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Abstract— In this paper, a probabilistic approach to en-route 

sector demand prediction at tactical level subject to thunderstorm 

activity is presented. The source of uncertainty is the location of 

the convective cells affecting the sector. An ensemble-based 

stochastic methodology is developed that takes into account the 

stochastic evolution of the detected convective cells. The sector 

demand is predicted for short forecasting horizons (less than one 

hour); the analysis is based on the statistical characterization of 

the occupancy count. A realistic application is presented. The 

results show that the sector demand can be accurately predicted at 

tactical level when thunderstorm uncertainties are considered. 

The effects of the stochastic evolution of the convective cells on the 

demand prediction are quantified. 

Keywords-sector demand; occupancy count; weather 

uncertainty; thunderstorms; storm avoidance 

 

I. INTRODUCTION 

In 2005, the European Commission stated the political vision 
and high-level goals for the Single European Sky and its 
technological pillar SESAR. Accomplishing the goals of 
increasing capacity and improving safety requires a paradigm 
shift in operations through state-of-the-art, innovative 
technology and research. A promising approach that can 
improve current prediction and optimization mechanisms 
towards meeting these goals is to model, analyze, and manage 
the uncertainty present in Air Traffic Management (ATM), and 
in particular weather uncertainty, which is one of the main 
sources of uncertainty that affect the ATM system [1].  

The framework for this work is the integration of weather 
information into ATM processes, and in particular the 
improvement of decision making in the presence of weather 
forecast uncertainty. In this paper the problem of forecasting the 
demand of an Air Traffic Control (ATC) sector when subject to 
thunderstorm activity is addressed, focusing on the en-route 
phase. 

This analysis is relevant because convective weather is a 
major cause of flight disruption and because Demand-Capacity 
Balancing (DCB) is a key objective of Air Traffic Flow 
Management (ATFM), which is most useful when imbalances 

between the demand and the available capacity are predicted 
early enough to avoid tactical Air Traffic Control (ATC) 
intervention. Indeed, challenges to the effectiveness of ATFM 
measures in the en-route context arise mainly from uncertainties 
in weather forecasts. 

In this work, the location and size of the storm cells is 
obtained from Nowcasts, which are deterministic short-term 
forecasts (up to 1-3 hours), based on the actually observed 
situation. They usually use radar or satellite data, some in 
combination with wind data, and extrapolate the movement and 
the temporal development of thunderstorms [2]. Nowcast 
systems work at the regional scale and are quite reliable for one-
hour lead time, with decreasing accuracy for longer times.  

Since the thunderstorm evolution is probabilistic in nature, 
the proper setting to address the DCB problem is probabilistic as 
well. Hence, an ensemble-based stochastic methodology is 
presented that takes into account the stochastic evolution of the 
detected convective cells. The sector demand is predicted for 
short forecasting horizons (less than one hour), and this 
prediction is updated at regular time steps according to the 
updated position of the aircraft and the release of new weather 
forecasts (every ten minutes).  

The final goal of this research is to provide ATC with more 
precise information on the probability of sector overload. The 
results can lead to a better identification of sector congestion. 

Results are presented for a realistic application: 236 aircraft 
planning to cross an area around the sector LECBLVU on 19th 
December 2016 from 06:00 to 13:00, considering cruise flights 
at constant pressure altitude and constant Mach number. 

 

II. BACKGROUND 

The analysis of sector demand prediction under 
thunderstorm activity is related to two main research topics: 
convective weather avoidance and probabilistic DCB. 



A. Convective weather avoidance 

Many efforts to generate acceptable alternate routes to avoid 
the convective cells can be found in the literature. Among others 
the following ones. 

In [3] the authors present a robust Markov Decision Process 
problem for dynamically rerouting an aircraft across a region 
impacted by convective weather, and in [4] they extend the 
previous model to multiple aircraft, considering the constraints 
dictated by the sector capacity and the avoidance of conflicts 
among the aircraft. 

The Dynamic Weather Routes (DWR) tool is described 
in [5-7]. DWR is a ground-based trajectory automation system 
that finds time-saving corrections to flight plan routes avoiding 
weather, considering traffic conflicts, airspace sector congestion 
and possible routing restrictions. Test results at different stages 
are presented, and significant flight time savings are reported. 

In [8-10] an approach for generating a set of weather 
avoidance routes for traffic flow management applications is 
presented. The approach is based on the definition of a network 
constructed from historically-flown connections between 
existing fixes. Several searching algorithms are considered: K-
shortest path, simulated annealing and a variation of Dijkstra’s 
algorithm. 

More tactical approaches aim at driving the aircraft around 
the cells. Reference [11] presents the DIVMET algorithm 
(which is presently a property of MeteoSolutions GmbH); this 
algorithm is used in this work, and is described in Section IV. 
Reference [12] presents an approach to model the uncertainty 
inherent to forecasts of convective weather regions and a 
stochastic planning tool designed to avoid them while 
maintaining high safety levels. 

B. Probabilistic demand and capacity of en-route sectors 

In [13] the authors present a general approach to sector 
capacity prediction considering flow patterns with different 
levels of complexity (in terms of merging and crossing flows); 
in particular, the case of probabilistic sector capacity prediction 
under adverse weather impact is addressed, analyzing the 
blockage of the flows.  

A data-driven approach that identifies robust routes in the 
terminal area and derives stochastic capacity forecasts from 
deterministic convective weather forecasts is presented in [14]. 
Using techniques from machine learning and extensive data sets 
of forecast and observed convective weather, the proposed 
approach classifies routes that are likely to be viable in reality. 
The resultant model for route robustness to the inaccuracies of 
convective weather forecasts can also be mapped into 
probabilistic airspace capacity forecasts. 

A workload-based sector capacity model is described in [15], 
focusing on the effects of convective weather on en-route traffic 
management. The model defines a fractional weather volume 
blockage, and considers several ways in which the blockage 
affects the workload. In [16] the authors incorporate 
improvements to their previous workload model, and estimate 
the reduction of a sector’s operational capacity resulting from a 
partial blockage of its airspace by hazardous weather. 

In [17] the authors present one of the first probabilistic 
approaches to predict sector demand. The approach translates 
the uncertainty in predicting sector entry times and times in 
sector for individual flights into uncertainty in predicting the 
sector demand counts in one-minute periods. The approach is 
based on a statistical analysis of data provided by the Traffic 
Flow Management System, namely predictions of times of 
individual flights to cross sector boundary and of times in the 
sector. The idea of translating the uncertainty in predicting 
sector entry/exit times for individual flights into uncertainty in 
predicting the sector demand counts is taken in this work, as 
described below. 

A probabilistic framework for modelling air traffic 
occupancy count and sector congestion is described in [18]. The 
approach is based on historical data and uncertainty at the 
individual trajectories level. For each flight they consider a set 
of probable trajectories and their uncertainty both in space and 
time, because from historical data each flight has a number of 
possible ways to reach its destination. They present results for 
one day of data of the European network (30000 flights). 

A previous step in our research is presented in [19], where 
we focused on analyzing the sector demand at pre-tactical level 
(one day in advance) when considering the effects of wind 
uncertainty. 

 

III. APPROACH OVERVIEW 

As already indicated, due to the probabilistic nature of the 
thunderstorm evolution, a probabilistic approach is developed in 
this work to analyze the sector demand. In particular, an 
ensemble-based approach is followed, which requires as input 
an ensemble of weather forecasts. Ensemble Weather 
Forecasting is a technique commonly used to quantify the 
forecast uncertainty; this technique is recommended by the 
World Meteorological Organization [20] (see also [21,22] for 
some applications related to ATM). 

Since the Nowcasts considered are deterministic, to model 
the thunderstorm uncertainty the location of each convective cell 
provided by the Nowcast is randomly perturbed within a given 
margin, thus generating an ensemble of Nowcast variations, 
which in turn leads to an ensemble of deviation trajectories for 
each flight and, therefore, to an ensemble of predicted entry and 
exit times to/from the sector. The probabilistic forecast of the 
sector demand is then obtained from these predicted entry and 
exit times when all the flights are considered. 

The sector demand is measured in terms of the occupancy 
count (number of flights inside the sector during a selected time 
period [23]). Hence, the ensemble of predicted entry and exit 
times lead to different values of the occupancy count, which 
allow its statistical characterization. The occupancy count is 
predicted for a number of time periods of given length, and for 
each period the prediction of the count consists of its maximum, 
minimum, and average values. According to the release of a new 
Nowcast, new possible deviation trajectories are generated to 
avoid the convection cells and the predicted demand is updated. 

Hence, the approach has two main steps: 1) the Nowcast 
processing, to generate the Nowcast variations, and 2) the 



probabilistic sector demand analysis to predict the sector 
occupancy count. 

To carry out this approach, the methodology developed 
requires, additionally, some input data and the use of two 
external functions: 1) the generation of a reference trajectory for 
each flight, and 2) the use of a storm-avoidance tool which 
computes, for each reference trajectory and for each Nowcast 
variation, a different deviation trajectory. The reference 
trajectory is the trajectory to be flown (for instance, the 
Reference Business Trajectory in the future Trajectory Based 
Operations concept), and the trajectory to which the deviation 
trajectories will re-attach. 

The general scheme of this approach is depicted in Fig. 1. 
All its elements are described in the next sections. 

 

Figure 1.  General scheme for the analysis of sector demand under 

thunderstorm activity. 

 

IV. INPUT DATA AND EXTERNAL TOOLS 

A. Input data 

Several types of data are needed as input: meteorological 
data, ATC sector geometry, flights and aircraft models. The 
meteorological data consists of thunderstorm Nowcasts. In this 
work, the Nowcasts provided by the Spanish meteorological 
agency (AEMET) are considered. The Nowcast data contains 
information about the centroids of the observed convective cells 
and extrapolations of the centroids in 10 minute steps up to 
60 minutes. Additionally, the extent of each observed 
convective cell is given as corner points of a rectangle. The 
Nowcasts are updated every 10 minutes. 

Data defining the ATC sector to be analyzed and the flights 
that cross it are obtained from Eurocontrol’s NEST for the 
AIRAC cycle 1613. And the aircraft models are provided by 
Eurocontrol’s BADA (Base of Aircraft Data). 

B. External tools 

Two external tools are used in this problem: a trajectory 
planner (TP) and a storm-avoidance tool. 

The trajectory planner generates the reference trajectories to 
be followed. In this work, the TP developed in the TBO-Met 
project is used [24]. For each flight a reference trajectory is 
computed 3 hours in advance of the departure time (at pre-
tactical level). In each case the reference trajectory is obtained 
considering the wind field forecasted by an Ensemble Prediction 
System (EPS) and applying an optimal-control algorithm that 
minimizes the average flight time 𝑡(𝑟𝑓) of the 𝑞 trajectories that 

correspond to the 𝑞 ensemble members of the EPS: 

min [
1

𝑞
∑ 𝑡𝑗(𝑟𝑓)

𝑞

𝑗=1

] 

Note that any planner can be used. Other examples can be 
found in [25] and [26], where different approaches to generate 
wind-optimal routes for oceanic flights are described, and in [27] 
where they generate the optimal path in a structured airspace, 
considering the wind uncertainty defined by an EPS. 

The storm avoidance tool used in this work is DIVMET [11]. 
This algorithm is deterministic; it obtains an efficient and safe 
route to the final destination according to the field of existing 
and forecasted storm cells. For this purpose it requires an 
initially planned route (the reference trajectory) and the storm 
data as input. The deviation trajectory finally reattaches to the 
reference trajectory. 

DIVMET adds a safety margin around each convective cell 
and clusters all the extended cells that intersect with each other. 
Finally the clusters are surrounded by a convex hull. The 
avoidance trajectory in fact avoids the field of convective areas 
thus created. This safety margin allows to follow the 
recommendations for thunderstorm avoidance given by FAA 
(never go closer than 5 NM to any visible storm cloud with 
overhanging areas, and strongly consider increasing that 
distance to 20 NM or more [28]). 

 

V. METHODOLOGY 

The methodology developed in this work is described in this 
section. As already indicated, it has two steps: nowcast 
processing and probabilistic sector demand analysis.  

A. Nowcast processing 

The purpose of this module is to generate the ensemble of 
possible locations of the convective cells for each Nowcast (that 
is, the different Nowcast variations), which will lead to the 
ensemble of deviation trajectories for each flight. 

Taking the Nowcast data as input, the first step is the 
construction of convective cells with elliptical shape, which are 
further extended by an uncertainty margin. The uncertainty 
margin models the typical displacement errors of a thunderstorm 
Nowcast, which increases as the lead-time increases (see [29]); 
in this paper this increase is modelled by the function 𝑓(𝜏) =
0.028𝜏1.56 provided by AEMET, where the lead time 𝜏 is given 



in minutes, and the margin extent 𝑓(𝜏) in NM (the uncertainty 
margin grows with lead time from approximately 1.0 NM to 16.6 
NM for 10 minutes and 60 minutes, respectively).  

To determine the uncertainty in the location of the 
convection cells, a methodology has been developed where the 
ellipses that represent the convection cells are randomly varied 
in location within the lead-time dependent uncertainty margin, 
as sketched in Figure 2 for two different lead times.  

Additionally, a safety margin is added by DIVMET (not 
represented in Figure 2). 

 

 

 

Figure 2.  Illustrations of the variation of an elliptical convective cell within 

the uncertainty margin. Top: low lead time. Bottom: high lead time. 

B. Sector demand analysis 

The purpose of this module is to forecast the occupancy 
count, which is obtained from the predicted entry and exit times 
of each deviation trajectory to/from the sector.  

In order to represent the real movement of the aircraft, it is 
assumed that the aircraft executes the reference trajectory until 
it arrives to the boundary of an extended area that comprises the 
ATC sector. In this way, only the uncertainty originated by the 
convective cells the aircraft encounters inside or close to the 
sector is considered in this analysis. The dimensions of the 
extended area are such that the aircraft requires about 10 minutes 
to reach the sector. In case that the flight departs from an airport 
inside this extended area, the departing point and time are 
considered to be the intersection of the reference trajectory with 
the extended area. This extended area is the area from which the 
computation of the deviation trajectories is started. 

Once the flight enters the extended area, different possible 
deviation trajectories are determined, taking into account the 
different random locations of the storm cells. DIVMET 
computes a set of possible deviation trajectories. These deviation 
trajectories evade the convective cells and re-attach to the 
reference trajectory. They result in different entry and exit times 
to/from the ATC sector under study, and thus to an uncertain 
sector demand.  

According to the release of new Nowcasts (every ten 
minutes) and the movement of the aircraft, new possible 
deviation trajectories are generated and the predicted demand is 
updated. 

In this work, the sector demand is described in terms of the 
occupancy count. Because the different deviation trajectories for 
each flight lead to different predicted entry and exit times, 
different occupancy counts are computed (i.e., uncertain 
occupancy counts). The analysis is based on the statistical 
characterization of the occupancy count; each prediction of the 
count consists of its maximum, minimum and average values. 

It is considered that there are 𝑚 different flights. For each 
flight the DIVMET algorithm provides 𝑛 different deviation 
trajectories (corresponding to the 𝑛 Nowcast variations). For 
flights that have not yet entered the extended area, the deviation 
trajectories are identical to the reference trajectory. All the 
deviation trajectories for each flight are considered as equally 
probable. 

The deviation trajectory for flight 𝑖 (𝑖 = 1, … , 𝑚) and 
Nowcast variation 𝑗 (𝑗 = 1, … , 𝑛) is denoted as 𝐱𝑖𝑗 , and it is 

given as a list of discrete points (longitude, latitude and pressure 
altitude) and times. A linear interpolation is used to obtain the 
position of the flight at any other time.  

If trajectory 𝐱𝑖𝑗 crosses the ATC sector, then there exist an 

entry time to the sector 𝑡𝑖𝑗,𝐸 and an exit time from the sector 𝑡𝑖𝑗,𝑋 

(𝑡𝑖𝑗,𝐸 ≤ 𝑡𝑖𝑗,𝑋). The deviation trajectories may cross the same 

sector multiple times to avoid the convective regions; in this 
case, the entry and exit times are considered to be the time of the 
first entry and the time of the last exit, respectively. Note also 
that, for a given flight it may happen that some deviation 
trajectories do not cross the sector; in this case, the 
corresponding times are not defined. 

The occupancy count is predicted for a number 𝑁 of time 
periods of length 𝛿𝑡. If the prediction is made at time 𝑇𝑝, then a 

general time period 𝑃𝑘 is defined as the following interval 

𝑃𝑘 = [𝑇𝑝 + (𝑘 − 1)𝛿𝑡, 𝑇𝑝 + 𝑘𝛿𝑡],     𝑘 = 1, … , 𝑁. 

Thus, the forecasting horizon is 𝐻 = 𝑁 ⋅ 𝛿𝑡. 

We define an occupancy function for flight 𝑖, for deviation 
𝑗, and for time period 𝑃𝑘, denoted as 𝑂𝑖𝑗(𝑃𝑘). It takes the value 1 

when the aircraft is inside the sector during this time period (it 
enters, exits, or stays in the sector in this period) and the value 0 
if the aircraft is outside. If a deviation trajectory 𝐱𝑖𝑗 does never 

enter the ATC sector, 𝑂𝑖𝑗(𝑃𝑘) is set to zero as 𝑡𝑖𝑗,𝐸 and 𝑡𝑖𝑗,𝑋 are 

not defined. 

𝑂𝑖𝑗(𝑃𝑘)

= {

1, if  (𝑡𝑖𝑗,𝐸 ∈ 𝑃𝑘) or (𝑡𝑖𝑗,𝑋 ∈ 𝑃𝑘) or 

(𝑡𝑖𝑗,𝐸 < 𝑇𝑝 + (𝑘 − 1)𝛿𝑡  and 𝑡𝑖𝑗,𝑋 ≥ 𝑇𝑝 + 𝑘𝛿𝑡),

0, otherwise.

 

The contribution of flight 𝑖 to the mean, maximum, and 
minimum values of the occupancy count for time period 𝑃𝑘, 

denoted as �̅�𝑖(𝑃𝑘), 𝑂𝑖 𝑚𝑎𝑥
(𝑃𝑘), and 𝑂𝑖𝑚𝑖𝑛

(𝑃𝑘), respectively, are 

obtained as 



�̅�𝑖(𝑃𝑘) =
1

𝑛
∑ 𝑂𝑖𝑗(𝑃𝑘)

𝑛

𝑗=1

, 

𝑂𝑖 𝑚𝑎𝑥
(𝑃𝑘) = 𝑚𝑎𝑥

𝑗
𝑂𝑖𝑗(𝑃𝑘), 𝑂𝑖𝑚𝑖𝑛

(𝑃𝑘) = 𝑚𝑖𝑛
𝑗

𝑂𝑖𝑗(𝑃𝑘). 

The mean, maximum, and minimum values (�̅�, 𝑂𝑚𝑎𝑥, and 
𝑂𝑚𝑖𝑛, respectively) of the occupancy count for time period 𝑃𝑘 
can be determined from these 𝑚 contributions as follows 

�̅�(𝑃𝑘) = ∑ �̅�𝑖(𝑃𝑘)

𝑚

𝑖=1

, 

𝑂𝑚𝑎𝑥(𝑃𝑘) = ∑ 𝑂𝑖𝑚𝑎𝑥
(𝑃𝑘)

𝑚

𝑖=1

, 𝑂𝑚𝑖𝑛(𝑃𝑘) = ∑ 𝑂𝑖 𝑚𝑖𝑛
(𝑃𝑘)

𝑚

𝑖=1

. 

The dispersion of the occupancy count, Δ𝑂(𝑃𝑘), is defined 
as the difference between the maximum and the minimum 
values 

 Δ𝑂(𝑃𝑘) = 𝑂𝑚𝑎𝑥(𝑃𝑘) − 𝑂𝑚𝑖𝑛(𝑃𝑘). 

 

VI. APPLICATION 

A. ATC sector 

In this work, the demand for seven hours, from 6:00 to 13:00 
on 19 December 2016 of the ATC sector LECBLVU is 
analyzed. This sector is located in the East coast of Spain, see 
Figure 3, and it ranges from FL345 to FL 460. The declared 
capacity of this sector is 37 flights/hour.  

 

Figure 3.  Geographical location of ATC sector LECBLVU and the extended 

area.  

B. Flights 

The information of the flights corresponds to the actual last 
filed flight plans from the airlines. Since it may happen that the 
deviation trajectories enter the sector although the reference 
trajectory does not, in this analysis we consider the flights that 
cross the extended area, even if they do not cross the sector. The 
coordinates of the four vertices of this area are (see Figure 3): 
(N 41˚ 30’, W 2˚ 30’), (N 42˚, E 2˚ 30’), (N 37˚ 30’, E 2˚), 
(N 37˚, W 3˚).  

A total number of 𝑚 = 236 flights planned to cross the 
extended area between 06:00 and 13:00 on 19 December 2016 
is considered (note that flights arriving or departing to/from 
airports located inside the lateral boundary of the ATC sector are 
discarded, which is the case of a number of flights with origin or 
destination at LEVC airport).  

C. Reference trajectories 

For simplicity, all the reference trajectories considered in this 
application are flown at the same altitude and airspeed. 

The reference routes followed by the 236 flights considered 
in the analysis are shown in Figure 4. The cruise altitude chosen 
for all flights is 38600 ft (200 hPa). The Mach number of each 
flight depends on the aircraft model as provided by BADA; it 
ranges from 0.70 to 0.85. The flights are represented from the 
departure airport to the destination airport. In this application, 
the average time required by one flight to fly from the entry to 
the extended area to the exit from the ATC sector is about 20.8 
minutes, and the maximum time 32.3 minutes. This maximum 
time is in accordance with the maximum forecasting horizon 
provided by AEMET Nowcasts (60 minutes): it is smaller and 
leaves some room for the extra time required by the deviation 
trajectories (whose dispersion has been found to be as large as 
20 minutes).  

 

 

Figure 4.  Reference trajectories. 

D. Weather forecasts 

The AEMET Nowcast contains information about detected 
storm cells every 10 minutes, and an estimation of the movement 
of the cell in the next hour with a 10-minute lead-time step. As 
an example, the Nowcast released at 08:10 on 19 December 
2016 identifies 55 different storm cells, see Figure 5. In this 
figure, the rectangle that encloses each cell is presented in blue, 
and the estimation of its future positions in red. It can be seen 
that the sector and the extended area are greatly affected by these 
storms. All the cells travel Eastwards at different speeds. 

 

 



 

 

Figure 5.  AEMET Nowcast released at 08:10, 19/12/2016; detected storm 

cells (blue), and estimation for 10, 20, 30, 40, 50, and 60 minutes (red). 

VII. RESULTS 

A. Deviation trajectories 

The number of deviation trajectories for all flights is 𝑛 = 31, 
which is chosen as a good compromise between statistical 
significance and computing time. The safety margin added by 
DIVMET is 10 NM. 

As an example, the deviation trajectories computed by 
DIVMET at different prediction times for flight id 203221283 
(according to NEST nomenclature) are shown in Figure 6 (note 
that each set of deviation trajectories is computed considering 
the last available Nowcast at the corresponding prediction time). 
It can be seen that at the first prediction time (09:28), when the 
aircraft enters the extended area from the North, the possible 
deviation trajectories are very disparate among them. This 
dispersion comes from the uncertain location of the storm cells. 
According to the function used in this application to model this 
uncertainty (see Section III.B), the location of the centroid can 
be displaced up to 5.6 NM for a leading time of 30 minutes. As 
the flight progresses, the aircraft comes closer to the storm cells, 
thus the dispersion is reduced and the deviation trajectories are 
more similar among them. 

 

  

  

Figure 6.  Flight 203221283: possible deviation routes (red) and executed trajectory (blue). Prediction times 09:28 (top left), 09:38 (top right), 09:48 (bottom 

left), and 09:58 (bottom right). 



The dispersion of the entry and the exit times are reduced as 
the aircraft approaches the entry and the exit point, respectively. 
For flight 203221283, they evolve as follows. Initially (09:28), 
the dispersion of the entry time, measured as the difference 
between the maximum and the minimum value, is rather large 
(348.6 seconds), because the entry point can be located at the 
Northeast or at the Northwest of the sector, see Figure 6. The 
dispersion of the exit time is even larger (776.3 seconds), 
because the aircraft can exit the sector by the Northeast or by the 
South. At the second prediction time, performed 10 minutes later 
(09:38), the aircraft is about to enter the sector, thus the 
dispersion of the entry time is zero. Also, the dispersion of the 
exit time is significantly reduced (378.1 seconds). When the 
prediction is updated again (09:48), the aircraft is close to exit 
the sector and the dispersion of the exit time is further reduced 
(1.4 seconds). The dispersion of the entry (exit) time is zero once 
the aircraft enters (exits) the sector.  

This behavior can be extended, in general, to all the flights. 
As a reference, the average dispersion on the entry times when 
the aircraft enter the extended area is 46.2 seconds, and 88.1 
seconds on the exit times. The maximum dispersion can be very 
significant, as large as 1162 s. 

B. Occupancy count 

The occupancy count when predicted at two consecutive 
prediction times, 08:30 and 08:40, is depicted in Figure 7. It is 
shown for time periods with a duration of 𝛿𝑡 = 1 minute, and a 
forecasting horizon of 𝐻 = 15 minutes (hence, for 𝑁 = 15 time 
periods). This maximum horizon is in accordance with the 
average time required by one flight to fly from the entry to the 
extended area to the exit from the ATC sector (about 
20 minutes). If this maximum horizon is to be incremented, the 
extended area needs to be enlarged which, again, may require 
Nowcasts with larger lead times.  

In Figure 7, it can be seen that, although the maximum 
forecasting horizon is short, the presence of the uncertain storm 
cells leads to a dispersion of up to 4 flights. This is a large 
dispersion, taking into account that the maximum average 
occupancy is just 7 flights. In this figure, one can see how the 
expected occupancy count evolves as the predictions are 
updated. As an example, the occupancy of the time period 08:44-
08:45 is between 4 and 8 flights when predicted at 08:30, and it 
is narrowed to be between 5 and 6 flights when predicted at 
08:40. 

 

 

  

  

Figure 7.  Occupancy count (left) and its dispersion (right), predicted at two prediction times: 08:30 (top) and 08:40 (bottom), with a forecasting horizon of 

𝐻 = 15 minutes. 

 



The previous example is a clear illustration of how the 
dispersion is reduced when the period to be forecasted is closer 
to the prediction time 𝑇𝑝 (as expected). In Figure 8, the 

relationship between the average dispersion and the time periods 
𝑃𝑘 is shown for 𝑘 = 1, … ,15 (that is, for time periods                   
[0-1],…,[14-15] minutes ahead of the prediction time 𝑇𝑝). This 

figure has been obtained by averaging the results of the 
predictions generated every 10 minutes between 07:30 and 
11:00 (a total of 22 predictions, similar to the two depicted in 
Figure 7), when the storm activity is higher. 

 

Figure 8.  Average dispersion of the occupancy count for different time 

periods (forecasting horizon 𝐻 = 15 minutes, time-periods length 

𝛿𝑡 = 1 minute, number of time periods 𝑁 = 15). 

One can see that, as expected, the average dispersion is 
almost zero for time periods very close to the prediction time, 
and that it increases, almost linearly, as the forecasting horizon 
increases. Notice that this average dispersion takes into account 
periods with different traffic density and storm intensity; 
therefore, although the maximum average value is about 0.8 
flights, the maximum dispersion at a specific prediction time can 
be as large as 4 flights, as it was observed in Figure 7. 

 

VIII. CONCLUDING REMARKS 

 
In this paper, the demand of an en-route ATC sector subject 

to thunderstorm activity has been analyzed. The effects of the 
stochastic evolution of the convective cells on the demand 
prediction have been quantified. A realistic application has been 
presented. The results have shown that the sector demand can be 
accurately predicted at tactical level (for short forecasting 
horizons, less than one hour) with the help of a storm avoidance 
tool like DIVMET, when thunderstorm uncertainties are 
considered. 

In this application, it has been shown that the dispersion of 
the possible deviation trajectories leads to the dispersion of the 
occupancy count. It has been found that the dispersions of the 
entry and the exit times can be very large, tens of minutes. It has 

been observed that one cause of large dispersion values is that 
the location of the entry and exit points can be very disparate 
because of the possible deviations required to avoid the storm 
cells. These dispersions of the entry and exit times decrease as 
the flights progress, the aircraft approach the entry/exit points, 
and new predictions are made. Also, it has been found that the 
uncertainty in the occupancy count is large when compared with 
the average values. This uncertainty tends to increase, almost 
linearly, as the forecasting horizon increases. The maximum 
forecasting horizon has to be compatible with the time required 
by the flights to go from the entry to the extended area to the exit 
from the ATC sector. If this maximum horizon is to be 
incremented, the extended area needs to be enlarged, and 
Nowcasts with larger lead times may be required.  

This work is relevant for Air Navigation Services Providers 
(ANSPs) and for the Network Manager. The potential impact for 
ANSPs is the better allocation of resources and reduced ATC 
workload. The ANSPs may more precisely know the demand of 
the sector in the short term, which helps the air traffic controllers 
to be aware of possible future workload peaks and, thus, to take 
the appropriate measures. For the Network Manager, the impact 
is the better identification of the ATFCM measures to be applied 
(e.g. rerouting or slot allocation). 

It has been found that, when the trajectories are deviated, the 
number of aircraft crossing the sector is modified. Hence, a 
future follow-up project should take into account the 
displacement of traffic flows from one sector to another, in the 
context of a multi-sector traffic analysis. This probabilistic 
analysis of sector demand at network level (considering several 
sectors) is left for future work. The goal is to answer questions 
such as the following: How to aggregate the uncertainty 
information from different sectors? Which sectors configuration 
is less affected by uncertainty?  

The ensemble of Nowcast variations has been generated 
synthetically. The methodology developed can be directly used 
in case of having probabilistic Nowcasts based on ensemble 
forecasts. 

Flight interactions have not been considered in this work. 
Since an ensemble of possible deviation trajectories is generated 
for each flight, the existence of conflicts between pairs of flights 
is uncertain. The integration of a probabilistic conflict detection 
and resolution process with the approach presented in this paper 
is also left for future work.  

This work has led to an enhanced understanding of the 
effects of meteorological uncertainty on sector demand, and 
represents a first step towards the future integration of 
meteorological uncertainty information into the ATM system. 
The final goal is the development of tools that integrate 
meteorological uncertainty for enhanced Demand-Capacity 
Balancing. 
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NOMENCLATURE 

𝐻 forecasting horizon 

𝑚 number of flights 

𝑛 number of Nowcast variations 

𝑁 number of time periods for each prediction 

𝑂 occupancy count 

𝑃𝑘 time period 

𝑇𝑝 prediction time 

𝛿𝑡 length of time periods 

Δ𝑂 dispersion of occupancy count 
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