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Abstract—The required fuel load of an aircraft for a given
cruise range with uncertain average wind (modelled by a uniform
distribution) is studied in this work. The fuel mass probability
density function is obtained using an approximate method pre-
viously developed by the authors. In addition, the Generalized
Polynomial Chaos method is used to study the mean and typical
deviation of the required fuel mass. The dynamics of mass
evolution in cruise flight is defined by a nonlinear equation, which
can be solved analytically to obtain the fuel mass; this exact
solution is used to assess the accuracy of the proposed methods.
Comparison of the numerical results with the exact analytical
solutions shows an excellent agreement in all cases. The results
are also compared with the Monte Carlo method, which requires
a much larger computation time to obtain similar results.

I. INTRODUCTION

The Air Traffic Management (ATM) system is a complex
system composed of a large number of heterogeneous com-
ponents, such as airports, aircraft, navigation systems, flight
management systems (FMS), traffic controllers, and weather
(see Kim et al. [1]). Therefore, its performance is affected
by numerous factors. Within the trajectory-based-operations
concept of SESAR and NextGen, aircraft trajectories are
key to study ATM operations, which are subject to many
uncertainties. Sources of uncertainty for aircraft trajectories
include wind and severe weather, navigational errors, aircraft
performance inaccuracies, or errors in the FMS, among others.
The analysis of the impact of uncertainties in aircraft trajecto-
ries and its propagation through the flight segments is of great
interest, since it might help to understand how sensitive the
system is to the lack of precise data and measurement errors,
and, therefore, aid in the design of a more robust ATM system,
with improved safety levels.

Among those sources, weather uncertainty has perhaps the
greatest impact on ATM operations, being responsible for
much of the delays. Its analysis has been addressed by many
authors, using different methods. For instance, Nilim et al. [2]
consider a trajectory-based air traffic management scenario to
minimize delays under weather uncertainty, where the weather
processes are modeled as stationary Markov chains. Pepper et
al. [3] present a method, based on Bayesian decision networks,
for taking into account uncertain weather information in air
traffic flow management. Clarke et al. [4] develop a method-
ology to study airspace capacity in the presence of weather
uncertainty and formulates a stochastic dynamic programming
algorithm for traffic flow management. Zheng and Zhao [5]
develop a statistical model of wind uncertainties and apply it

to stochastic trajectory prediction in the case of straight, level
flight trajectories.

The framework for this work is the analysis of parametric
uncertainties in aircraft trajectories, and, eventually, its effect
on the ATM system. In this paper several tools are applied
to study the effect of wind uncertainty during the cruise
flight phase. In particular, fuel consumption is analyzed for a
given cruise range under constant average wind. This study is
relevant because wind is one of the main sources of uncertainty
in trajectory prediction, and because cruise uncertainties have
a large impact on the overall flight since the cruise phase is
the largest portion of the flight (at least for long-haul routes).

Several methods have been proposed to study uncertainty
propagation in dynamical systems. The easiest, but more
expensive in computational terms, is the classical Monte-
Carlo method (see for instance Thomopoulos [6]). Halder and
Bhattacharya [7] classify those methods it two categories:
parametric (in which one evolves the statistical moments)
and non-parametric (in which the probability density func-
tion is evolved). They address the problem of uncertainty
propagation in planetary entry, descent, and landing, using a
non-parametric method that reduces to solving the stochastic
Liouville equation. In this work, both parametric and non-
parametric methods are applied.

One of the methods applied in this paper is the Generalized
Polynomial Chaos (GPC) method (a parametric method ac-
cording to Ref. [7]). The GPC representation was introduced
by Wiener [8] and it is based on the fact that any second-order
process (i.e., a process with finite second-order moments) can
be represented as a Fourier-type series, with time-dependent
coefficients, and using orthogonal polynomials as GPC basis
functions in terms of random variables. A general introduction
to GPC can be found in Xiu and Karniadakis [9] and in
Schoutens [10], whereas details in numerical computations are
studied in Debusschere et al. [11]. The method of polynomial
chaos is used in the works of Prabhakar et al. [12] and
Dutta and Bhattacharya [13] to study, respectively, uncertainty
propagation and trajectory estimation, for hypersonic flight
dynamics with uncertain initial data, by Fisher and Bhat-
tacharya [14] and Okamoto and Tsuchiya [15] in the problem
of optimal trajectory generation in the context of stochastic
optimal control, by Jones et al. [16] for nonlinear propagation
of orbits, and by Li et al. [17] in robust aircraft trajectory
optimization.

The probability density function of the aircraft fuel mass
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is analyzed using an approximate non-parametric method
developed in Vazquez and Rivas [18] to study uncertainty
propagation for a cruise flight with probabilistic initial mass.
The method is based on the resolution of the variational
equation for the sensitivity function with respect to the initial
condition.

The results are compared with the probability density
function obtained by analytically solving the mass equation
(to show the exactness of the methods), and with Monte
Carlo simulations, which, as expected, require much larger
computation times to obtain comparable results.

II. MASS EVOLUTION IN CRUISE FLIGHT WITH CONSTANT
AVERAGE WIND

To study the evolution of aircraft mass in cruise flight, the
equations of flight mechanics for flight in a vertical plane
(constant heading) are considered, under the following hy-
pothesis: symmetric flight, flat Earth model, constant altitude,
and constant velocity. Then, the equation of mass evolution is
(taking into account the equation T = D, T being the thrust)

ṁ = −cD (1)

where m is the aircraft mass, D the aerodynamic drag, and
c the specific fuel consumption, which is considered constant
under the previously stated hypothesis.

In this paper, the cruise range xf and the final aircraft mass
mf are given (fixing mf , instead of mi, is consistent with
having a fixed landing weight).

The drag can be written as D = 1
2ρV

2SCD, where ρ is the
density, V the velocity, S the wing surface area, and the drag
coefficient CD is modeled by a parabolic polar of constant
coefficients CD = CD0

+kC2
L, where CL is the lift coefficient

given by CL = L
1
2ρV

2S
= mg

1
2ρV

2S
, where the equation of

motion L = mg (g is the acceleration of gravity) has been
used.

Using these definitions, an autonomous equation for mass
evolution is obtained:

ṁ = −c
(

1

2
ρV 2SCD0

+m2 kg2

1
2ρV

2S

)
(2)

Thus, one can write

ṁ = −(A+Bm2) (3)

where the constants A and B are defined as A = c
2ρV

2SCD0

and B = 2ckg2

ρV 2S . Note that A,B > 0. Equation (3) is a
nonlinear equation describing the evolution of mass during
cruise flight as a function of time.

To find the evolution of mass as a function of distance,
consider the kinematic equation

ẋ = V + w (4)

where x is the horizontal distance, and w is the average wind
speed, considered constant. Combining (3) and (4) to eliminate
time, one reaches

dm

dx
= −A+Bm2

V + w
(5)

which is to be solved backwards with the boundary condition

m(xf ) = mf (6)

To emphasize the dependence of the mass m(x) on the wind,
the mass is written as m(x;w), even though often it is just
denoted as m for the sake of simplicity.

Once the aircraft mass is obtained, the cruise fuel load
follows from

mF (w) = m(0;w)−mf (7)

III. PROBABILISTIC WIND MODEL

In this paper the case where w is distributed as a uniform
continuous variable is considered, see Figure 1. If one had
more information on the wind uncertainty, a different distri-
bution could be used. In the following, results are presented
for the case where the mean of w is w̄ = E[w] = 0, where
E[·] is the mathematical expectation. Hence, the probability
density function is

fw(w) =

{
1

2δw
, w ∈ [−δw, δw]

0, w /∈ [−δw, δw]
(8)

where δw is the width of the uniform distribution. The variance
of w is

Var[w] = E[w2]− (E[w])2 =
δ2w
3

Denoting by ∆ the standardized uniform distribution taking
values in the interval [−1, 1], one has

w = δw∆ (9)

w

fw

w̄ + δww̄w̄ − δw

Fig. 1. Wind uniform distribution, with mean w̄ and width δw .

IV. ANALYSIS OF FUEL MASS UNCERTAINTY

If the average wind w is uncertain, then the evolution of
mass with time or distance is uncertain. In particular, since the
aircraft final mass is fixed for a given cruise range, then the
required fuel mass is uncertain. Note that, in such a case, the
solution of Eqs. (5) and (6) is still valid but in a probabilistic
sense, i.e., m(x;w) is a random process.
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In the following, for the specific probabilistic wind model
of Section III, the resulting fuel mass is studied with several
methods. The probability density function and the statistical
properties of the distribution (mean, variance, typical devia-
tion) are analyzed.

A. Mean and variance of fuel mass

To compute the mean and variance of the fuel mass, the
Generalized Polynomial Chaos (GPC) method is used (see
Ref. [8]), in which the process is represented as a Fourier-
type series, with time-dependent coefficients, and orthogonal
polynomials in terms of random variables are used as ba-
sis functions. The orthogonal polynomials used in GPC are
chosen from the Askey scheme (a way of organizing certain
orthogonal polynomials into a hierarchy, see Ref. [19]). If one
chooses a family of polynomials which are orthogonal the
convergence of the series is exponential. The orthogonality
property implies that, when taking expectation with respect to
the random variable for two polynomials of the family φi and
φj , then E[φiφj ] = δijE[φ2i ], where δij is the Kronecker’s
delta function. For the uniform distribution ∆, the adequate
orthogonal polynomials are the Legendre polynomials Ln(∆).

To apply the GPC method, one first write the final aircraft
mass m(xf ) in terms of the orthogonal polynomials. Since it
is just a nonrandom constant, one can write

m(xf ) = mfL0(∆) (10)

because L0(∆) = 1. On the other hand, writing the random
average wind (9) in terms of the orthogonal polynomials
renders

w = δwL1(∆) (11)

because L1(∆) = ∆.
Next, the aircraft mass m(x;w) is written as

m(x;w) =
P∑
i=0

hi(x)Li(∆) (12)

where the coefficients hi are to be found using the mass
equation (5), and P is the order of the approximation, which
is to be taken sufficiently large. The advantage of the GPC
method is that a small or moderate value of P is enough
to get good results, thus resulting in a method that is not
very intensive computationally. The process to obtain the
coefficients hi is presented in Appendix A.

Once the coefficients hi(0) are found, one can compute
from Eq. (12) approximate values of the fuel mass mean and
variance, as follows. For the mean one has

E[m(0;w)] =
P∑
i=0

hi(0)E[Li(∆)]

=
P∑
i=0

hi(0)E[Li(∆)L0(∆)]

= h0(0)E[L2
0(∆)]

= h0(0) (13)

thus,
E[mF ] = h0(0)−mf

and for the variance

Var[mF ] = Var[m(0;w)]

= E[m2(0;w)]− E[m(0;w)]2

=
P∑
i=0

P∑
j=0

hi(0)hj(0)E[Li(∆)Lj(∆)]− h0(0)2

=
P∑
i=1

h2i (0)E[L2
i (∆)] (14)

B. Distribution function of fuel mass

Next, an approximate method that is able to find the fuel
mass probability density function fmF

(mF ) is considered. The
method was developed in Vazquez and Rivas [18] to study the
evolution of the aircraft mass probability density function in
cruise flight with uncertain initial mass.

Recall that, given a random variable x with probability
density function fx(x), if one defines another random variable
y using a transformation g such that y = g(x), then it is known
that the probability density function fy(y) of y is given by (see
Canavos [20])

fy(y) =
fx(g−1(y))

|g′(g−1(y))| (15)

expression which is valid only if the function g(x) is invertible
on the domain of x.

In this problem,

fmF
(mF ) =

fw(g−1(mF ))

|g′(g−1(mF ))| (16)

where
mF = g(w) = m(0;w)−mf (17)

Thus, the analysis is valid only if the function mF = g(w) is
invertible on the domain of w, that is, only if for two different
values of wind w1 and w2, the required fuel masses mF1 and
mF2

are different, which in this problem is obvious.
The idea of the method is to numerically approximate

equation (16). For that, take n consecutive points from the
domain of w, denoted as wi, i = 1, . . . , n, so that w1 <
w2 < . . . < wn. Now, solving backwards the mass equation
(5) for each i with parameter wi and mf as final condition,
one can compute the value of aircraft mass at x = 0,
mi(0) = m(0;wi), and then

mi
F = m(0;wi)−mf (18)

The numerator of (16) is computed for each i as fw(wi).
To compute the denominator of (16), the function g′(w) is
needed; this function is obtained in terms of

φ(x;w) ≡ ∂m(x;w)

∂w
(19)

which is the sensitivity function of the solution m with respect
to the parameter w. The process to obtain φ(x;w) is presented
in Appendix B.

3
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Once the function φ(x;w)is found, one has the values of
the probability density function fmF

(mF ) at the n points mi
F ,

i = 1, . . . , n, as

fmF
(mi

F ) =
fw(wi)

|φ(0;wi)| (20)

Hence, the mean and the typical deviation can be computed
from

E[mF ] =

∫ ∞
0

mF fmF
(mF )dmF (21)

(σ[mF ])2 =

∫ ∞
0

m2
F fmF

(mF )dmF − (E[mF ])
2(22)

V. MONTE CARLO METHOD

Now, in this section, the Monte Carlo method is applied
to the problem considered in this paper, as follows. From
the wind distribution randomly generate N samples {wi},
i = 1, . . . , N , and use each of these samples to solve the mass
equation (5), finding m(0;wi). Hence, one obtains a sequence
of N samples mi

F = m(0;wi) − mf , for i = 1, . . . , N .
From these values one can directly find approximate values
for the mean and the typical deviation. One can also obtain
an approximate probability density function, as follows.

Choose nF equidistant points mF,j to discretize the domain
of the probability density function by setting

mF,1 = min{mi
F } (23)

mF,nF
= max{mi

F } (24)

mF,j = mF,1 + (j − 1)dF , j = 2, . . . , nF − 1 (25)

where
dF =

mF,nF
−mF,1

nF − 1
(26)

is the distance between discretization points.
Then, for j = 2, . . . , nF−1, the probability density function

at the discretization points is approximated as follows

fmF
(mF,j) =

Nj
N
dF (27)

where Nj is the number of samples mi
F satisfying

mi
F ∈

[
mF,j −

dF
2
,mF,j +

dF
2

]
(28)

i.e. the number of samples which are closer to mF,j . At the
end points there is a slightly different definition

fmF
(mF,1) =

N1

2N
dF (29)

fmF
(mF,nF

) =
NnF

2N
dF (30)

where N1 is defined as the number of samples mi
F satisfying

mi
F ∈

[
mF,1,mF,1 +

dF
2

]
(31)

and NnF
is defined as the number of samples mi

F satisfying

mi
F ∈

[
mF,nF

− dF
2
,mF,nF

]
(32)

The main problem of the method is that many samples (i.e.
a large value of N ) are required, and for each sample, the
differential equation (5) has to be solved. Since each run of
the differential equation is independent of others, this task is
frequently parallelized to reduce the computational load.

Regarding the quality of the estimates, Bayer et al. [21]
offer a formula that allows to compute the probability that
the error of the mean obtained by the Monte Carlo method is
larger than some given tolerance. Calling m̄F the estimated
mean, E[mF ] the true mean, ε the tolerance, and σ[mF ] the
fuel mass typical deviation, one has

Pr [|m̄F − E[mF ]| < ε] ≈ 2

(
1− Φ

[ √
Nε

σ[mF ]

])
(33)

where Φ is standard normal cumulative distribution function.
This formula can be used to estimate the quality of the
approximation.

VI. RESULTS

Now results are presented for the following values of the
different parameters: CD0

= 0.015, k = 0.042, ρ0 =
1.225 kg/m3, ρ = 0.5ρ0, V = 200 m/s, c = 5 · 10−5 s/m,
S = 150 m2, g = 9.8 m/s2, mf = 55000 kg, and
xf = 2500 km. The value chosen for the uncertain wind width
is δw = 50 m/s (this value has been chosen deliberately large
to magnify the uncertainty effects), hence the typical deviation
is σ[w] =

√
Var[w] = δw√

3
= 28.87 m/s. The computations

were performed on a Mac laptop with a 2GHZ Intel Core i7
with 4GB of RAM using Matlab, without parallelization.

The resulting probability density function of fuel mass is
shown in Figure 2. For the approximate method, the number
of points taken is n = 1000, value that has proven to be good
enough. The numerical results totally agree with the exact
results given in Appendix C.

1.8 2.2 2.6 3 3.4
x 104

0

0.4

0.8

1.2

x 10 4

fm
F

mF(kg)

Fig. 2. Fuel mass density function, exact and computed by the approximate
method. The result is indistinguishable.

4



 
 

Fifth SESAR Innovation Days, 1st – 3rd December 2015

 

 

mF(kg) ×104
1.8 2.2 2.6 3 3.4

fm
F

×10-4

0

0.4

0.8

1.2

Fig. 3. Fuel mass density function computed with Monte Carlo method, for
N = 104 (dashed), N = 106 (dash-dotted) and N = 50 · 106 (solid).

In Figure 3, the results of the Monte Carlo simulations are
presented. Three cases are shown, for N = 104, N = 106

and N = 50 · 106, in all cases with nF = 100. According
to formula (33), these cases would have, when approximating
the fuel mass mean, an approximate error (with 99% certainty)
of, respectively, 100 kg, 10 kg and 1.5 kg. The approximate
probability density function shape is captured in all cases, but
only the larger samples obtain a good approximation. For N =
50 ·106 the difference with the exact result is indistinguishable
in the figure.

The results of fuel mass mean and typical deviation are
given in Table I, along with the computation time of each
method and the relative error compared with the exact results
of Appendix C. For the GPC method an expansion with P = 4
terms is used, value that has proven to be good enough. It
must be noted that the fastest method is GPC, whereas the
most precise method is the approximate method. On the other
hand, the Monte Carlo method, although easy to set up, is
very inefficient and requires many runs (and therefore a much
longer time) to obtain comparable results.

An interesting result is described next. If one computes the
mass of fuel required for the average wind (w = 0), one
obtains mF = 23320.6 kg. This value is 621 kg smaller
than the mean mass required for the considered distribution
of wind (even though the wind distribution has zero mean).

Mathematically, this can be expressed as

E[mF (w)] 6= mF (E[w])

This result is due to the nonlinearity of the relationship
between mF and w, as given in Appendix C. This implies
that, when many flights are considered, due to the presence
of the uncertain wind the overall fuel consumption would be
larger than the fuel consumption corresponding to the expected
average wind speed.

VII. CONCLUSIONS

The problem of fuel consumption in cruise flight subject to
an uncertain average wind has been studied, using a nonlinear
model which has known analytical solution. The average
wind has been modeled as a random variable with uniform
distribution function. Even though the model is quite simple,
it has been shown that it yields very interesting results.

To study the distribution function of the fuel mass, two
methods have been considered: an approximate method de-
veloped by the authors and the Monte Carlo method. The
approximate method is applicable to problems in which there
is just one random variable and for the analysis of distri-
bution functions of functions of the random variable which
are invertible. The results obtained with this method have
been compared with the exact analytical results, showing an
excellent agreement in all cases; thus, the accuracy of the
method has been assessed. For the Monte Carlo method, it has
been shown that it requires much larger computation times to
obtain comparable results.

To obtain the mean and variance of the fuel mass, in addition
to the previous methods, the generalized polynomial chaos
(GPC) method has been also used, where an expansion with
just four terms has proven to be accurate enough.

An important conclusion of this study is that, even though
the mean of the considered wind distribution function is zero,
the mean of the required fuel mass is considerable larger
that the fuel mass for zero wind. The stochastic methodology
presented is able to quantitatively estimate such increase.

The general framework for this paper is the development of
a methodology to manage weather uncertainty suitable to be
integrated into the trajectory planning process. This work is
a first step that has focussed on the assessment of the impact
of wind uncertainty on aircraft trajectory, and in particular on
the cruise fuel load.

The methods presented in this paper can be applied to other
flight phases defined by more complicated flight conditions,
and they can be extended to consider other sources of uncer-
tainty or other models of uncertain wind. The analysis of these
problems is left for future work.
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TABLE I
VALUES OF MEAN AND TYPICAL DEVIATION OF FUEL MASS

Method Computation Time E[mF )] (kg) Mean relative error(%) σ[mF ] (kg) Typical deviation relative error (%)
Exact 23941.7 3924.9

GPC (P = 4) 0.15 s 23941.7 10−5 3924.9 10−4

Approximate (n = 1000) 4 s 23941.7 10−10 3924.9 2 · 10−10

Monte Carlo (N = 104) 31.3 s 23978.6 0.15 3933.4 0.21
Monte Carlo (N = 106) ≈ 50 min 23938.6 0.013 3917.7 0.18

Monte Carlo (N = 50 · 106) ≈ 45 h 23941.5 7 · 10−4 3925.3 0.011

APPENDIX A: GPC COEFFICIENTS

Substituting Eqs. (11) and (12) in Eq. (5), the following
equation is obtained
P∑
i=0

ḣi(x)Li(∆) = −
A+B

∑P
i,j=0 hi(x)hj(x)Li(∆)Lj(∆)

V + δwL1(∆)

(34)
To write (34) in a more standard form, first, cross-multiply
(34) by V + δwL1(∆), then, multiply it by Ll(∆) for l =
0, . . . , P , and take expectation with respect to ∆, and using
the orthogonality property of the Ll polynomials, one obtains
P + 1 equations

V ḣl(x)E[L2
l (∆)] + δw

P∑
i=0

ḣi(x)E[Li(∆)Ll(∆)L1(∆)]

= −Aδ0l −B
P∑
i=0

P∑
j=0

hi(x)hj(t)E[Li(∆)Lj(∆)Ll(∆)]

for l = 0, . . . , P . Calling Cijl =
E [LiLjLl]

E [L2
l ]

(which is

a number that can be exactly computed since the involved
expectations are just integrals of polynomials) it follows that

V ḣl + δw

P∑
i=0

ḣi(x)Ci1l = −Aδ0l−B
P∑
i=0

P∑
j=0

hihjCijl (35)

for l = 0, . . . , P . The right-hand side of (35) is a non-
linear function of all coeficients hi, which is denoted as
fl(h0, . . . , hP ). Defining the vectors

~h(x) =


h0(x)
h1(x)

...
hP (x)

 , ~f(~h) =


f0(~h)

f1(~h)
...

fP (~h)

 (36)

and defining the matrix A as

Ali = V δli + δwCi1l

Eq. (35) can be written as
d

dx
~h(x) = A−1 ~f(~h(x)) (37)

which is a system of P + 1 nonlinear coupled ordinary
differential equations written in standard form. To find the
coefficients at x = 0, Eq. (37) needs to be solved backwards
from the final condition

h0(xf ) = mf , hl(xf ) = 0, for l = 1, . . . , P (38)

up to x = 0.

APPENDIX B: MASS SENSITIVITY FUNCTION

According to Eq. (17)

g′(w) =
∂m(0;w)

∂w
= φ(0;w) (39)

Now the sensitivity function φ(x;w) is obtained as the
solution of the following differential equation

d

dx
φ(x;w) =

d

dx

(
∂m

∂w

)
=

A+Bm2

(V + w)2
− 2Bm

V + w

∂m

∂w

=
A+Bm2

(V + w)2
− 2Bm

V + w
φ(x;w) (40)

with final condition

φ(xf ;w) =
∂m(xf ;w)

∂w
=
∂mf

∂w
= 0 (41)

where m = m(x;w) is the solution of Eqs. (5) and (6). This
is to be solved numerically. Once the solution is found, one
gets φ(0;w). Therefore, the denominator of (16) is computed
for each i as

|g′(wi)| = |φ(0;wi)| (42)

APPENDIX C: EXACT SOLUTION

The cruise fuel load is

mF =

(
m2
f + A

B

)
tan

(√
ABxf
V + w

)
√

A
B −mf tan

(√
ABxf
V + w

) (43)

and the fuel mass probability density function is

fmF
(mF ) =

{
G(mF ), mF ∈ [mF1 ,mF2 ]
0, mF /∈ [mF1

,mF2
]

(44)
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where

G(mF ) =
Axf

2δw
[
(mf +mF )2 + A

B

]
×

arctan

 mF

√
A
B

m2
f + A

B +mFmf

−2 (45)

mF1 =

(
m2
f + A

B

)
tan

(√
ABxf

V + δw

)
√

A
B −mf tan

(√
ABxf

V + δw

) (46)

mF2
=

(
m2
f + A

B

)
tan

(√
ABxf

V − δw

)
√

A
B −mf tan

(√
ABxf

V − δw

) (47)
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