it moves: see for instance Vazquez and Rivas, 2013); and, (d) post-arrival, which commences 
once the aircraft is on-blocks. Uncertainty affects both the spatial and temporal dimensions; while the 
spatial uncertainty affects mainly safety issues (ranging from potential loss of separation to collision 
risk) and efficiency, the temporal uncertainty manifests itself primarily as delay (flight delay being an 
important phenomenon that affects all scales, see Cook et al. (2013b) and Section 3.2).

• Mesoscale – air traffic. This is an intermediate scale that allows one to focus on a given area that 
contains many individual aircraft that interact following a given set of rules. Examples include terminal 
manoeuvring areas or sectors. The analysis of flow management problems can be also framed within 
this scale (Clarke et al., 2009). Mesoscopic models exploit probabilistic methods to account for details 
of the microscopic scale without completely losing the macroscopic and strategic view of the system. 
This scale still considers individual aircraft, but describes their activities and interactions based on 
aggregate relationships. At this scale, safety has to be enforced whilst, at the same time, capacity needs 
to be maximised and deviations from user-preferred trajectories minimised. To accomplish this 
effectively, it is necessary to develop algorithms that include uncertainty models in their formulation 
(Tomlin et al., 1998).

• Macroscale – the air transport network. Air transport can be considered at the level of regional, 
national, or supra-national networks, or even at the level of the global ATM system. This scale 
integrates the state of multiple ATM elements and allows one to focus on the network properties, 
giving a high-level view of the system. It is important to study how uncertainty in flights and air traffic 
(the microscopic and mesoscopic scales) propagates to affect the macroscale. At this scale, it is best to 
abstract and integrate the various complex and heterogeneous ATM elements in a way that allows one 
to assess uncertainty and other properties of interest without needing to include fine detail. Among 
other methods, CNT is a particularly useful framework for analysing the macroscale (Boccaletti et al., 
2006), although it may also be used on mesoscale applications. 



We discuss these scales in the context of emergent behaviour in Section 2.4. According to the scales of the 
system, the time horizon under analysis, and the types of uncertainty, different research challenges can be 
identified in terms of using CNT to offer insights into progressing performance assessment and management.

2.3 Defining and modelling resilience
Air transportation constitutes a complex socio-technical system that is constantly influenced by internal and 
external disturbances of various forms. These disturbances may interact with each other, potentially creating a 
cascade of adverse events that may span over the different scales outlined in the previous section. Such 
disturbances could affect a single aircraft or crew, or impact a whole network.

Thanks to decades of evolutionary development of the air transportation system, many disturbances may not 
cause significant disruptions for passengers. However, in some cases the disruption is significant (e.g. due to 
convective weather), and in some exceptional events the disruption is of great impact. There are two categories 
of rare exceptional events: (i) (catastrophic) accidents involving one or two aircraft; and, (ii) events that push the 
dynamics of the air transportation system far away from its point of operation and therefore dramatically affect 
the performance of the system. Examples of the former category are: fatal runway incursions (e.g. Linate, 2001); 
fatal mid-air collisions (e.g. Überlingen, 2002); loss of control of an aircraft flying through a hazardous weather 
system (e.g. Air France crash in Atlantic Ocean, 2009). The latter category poses particular challenges for 
tactical management, examples including: terrorist actions causing the closing down of air travel in large areas 
(e.g. the events of ‘9/11’ in New York, in 2001); a disease causing passengers to change their travel behaviour 
(e.g. the SARS outbreak in Asia, in 2003); or, volcanic plumes impacting air travel over much of northern 
Europe (Eyjafjallajökull ash cloud, April-May 2010).

The term ‘resilience’ was initially used in the field of mechanics as the “ability of a metal to absorb energy 
when elastically deformed and then to release it upon unloading”, e.g. Hoffman (1948). Holling (1973) extended 
this resilience concept to ecological systems as the “persistence of systems and of their ability to absorb change 
and disturbance and still maintain the same relationships between populations or state variables”. Since then, 
various other extensions of the resilience concept have been introduced in other domains, such as social science, 
economic science, organisation science and safety science. 

Based on a review of the complementary resilience developments in the various domains, Francis and Bekera 
(2014) identified the following three key capacities of resilience: (i) absorptive capacity, (ii) recoverability, and 
(iii) adaptive capacity. These key capacities have been integrated into a unifying resilience framework for 
complex socio-technical systems (ibid.). Since the air transportation domain covers so many resilience sub-
domains, this integrated resilience framework is expected to be of great value for air transportation and the 
management of its performance from both a strategic and tactical perspective.

In the literature, corresponding metrics have also been proposed to quantify resilience. Gunderson et al. (2002) 
introduced two such key metrics: (1) ecological resilience is the “amount of disturbance that a system can 
absorb before it changes”; (2) engineering resilience is the “time of return to a global equilibrium following a 
disturbance”. In the study by Francis and Bekera (2014), the quantitative metric (3) ‘resilience factor’ has been 
proposed in order to take account of all three key resilience capacities.

A common view in the literature is that for the analysis of resilience of complex critical infrastructures, there is 
a need for systematic modelling approaches. Recently, Ouyang (2014) has provided a rather complete overview 
of the various modelling approaches available, such as those comprised of, or based, on: empirical modelling; 
agent-based modelling; system dynamics; economic theory; network topology; network flow; Petri nets; control 
system theory; hierarchical holographic modelling; high level architecture; and, Bayesian networks. These 
modelling approaches have been systematically assessed against various resilience improvement objectives for 
critical infrastructure systems (ibid.). In addition, ComplexWorld (2012) has identified some complementary 
stochastic modelling and analysis techniques that are able to capture the various forms of uncertainty in ATM, 
i.e.: stochastic hybrid systems (Blom and Lygeros, 2006; Cassandras and Lygeros, 2007); viability analysis 
(Martin et al., 2011); and, reachability analysis (Bujorianu, 2012).



Triggered by the resilience engineering paradigm of Hollnagel et al. (2006), qualitative modelling of resilience 
in ATM started some five years ago (EUROCONTROL, 2009). A good illustration of the associated qualitative 
results obtainable for ATM is provided by Woltjer et al. (2013). In view of the complexity of the air 
transportation system, there is also a need for the systematic application, validation and integration of 
complementary modelling approaches. Although high-level architecture modelling is the most generic approach, 
it faces many challenges in realising a mature application in a complex safety-critical infrastructure (Ouyang, 
2014). Overall, agent-based and network-flow based approaches have the widest and proven applicability. With 
regard to uncertainty, as discussed in the previous section, viability and reachability analysis of stochastic hybrid 
systems are particularly adept at allowing researchers to model and analyse the various forms of uncertainty in 
air transportation – hence, this should be combined with agent-based and network flow approaches. In addition, 
there is the need to assure data access (European legislative change is currently helping Europe to catch up with 
the more open culture in the US) and the systematic collection and empirical modelling of these data.

2.4 Emergent behaviour
Another key feature of complex systems is emergent behaviour (Anderson, 1972). This cannot be fully 
determined by knowledge of a system’s components when considered as isolated elements, i.e. without taking 
into account their interactions. A physical analogue is the highly complex structures of water, not predictable a 
priori from knowledge of the properties of hydrogen and oxygen atoms. Emergent behaviour that is not well 
understood often leads to poor performance. Only after such emergent behaviour is better understood, may it be 
exploited by researchers and managers to deliver better performance.

Air transportation is indeed challenged to accommodate much higher future traffic demand, whilst maintaining 
performance across a number of key performance areas (KPAs), including safety and delay metrics. Awareness 
is growing (e.g. Holmes, 2004) that this cannot be accomplished by focusing on the individual elements of the 
socio-technical air transportation system. Instead, it is essential to study and understand the interaction between 
the many individual elements, i.e. their joint emergent behaviours (ComplexWorld, 2012; EUROCONTROL, 
2010; Shah et al., 2005). Furthermore, with the introduction of advanced ATM concepts, as yet unknown 
emergent risk may appear (EUROCONTROL, 2010). Whilst new paradigms (such as self-separation) could give 
rise to new vulnerabilities, they could also remove existing ones (Woods et al., 2010). In the literature, a number 
of types of emergent behaviours are discussed. In order to bring some order to these emergent behaviour types, 
the classification proposed by Fromm (2005) is useful:

• Type I emergence is totally predictable due to the controlled and planned interaction of the individual 
components. In air transportation this applies, for example, to the multitude of technical systems either 
on-board an aircraft or on the ground, including their reliability.

• Type II emergence is characterised by top-down feedback from the components (agents) imposing 
constraints on the local interactions. Without conducting simulations, it is not predictable (Bedau, 
1997). Type II behaviour is observed, for example, when cognitive processes of pilots and controllers 
are involved. For example, in a sequence of airborne aircraft with limitations on their possible speed 
adjustments, each flight crew adjusts its behaviour and role in the group according to the context, e.g. 
following an ATC instruction or a traffic collision avoidance system warning.

• Type III emergence is characterised by multiple positive and negative feedback loops appearing in 
complex systems with many agents. Completely new roles can appear while old ones disappear. The 
behaviour cannot be forecast and is chaotic – hence it poses significantly more challenges for 
simulation.

• Type IV emergence is not predictable, even in principle, because it describes the appearance of a 
completely new system in a multi-level or multi-scale system. This is often referred to as ‘strong’ 
emergence, although there is no universally agreed definition. Combinatorial factors render futile any 
attempt at explaining emergent macroscopic phenomena in terms of microscopic phenomena. A 
mesoscopic level often protects the macroscopic level from the microscopic one (i.e. the microscopic 
layer is irrelevant to behaviour at the macroscopic level). Life is a strongly emergent property of genes, 
the genetic code and nucleic/amino acids; culture is a strongly emergent property of language and 
writing systems. In the air transportation domain, one can think of the safety culture, inter alia, as the 



product of routine aspects of everyday practice and rules, and of management and organisational 
structures (Ek et al., 2007; Gordon et al., 2007). However, even agent-based modelling and simulation 
do not reveal an understanding of the causal relationships (Sharpanskykh and Stroeve, 2011).

Type III exceptional, safety-critical behaviour may be observed where the propagation of hazards through the 
socio-technical air transportation system creates a condition under which the application of established 
procedures by crew or ATC unintentionally causes the situation to deteriorate. This may, for example, occur 
when situation awareness differences arise amongst different agents in the system, and these differences cannot 
be recognised by any of the agents (De Santis et al., 2013).

Type III emergent behaviour is also associated with other particularly interesting properties with regard to the 
management of air traffic: phase transitions and percolation. A phase transition refers to many locally 
interacting elements causing a collective phase change (returning to the example of water, a physical analogue is 
the melting of ice, i.e. a transition from the solid to liquid phase). Typically, there exists a critical point that 
marks the passage from one phase to another (e.g. Helbing, 2001). Particularly remarkable is that the well-
known phase transition behaviour of road traffic on a highway seems to be absent in air traffic. 

Percolation refers to probabilistic, network-wide emergent behaviour, between sites or sub-systems, across links 
in the network. In air transportation, there are several networks where percolation may happen. For example, the 
spatio-temporal propagation of congestion over airspace sectors (Ben Amor et al., 2012; Conway, 2005) or how 
passenger disruption propagates through the entire air transportation system (Cook et al., 2013a). We take up the 
conclusions to be drawn for air traffic management with regard to emergent behaviour in Section 4.

3 ATM case studies
The two case studies summarised in this section are both examples of SESAR Exploratory Research program 
projects. The aim of this section is to illustrate the practical use of complexity science in the context of ATM. 
Both of the case studies draw on community analyses. An important characteristic of a complex network is its 
organisation into communities (Fortunato, 2010). Communities are generically defined as sets of nodes that are 
more connected among themselves than with the rest of the network. Communities are, therefore, important to 
the understanding of airspace structure and operation.

In the first case study, we present the results of a recent investigation performed within the ELSA project 
(Gurtner et al., 2013), whereby network community detection algorithms were used to monitor current use of the 
airspace and to improve it by informing the design thereof. In the second case study, we show how the POEM 
project (Cook et al., 2013a) has demonstrated the need for dedicated passenger metrics in performance 
assessment and how community functionality and vulnerability may be radically changed under flight 
prioritisation rules.

3.1 From network behaviour to better airspace design
The application of complex network theory to air traffic is not new (Zanin and Lillo, 2013), although such 
studies have mainly focused on the topological characterisation of the airport network (Bagler, 2008; Colizza et 
al., 2006; Guida and Funaro, 2007; Guimerà et al., 2005; Li and Cai, 2004; Lillo et al., 2011; Popovic et al., 
2012; Quartieri et al., 2004; Wang et al., 2011; Xu and Harriss, 2008). In Gurtner et al. (2013), community 
detection algorithms were applied to different types of air traffic network. We will illustrate this case study by 
considering a network of airports, which is probably the most studied type of air traffic network. This network 
was constructed using the DDR (Demand Data Repository) dataset maintained by EUROCONTROL.

Airspaces are complex systems already partitioned, mainly for reasons related to air traffic control. In fact, at the 
lowest level, airspaces are partitioned into several sectors. In European airspace, each National Airspace (NA) 
comprises between one and five area control centres (ACCs). The two-dimensional boundaries of an NA are 
often very close to the country’s national borders. At a more aggregate level still, we have functional airspace 
blocks (FABs), comprising several NAs. Reorganising NA blocks into FABs is one of the cornerstones of the 



Single European Sky first legislative package, and was further enhanced in the SES second package. 
Nevertheless, only a few of the planned nine FABs are currently operational.

We suggest that community detection in air traffic networks is important for two reasons. Firstly, it improves the 
characterisation of networks, powerfully complementing other complexity metrics (such as degree distribution, 
betweenness centrality, small world effects, etc.). Secondly, we believe that community detection could be 
helpful to guide, in an unsupervised way, the design of new airspaces in order to achieve better management of 
the air traffic based on actual conditions. In fact, network community detection may provide information on the 
appropriateness of the airspace design, based on the sole knowledge of the actual air traffic data. Therefore, 
methods devised for identifying communities in networks could be used to help design the structure of airspace, 
starting from the observed behaviour of the system.

An example of a partition is presented in Figure 1, where we show the different communities of the European 
airport network for 06 May 2010. Each circle is an airport, its radius proportional to its strength. Each 
community is represented by a different colour. The links between nodes have been omitted for legibility. This 
partition is obtained by using an algorithm (Blondel et al., 2008) that maximises the modularity. Modularity is a 
network metric that measures the excess of the number of links within a community with respect to a null 
hypothesis of the random presence of links.

Fig. 1. European network of airports on 06 May 2010.

As illustrated, the typical size of a community is supra-national, roughly the same as an FAB. The communities 
are mainly geographical with the majority of nodes close to each other in a single community. Moreover, the 
borders of the communities seem to be more or less consistent with national borders. Nevertheless, some nodes 
are geographically far away from the majority of the nodes in their communities. As mentioned above, this 
might be due to the fact that such nodes are gathered together in the same community on the basis of their 
common air traffic profile, rather than their geographical proximity. A detailed comparison between existing 
and unsupervised partition is beyond the scope of this paper; interested readers should refer to Gurtner et al. 
(2014).

When considering the whole AIRAC (Aeronautical Information Regulation and Control) period from 06 May to 
02 June, 2010, the average number of communities is 9.4 ± 1.2. The average value of the minimum number of 
communities which include 90% of the nodes in the network is 7.2 ± 0.4. The number of FABs and NAs 



considered is 12 and 42, respectively1. The average number of FABs and NAs that include 90% of the nodes in 
the network is 9.1 and 21, respectively. Clearly, the number of detected communities is closer to the number of 
FABs.

A further quantitative comparison between unsupervised and existing partitions of the airspace can be obtained 
by computing the mutual information (Danon et al., 2005). The mutual information is a measure of the mutual 
dependence of two variables, based on the computation of their commonalities. The results are summarised in 
Table 1 (values of unity from modularity versus modularity, etc., and the duplicating value of 0.42 ± 0.02 (top-
right cell) are not shown).

Table 1.
Comparisons of the partitions using the mutual information.

Mutual information Modularity National Airspace

Modularity - -

National Airspace 0.42 ± 0.02 -

FABs 0.53 ± 0.02 0.70 ± 0.01

According to mutual information, the existing partition given by FABs seems well represented by a partition of 
the airport network obtained by using the modularity method. However, the match is not perfect. There could be 
two reasons for this. Firstly, geographical borders of communities are different from the FABs’ tiling. Secondly, 
communities are actually non-geographical and some nodes of a given community are in the middle of another 
one, as shown in Figure 1. Nevertheless, overall, these results support the introduction of FABs. Their actual 
boundaries could sometimes be different from those obtained by applying an unsupervised modularity-based 
community detection algorithm to the airport network, however, as detailed in Gurtner et al. (2014). Again, an 
obvious explanation might be that the communities detected by such algorithms are formed solely on the basis 
of their air traffic profiles. FABs, as well as other existing airspace structures, have been created on the basis of 
geographical or political constraints. These two types of criteria might indeed generate very different outcomes 
because, for instance, it is not unlikely to have airports in different nations more connected than airports in the 
same nation. Looking further ahead to concepts such as free routes and dynamic airspace structures, these types 
of community detection methods may make particularly valuable contributions to both strategic and tactical 
design, as they might provide design criteria informed by empirically observed air traffic flows.

3.2 Evaluating new flight prioritisation strategies
The average delays of flights and passengers are not the same and they are even observed to move in opposite 
directions under certain types of flight prioritisation (Bratu and Barnhart, 2004; Calderón-Meza et al., 2008; 
Cook et al., 2013a; Manley and Sherry, 2008; Sherry et al., 2008; Wang, 2007). The air transport industry is 
lacking passenger-centric metrics; its reporting is flight-centric. 

There is growing political emphasis in Europe on service delivery to the passenger, and passenger mobility 
(European Commission, 2011a, 2011b, 2013). However, how are we to measure the effectiveness of passenger-
driven performance initiatives in air transport if we do not have the corresponding set of passenger-oriented 
metrics and understand the associated trade-offs in the context of delay propagation? How can we better 
characterise and differentiate the performance of the network from a flight and passenger perspective, under 
new types of flight and passenger prioritisation scenarios?

We set out to answer these questions by building the first explicit passenger connectivity simulation of the 
European air transport network, with full airline delay cost estimations. The two principal datasets used to 
prepare the input data for the model were IATA’s PaxIS passenger itineraries and EUROCONTROL’s PRISME 
traffic data. A baseline traffic day in September 2010 was selected as a busy day in a busy month – without 
evidence of exceptional delays, strikes or adverse weather. The busiest 199 European Civil Aviation Conference 

1 Since we are considering the whole ECAC airspace (which is only partly covered by FABs), we included in our partition the nine FABs 
planned by EUROCONTROL plus three pseudo-FABs defined by the authors and based on geographic proximity.



(ECAC) airports in 2010 were modelled, having identified that these airports accounted for 97% of passengers 
and 93% of movements in that year. Routes between the main airports of the (2010) EU 27 states and airports 
outside the EU 27 were used as a proxy for determining the major flows between the ECAC area and the rest of 
the world. This process led to the selection of 50 non-ECAC airports for inclusion of their passenger data.

The key results observed through (new and established) classical metrics were as follows. Firstly, both types of 
flight prioritisation rule operating during arrival management (i.e. (a) minimising the number of inbound 
delayed passengers; (b) minimising the number of onward delayed flights) were ineffective in improving overall 
performance. Secondly, a policy-driven scenario was considered, representing a special case not driven by 
current airline rules or ATM objectives but designed to benefit the passenger. This scenario, with rules 
rebooking disrupted passengers at airports based on minimising their delay at their final destination, produced 
very weak effects when current airline interlining hierarchies were preserved. When these restrictions were 
relaxed, marked improvements in passenger arrival delay were observed, although at the expense of an increase 
in total delay costs per flight (due to passenger rebooking costs). Thirdly, a prioritisation process assigning 
departure times based on cost minimisation markedly improved a number of passenger delay metrics and airline 
costs, the latter determined by reductions in passenger hard costs to the airline (falling on average by €40 per 
flight). The importance of using passenger-centric metrics in fully assessing system performance was repeatedly 
observed, since such changes were not expressed through any of the currently-used flight metrics at the common 
thresholds set (Cook et al., 2013a). This has important implications for SESAR’s central concept of the User-
Driven Prioritisation Process (SESAR, 2012).

In order to establish causal relationships within the data, it was necessary to turn to rather more powerful 
techniques than those simply describing associations. Granger causality (Granger, 1969) is held to be one of the 
only tests able to detect the presence of such causal relationships between time series. It is an extremely 
powerful tool for assessing information exchange between different elements of a system, and understanding 
whether the dynamics of one of them is led by the other(s). A network reconstruction was computed for the 
flight and passenger layers for the baseline (no prioritisation scenario) and cost-minimisation scenario 
simulations, i.e. four reconstructions in total. Granger causality was calculated over time series representing 
delays.

The two baseline networks are shown in figures 2 and 3 (with International Civil Aviation Organization airport 
codes). The colour of each node represents its eigenvector centrality, from green (low centrality) to red (most 
central nodes). The size represents the out-degree, i.e. the number of airports that a given airport Granger 
‘forces’ in terms of delay. The eigenvector centrality is a metric defined such that this centrality of a node is 
proportional to the centralities of those to which it is connected (Boccaletti et al., 2006).

Comparing eigenvector centrality rankings through Spearman rank correlation coefficients showed that all four 
network layers were remarkably different from each other (rs: 0.01 – 0.07). These rankings demonstrated that 
different airports have different roles with regard to the type of delay propagated (i.e. flight or passenger delay) 
and, furthermore, that these were further changed by the cost-minimisation prioritisation rules. Indeed, a trade-
off was introduced under these rules: the propagation of delay was contained within smaller airport 
communities, but these communities were more susceptible to such propagation. The absence of major hubs in 
the top five ranking lists for in-degree, out-degree and eigenvector centralities was notable. Indeed, the largest 
airports present in these rankings were Athens, Barcelona and Istanbul Atatürk.



Fig. 2. Flight delay causality network for baseline simulation.

Fig. 3. Passenger delay causality network for baseline simulation.

This modelling has also identified (Cook et al., 2013a) that smaller airports were significantly implicated in the 
propagation of delay through the network at a level that has hitherto not been commonly recognised. This is 
probably due to reduced delay recovery potential at such airports and whether a given airport has sufficient 
connectivity and capacity to reaccommodate disrupted passengers. 

4 Conclusions and outlook
In this paper we sought to identify the key features of complex systems and to illustrate the current and future 
capacity of complexity science techniques to make valuable contributions to the management of air transport. Its 
applicability to performance assessment is readily apparent, not least due to the flexibility with which we may 
define the constituent nodes in a network representation.

Complex network theory has a range of metrics and methods well adapted to developing the study of air 
transport networks. Some results can be obtained only through complexity science methods, in particular, those 
that are related to emergent behaviours. Other results may be recovered through conventional analyses, but at a 
much greater cost. An example of the latter is airport vulnerability. Classically, estimation thereof would require 
either great simplification (based on counting flights, for example) or a simulation, whereas CNT offers several 
straightforward metrics that may be readily calculated without simulation, such as betweenness and eigenvector 
centrality. Indeed, within the POEM project (discussed in Section 3.2), it was also apparent (Cook et al., 2013a; 
2013b) that applying CNT techniques and exploring community properties such as vulnerability, afforded 
performance insights rather more readily than using classical techniques alone. We believe that a 
complementary approach using both complexity and classical approaches offers managers and designers, both 
on the supply and demand side, the most powerful insights into performance.

The importance of CNT in assessing network resilience, e.g. through characterisation of air traffic topologies 
and the identification of vulnerabilities, will become even more useful as further performance demands (e.g. 



from high-level target-setting) and traffic demands are placed on the system. Based on the resilience 
developments for complex socio-technical systems in other domains, we may identify four key directions for 
addressing resilience in air transportation. The first is the elaboration of the unifying resilience framework of 
Francis and Bekera (2014) for the air transportation domain – one of the challenges here is to incorporate the 
various stakeholders into a unifying framework, with clear links to the SESAR objectives of collaborative 
decision making (CDM). The second is the further investigation and incorporation of dedicated resilience 
metrics in air transportation, as discussed in Gluschenko and Foerster (2013). The third direction is the 
improvement of access to, inter alia, appropriate resilience data, coupled with the systematic collection and 
empirical modelling of these data. The fourth direction is the modelling and analysis of future air transportation 
design from a resilience perspective, using the most suitable approaches identified in Section 2.3 and illustrated 
in the case studies of Section 3. The practical alignments with ATM paradigms are apparent, from FAB 
implementation and high-level network design down to modelling the tactical practicalities of flight 
prioritisation rules, each of which are key issues in future ATM design.

Looking ahead, it seems that emergent behaviour research in ATM, and many other fields, would be most 
productively focused on Type III emergence. This implies the following main research lines. Firstly, increasing 
our understanding of phase transitions in air traffic management. Why do these not arise in conventional air 
traffic situations, and which types of change in air transportation in the future could lead to, or further avoid, 
phase transitions from impacting air traffic? (One possible explanation for the lack of some types of phase 
transition is that in the current air transportation system traffic demand within each sector is regulated through 
flow control such that certain critical points are often not reached, but there is still only a relatively poor 
understanding of how phase transitions from nominal behaviour to propagated network delays occur.) Secondly, 
a better understanding of various percolation phenomena in air transportation is required, again including the 
context of future operational paradigms, and of exceptional emergent behaviours and the corresponding 
implications for safety. Thirdly, we need to develop better macroscale models that capture the characteristics of 
emergent behaviours, e.g. in terms of the associated power laws. Such models would allow the communication 
of learning from Type III emergent behaviour with other experts in air transportation, not least (tactical) network 
managers and (strategic) system designers.

Considering future tools and methodologies, automatically detecting patterns that may compromise the safe 
operation of the ATM system has to overcome several challenges. One of these is the nature of ATM data, i.e. 
the fact that they emerge from the interaction of a plethora of elements. Due to this, once again, classical 
techniques like multiple linear regression are not suitable. The high number of elements composing the system 
also results in the generation of large datasets that cannot easily be aggregated and suitably codified. This 
process requires automated mechanisms that can filter and organise high volumes of heterogeneous, incomplete 
or unreliable information in an intelligent manner. Not all such challenges have yet been met, with many 
benefits to the air transport community yet to be realised, although early research has yielded highly promising 
results constructing predictive models able to successfully forecast unsafe events. Such tools may have a 
particular role to play in future, more automated environments.

Any attempt to build a truly holistic performance assessment framework must also take account of uncertainty, 
another inherent property of real-world complex systems. We are here obliged to consider the multiple temporal 
and spatial scales associated with such systems, in addition to the various types of uncertainty and the degree to 
which some of them may be mitigated. Much research has focused on the macroscale, thus rather following the 
level at which performance targets are set, but there remain particular opportunities to improve our 
understanding and modelling at the mesoscale. We have also demonstrated the need to differentiate between the 
passenger and flight layers of such analyses and to ensure that the metrics used are appropriately sensitive to the 
changes we are trying to measure. Whilst much of this work has focused on operational network models, with 
corresponding attention on airport functionality, these methods are equally adept at assessing the performance 
impacts of new policies and working at the airline (sub-)network level.

A key remaining challenge is the appropriate treatment of the multi-dimensional nature of performance in air 
transportation and the trade-offs between its KPAs. Such complex interdependencies and non-linearities are 



often overlooked. In on-going work, using CNT with interacting elements and feedback loops, we are 
investigating such trade-offs for various stakeholder investment mechanisms (such as new technologies to 
increase capacities) in the context of uncertainty. We foresee that complexity science is set to make significant 
contributions to the management challenges of improving our understanding and optimising the design of future 
ATM, from both the strategic and tactical perspectives.
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