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Abstract

The Web is a universal communication channel that provides a vast
amount of valuable data about a plethora of topics. In recent years, there has
been a quick rise of data-hungry products and services that have motivated
the need for ways to extract web to feed them with as little effort as possi-
ble. HTML tables are a source of up-to-date data that is not being extracted
and loaded into major knowledge bases in an automated manner. Extract-
ing them is challenging because there are several common layouts in which
data are displayed and they present several encoding and formatting prob-
lems; furthermore, the available general-purpose data extractors ignore the
particularities of HTML table encodings and do not suffice to deal with the
intricacies of web tables.

In this dissertation, we have studied the problem of extracting data
from HTML tables with no supervision. After completing an extensive re-
view of the literature, we realised that none of the available table-specific
proposals provided a holistic approach to solve this problem. This moti-
vated us to work on TOMATE, a table extraction proposal that encompasses
every table extraction task with an emphasis in the crucial task of identify-
ing cell functions. Our experimental analysis proved that we have advanced
the state of the art with several proposals that are intended to help both
researchers and practitioners.

While working on this dissertation, we have developed a number of
marginal contributions, namely: Aquila, a proposal to synthesise meta-data
tags for HTML documents; Kizomba, a general extraction proposal that was
called; and Romulo, a proposal to cluster data. Furthermore, we have collab-
orated on the inception of a start-up project called Stargazr where we hope to
put much of the knowledge generated in this dissertation into practice.
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Resumen

La Web es una vía universal de comunicación que contiene un volu-
men de datos extraordinario sobre una gran variedad de temas. En los
últimos años se ha producido un rápido aumento de los productos y servi-
cios que consumen gran cantidad de datos, lo que ha motivado la necesidad
de encontrar formas de extraerlos automáticamente. Las tablas HTML son
una fuente de datos actualizados que no se está integrando de forma automa-
tizada a las principales bases de conocimiento. La extracción de tablas resulta
compleja ya que existe una gran variedad de estructuras y formas de presen-
tar y codificar los datos. Usar extractores de propósito general no es una
solución al problema, dado que ignoran las particularidades del rico lenguaje
que se usa para representar tablas.

En esta tesis hemos estudiado el problema de extraer datos de tablas
HTML sin supervisión. Al realizar un análisis exhaustivo de la literatura de
extracción de tablas, hemos observado que ninguna de las propuestas dispo-
nibles resuelve el problema al completo. Esto nos ha motivado a desarrollar
TOMATE, una propuesta de extracción de tablas que abarca todas las ta-
reas involucradas, aunque pone el énfasis en la tarea crucial de identificar la
función de las celdas. Nuestro análisis experimental ha demostrado que he-
mos dado un paso adelante en el estado del arte con varias propouestas que
tienen por objeto ayudar a investigadores y profesionales del sector.

Mientras que trabajabamos en esta tesis, hemos desarrollado algunas
contribuciones marginales, a saber: Aquila, una propuesta para sintetizar eti-
quetas de metadatos para ficheros HTML; Kizomba, un extractor general de
datos de la Web; y Romulo, una propuesta para clusterizar datos. Además,
hemos colaborado internacionalmente en un proyecto start-up denomina-
do Stargazr en el que tenemos como objetivo poner en práctica gran parte del
conocimiento que hemos generado en esta tesis.
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Chapter1

IntroductionT
his chapter introduces our PhD work. It is organised as follows: Sec-
tion

1.1 introduces the context of our research work; Section

1.2
presents the hypothesis that has motivated our work and states
our thesis; Section

1.3 summarises our contributions; Section

1.4
sketches the collaborations that we have conducted; finally, Section

1.5
describes the structure of this document.

1



2 Chapter 1. Introduction

1.1 Research context

During the last three decades, the Web has reshaped our way of commu-
nicating with each other, and the amount of data available has grown
exponentially. These data have proven to be extremely valuable, which is the
motivation behind a new research field that focuses on producing techniques
to extract them [

12]. Very often, the data are encoded using HTML tables de-
signed to be human-friendly [

31], which makes it difficult to integrate them
into automated business processes. Consequently, several general-purpose
and table-specific extraction techniques have been devised.

Broadly speaking, web extractors apply a set of rules to one or more in-
put HTML documents and extract their data into records that are expected to
be relatively easy to integrate. According to how the rules are devised, they
can be classified as follows: hand-crafted, supervised, unsupervised, and
heuristic-based proposals. Hand-crafted proposals require a person to devise
a set of extraction rules for a particular set of documents. Supervised propos-
als require a person to provide a training set with annotations from which a
machine learner infers the extraction rules (the annotations are samples of the
data to be extracted). Unsupervised proposals require a training set without
annotations to learn the rules, which typically attempt to extract as much data
as possible. Heuristic-based proposals use rules that are derived from the ex-
perience with previous problems and have proven to be general enough to
extract data from as many documents as possible. Generally speaking, the
unsupervised and heuristic-based proposals require less human effort than
the hand-crafted or the supervised proposals, but still require some effort to
remove irrelevant data and to endow the extractions with semantics.

In the literature, there are several general-purpose proposals that can ex-
tract data that are formatted using arbitrary layouts [

22,

43,

111,

116,

123]. A
few of them are hand-crafted [

28,

110], many are supervised or unsuper-
vised [

29,

56,

61,

62,

66,

71,

79,

86,

117,

118], and a few are heuristic-based [

10,

90,

91,

98,

104–

106,

115,

124]. The supervised and unsupervised proposals use
a variety of approaches to the problem, including learning text anchors [

71],
inferring transducers [

56], learning from reference sets [

86], inducing gram-
mars [

29], analysing visual features [

79], aligning text [

118], training neural
networks [

117], matching trees [

66], learning first-order rules [

61], or learning
propositio-relational rules [

62].

Some authors have worked in proposals that are specifically targeted to-
wards extracting data from tables [

27,

39,

58,

82,

107,

138,

139]. The earliest
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ones focus on tables that are encoded using pre-formatted text, images, or
general mark-up languages. Recent trends seem to suggest that HTML is be-
coming pervasive to encode the tables in the Web [

19], which has motivated
most authors to restrict their attention to tables that are encoded using this
mark-up language [

107]. There is a consensus regarding formalising table un-
derstanding as a pipeline that consists of the following tasks [

27]: a) location,
which identifies the excerpts of the input documents where the tables are
located; b) discrimination, which discards the tables that do not seem to pro-
vide any useful data; c) segmentation, which transforms the excerpts into
grids of cells; d) functional analysis, which identifies the functions of the cells,
that is, whether they provide data or meta-data; e) structural analysis, which
identifies groups of related meta-data cells (the headers) and groups of re-
lated data cells (the tuples); and f) interpretation, which transforms the input
tables into record sets in which the components of the tuples are mapped
onto their corresponding headers. The key task seems to be the functional
analysis task because the quality of the resulting records clearly depends on
the ability of this task to correctly set meta-data cells apart from data cells. We
have found twelve proposals that provide a solution to the functional analy-
sis task in the context of tables that are encoded using HTML [

17,

18,

23,

24,

38,

40,

64,

67,

87,

96,

134,

136]. They address the problem using a variety of
approaches that range from using heuristics to using deep-neural networks.

1.2 Research rationale

In this section, we present the hypothesis that has motivated our research
work and we also state the thesis that we prove in the rest of the dissertation.

1.2.1 Hypothesis

In recent years, we have experienced an inexorable rise of data-hungry
products and services that are based on advanced machine-learning meth-
ods [

73]. This explains the need for datasets on a variety of topics, which are
used both to learn good models and to exploit them [

137]. Web informa-
tion extractors are particularly useful to generate streams of real-time data on
a variety of topics using that that are available on the Web in human-friendly
formats [

12].

Hand-crafted proposals are useful insofar they may be very effective, but
they require the user to devise extraction rules for every subset of rele-
vant documents, which is not feasible at web scale. Supervised proposals are
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simpler because providing a training set is expected to be easier than devis-
ing an extraction rule, but generating the annotations is time-consuming and
error-prone, which makes it difficult to scale supervised methods to the
Web. Unsupervised proposals and heuristic-based proposals are, in princi-
ple, easier to scale, but they require the user to sieve the useful data and
to endow them with semantics. This, however, seems to require less ef-
fort and to be less error-prone than the hand-crafted or the supervised
approaches, which is the reason why we focus on them.

According to Forrester [

85], the industrial reliance on real-time streams of
data about a variety of topics has grown significantly. We have realised that
HTML tables are a source of up-to-date data that is not being extracted into
major knowledge bases in an automated manner. This finding was also
pointed out by Oulabi and Bizer [

98], who analysed the Wikipedia ta-
bles in a few domains that are well supported by DBpedia and found 206 690
records with no matches in the knowledge base. Thus, finding an auto-
mated way to integrate them into automated business processes is a key to
simplify the process of self-service data preparation [

125].

According to the previous argumentation, we formulate this hypothesis:

There is a growing interest in extracting data from HTML tables auto-
matically. The goal is to use them to feed business processes, with an
emphasis on business analytic processes. General-purpose web ex-
traction proposals do not suffice to deal with the particularities of
HTML table extraction. Automatically extracting web data in human-
friendly formats is a step towards leveraging the Humanity’s most
powerful knowledge repository.

1.2.2 Thesis

We have carried out a comprehensive study of the proposals to extract
data from HTML tables [

107]. It makes it clear that there are many methods
to locate, segment, and discriminate them, which means that it is difficult to
make novel contributions regarding those tasks. It also reveals that many au-
thors pay little attention to the structural analysis or the interpretation tasks,
which means that they are relatively easy to implement once the functional-
ity of the cells is properly identified. Clearly, the functional analysis task is a
cornerstone to success regarding extracting data from HTML tables. Accord-
ing to our survey [

107], there are twelve proposals to implement this task [

17,

18,

23,

24,

38,

40,

64,

67,

87,

96,

134,

136]. Some of them can deal with horizon-
tal listings only [

17,

18,

24,

38]; a few of them can also deal with vertical
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listings [

134,

136]; a few others can also deal with matrices [

87]; only a few
can deal with any table layouts [

23,

40,

64,

67,

96]. They generally have
trouble to deal with the variety of formats used to display data in tables, in-
cluding multi-line headers, no headers at all, repeated headers, context cells,
or factorised cells; they also have trouble to deal with typical encoding prob-
lems, including tables that do not have the same number of columns for each
row or the many tables that do not encode the cells using the appropri-
ate tags [

107]. According to our experience, the previous problems are very
common. We assembled two experimental datasets with tables that were ran-
domly selected from the Wikipedia and the Dresden Web Table Corpus and
we found out that 64.41% of them have one or more of the previous problems.

According to the previous argumentation, we formulate this thesis:

It is possible to develop an HTML table extractor that solves the most
important challenges automatically with high effectiveness and effi-
ciency on current web documents. We conjecture that putting an
emphasis in the functional analysis task is the key.

1.3 Summary of contributions

Next, we summarise the contributions we have made to prove our thesis.

State of the art: it is a comprehensive literature review of the HTML table ex-
traction proposals that have been published between 2000 and 2018. It
proposes a unified vocabulary to describe table extraction proposals, as
well as a set of general and task-specific characteristics to compare
them. We have a journal article [

107] regarding this contribution.

TOMATE: it is proposal that extracts data from HTML tables with arbi-
trary layouts into schema-less records that can be easily integrated
into automated business processes. It solves the most important chal-
lenges identified in the state of the art that have a non-negligible impact
on the effectiveness of the process. We have a conference paper [

109]
and a journal article [

108] regarding this contribution.

We also developed several marginal contributions while we were work-
ing on the main ones, namely: Aquila [

109], which is a proposal to synthesise
meta-data tags in HTML documents markup that relies on a novel embed-
ding approach to find a path that identifies a subset of DOM nodes whose
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attributes help learn good taggers; Kizomba [

105,

106], which is a general-
purpose web extraction framework in which several extraction methods
can be integrated, with an emphasis on being scalable and open; and
Romulo [

26], which is a proposal to support the identification of cell func-
tions in TOMATE by applying a meta-heuristic approach to multi-way
single-subspace clustering.

1.4 Collaborations

During the development of this dissertation, a nine-month Fulbright re-
search visit was organised at the Information Sciences Institute, University of
Southern California (USA). This visit was paid to the Centre on Knowledge
Graphs, which is headed by Prof. Dr. Craig Knoblock and supervised by Prof.
Dr. Pedro Szekely. The goal was to design the table extraction tool which is
now the core of this dissertation after our review of the literature on this topic.
This proposal was integrated into two IARPA projects. The first one is Data-
Mart, which is a platform that automatically indexes datasets and APIs with
semantic information so that they can be retrieved using a search engine. TO-
MATE was used to extract data from HTML tables from all over the Web in
order to widen the number of supported sources. The second project is SAGE,
a geo-political forecasting tool that used our proposal to feed the forecasts
with data from Wikipedia tables. It also gave us a good perspective on which
of the problems solved by our table extraction tools were more relevant.

Later, an on-going remote collaboration with the Technical University of
Chemnitz was organised. Part of this work is developed by another doctoral
student, Rafi Wadan, who is supervised by Prof. Dr. Uwe Göetze. Its goal is
to extract automatically real-time data about job postings from different sites
in order to compare the changing role of management accountants in Ger-
many and the United States. Since the automatic extraction from several sites
with different structures is a time consuming task, our web extraction frame-
work Kizomba, along with the table extraction proposal TOMATE, was used
to automate this process and test both proposals in a real-world task.

The latter collaboration has motivated the creation of a start-up called
Stargazr, whose goal is to provide a set of business tools to analyse and
forecast financial data to support the decision making process. These tools in-
tegrate the data extraction proposals described in this dissertation to extract
and prepare data from the Web, amongst other sources.

1.5 Structure of this dissertation

This dissertation is organised as follows:
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• The introduction comprises this chapter, in which we motivate our re-
search work and conclude that there exists a need to devise a proposal
to extract data from HTML tables that solve the most important chal-
lenges with high effectiveness and efficiency on current web documents
in an automatic manner.

• Chapter

2 presents our study of the state of the art regarding HTML ta-
ble extraction. It studies the existing surveys, defines a conceptual
framework to describe proposals using the same terminology, intro-
duces a taxonomy of tables, and summarises every proposal comparing
them with the ones that perform the same task.

• Chapter

3 describes TOMATE, our table-specific clustering approach to
extract data from tables. We present the motivation of our work, intro-
duce some preliminaries required to understand our proposal, describe
its details regarding each step, and illustrate how it works with a real
world case study.

• Chapter

4 describes the experimental analysis of TOMATE. It intro-
duces the proposals that were compared in the analysis; then, describes
how we gathered our datasets, reports on the configuration of our
proposal, defines our experimental methodology, analyses our experi-
mental results, and performs some statistical analysis to confirm that
our thesis is validated.

• Chapter

5 concludes this dissertation. It summarises our key find-
ings and sketches some future work towards unsupervised web data
extraction.

The dissertation includes three appendices that describe our marginal
contributions.
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Chapter2

BackgroundInformationO
ur purpose in this chapter is to introduce the background informa-
tion regarding this dissertation. Section

2.1 introduces the chapter;
Section

2.2 introduces the preliminaries required to understand
this dissertation; Section

2.3 describes and compares the propos-
als that are related to the location task; Section

2.4 describes and compares
the proposals that are related to the segmentation task; Section

2.5 de-
scribes and compares the proposals that are related to the discrimination task;
Section

2.6 describes and compares the proposals that are related to the func-
tional analysis task; Section

2.7 describes and compares the proposals that
are related to the structural analysis task; Section

2.8 describes and com-
pares the proposals that related to the interpretation task; and Section

2.9
summarises our conclusions.

9
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2.1 Introduction

Web documents encode data in a way that facilitates rendering them in
human-friendly formats. Data extractors help extract those data as datasets
that are suitable to feed business applications [

43].
Many web documents provide data in tabular formats. Understanding

them has proven particularly useful for answering queries [

17], creating sum-
maries [

80], saving storage space [

15], adapting data to mobile devices [

130],
helping impaired people have access to many web sites [

83], finding related
data [

14], or creating linked data [

69], just to mention a few applications.
Unfortunately, general-purpose data extractors do not deal well with the in-
tricacies of HTML tables, which has motivated many authors to work on
specific-purpose proposals [

27,

39,

57,

81,

82,

138] that can be decomposed
into the following tasks: locating tables in input documents, discriminat-
ing data tables, segmenting them into cells, analysing their functionality,
analysing their structure, and interpreting them to produce datasets.

There are dozens of proposals to implement the previous tasks, which mo-
tivated Lopresti and Nagy [

81,

82], Hurst [

57], Zanibbi et al. [

138], Costa-Silva
et al. [

27], and Embley et al. [

39] to survey them. Unfortunately, the most re-
cent survey was published in 2 003, which means that they have missed the
steady shift from encoding tables using pre-formatted text or images to en-
coding tables using HTML tabular, listing, or block tags. Unfortunately,
updating them is not enough because we have identified the following short-
comings: almost none of them provide a conceptual framework, none of them
provide a taxonomy of tables, none of them analyse all of the tasks involved
in extracting data from tables (but some of them report on complementary
tasks), and almost none of them provide a comparison framework.

Our survey reports on 26 proposals that were published from 2 000 un-
til 2 018; it then provides an up-to-date picture of the current state of
the art that complements the proposals that were surveyed by other au-
thors. It also addresses the shortcomings that we have found in the literature.
We think that our review of the literature shall help both researchers and
practitioners who need to have as a complete picture as possible of the cur-
rent state of the art; researchers shall also have a conceptual framework
that shall help them describe their proposals as homogeneously as possi-
ble and a taxonomy that shall help them delimit their scope of applicability;
both researchers and practitioners shall be able to compare the many exist-
ing proposals side-by-side and practitioners shall be able to make informed
decisions thanks to our comparison framework.
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2.2 Conceptual framework

In this section, we first introduce the mathematical notation that we use to
formalise our conceptual framework, then report on the data structures that
we require, and then on the tasks involved in the extraction process.

2.2.1 Notation

We first introduce some basic mathematical notation regarding funda-
mental concepts and given sets that puts a foundation to the rest of our
conceptual framework.

Notation 1 (Fundamentals) A = A1 | A2 | . . . | An (n ≥ 1) introduces a set
definition, where A is the name of a new set and Ai (i = 1 . . n) are set denota-
tions. A definition is inductive if some, but not every Ai refers to set A. Set
denotations are introduced as follows: ∅ is the empty set, {a1, a2, . . . , an} is a
set extension (n ≥ 1), A∪B is the union of sets A and B, A→ B is the set of
total functions from set A onto set B, A 7→B is the set of partial functions from
set A onto set B, A × B is the Cartesian product of sets A and B, FA is the fi-
nite power set of set A, and n . . m is the set of naturals from n up to m if
n ≤ m and ∅ if n > m. The elements of sets A → B, A 7→B, or A × B are
denoted as tuples of the form (a, b), where a ∈ A and b ∈ B.

Notation 2 (Given sets) We use the following given sets: Natural, which
denotes the set of natural numbers; Document, which denotes the set of
HTML documents, Excerpt, which denotes the set of HTML excerpts, Type,
which denotes a set of table types, Name, which denotes a set of names, and
Value, which denotes a set of values. We also define the set of positions in a
table as Position = Natural × Natural.

2.2.2 Data structures

Now, we introduce the data structures in our conceptual framework. We
illustrate them with the table and the dataset in Figure

2.1, which were gath-
ered from a share market domain. The table provides data about the volume
and the risk of the shares of a company that is identified by means of a ticker;
the data are sampled at different times and they are shown regarding to-
day and yesterday. Some grid lines are greyed and dashed, which means that
there are some cells in the encoding of the table whose corresponding grid
lines are invisible when it is rendered.
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Figure 2.1: Table extraction concepts.

Definition 2.1 (Properties) A property is a value that one of the tasks in-
volved in the extraction process computes from a cell or a table so that other
tasks can use it. Formally, we define Property = Name × Value; that is, a
property p is represented as a tuple of the form (n, v), where n denotes its
name and v denotes its value. We assume that properties are used to store the
function of each cell in a table and to group cells that must be interpreted
together, but specific proposals might use them to store additional data.

Definition 2.2 (Cells) A cell is the smallest unit of which a table is composed.
Formally, we define Cell = Value × FProperty; that is, a cell c is repre-
sented as a tuple of the form (v, F), where v denotes its value and F denotes its
set of properties. According to how they must be segmented, cells are classi-
fied as single cells, whose values occupy exactly one position, spanned cells,
whose values spread across several positions, multi-part cells, whose val-
ues are encoded using several positions, and context-data cells, which are
cells that do not occupy a position within the body of the table, but pro-
vide titles, notes, or related text that must be interpreted with the table.
According to their function, cells are classified as meta-data cells, which pro-
vide values that help endow other cells with semantics, data cells, which
provide the data to be extracted, and decorator cells, which provide irrele-
vant data. According to how their values must be interpreted, cells are
classified as factorised cells, which are empty cells whose values must be bor-
rowed from adjacent cells, void cells, whose values are missing, atomic cells,
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whose values cannot be decomposed further, and structured cells, whose val-
ues can be decomposed and may have a mixture of data and meta-data.
Meta-data cells are grouped into headers, data cells are grouped into records,
and decorator cells are grouped into separators.

Definition 2.3 (Tables) A table is a collection of cells that are laid out two-
dimensionally in its body plus some context-data cells in its surroundings, if
any. Formally, we define Table = (Position 7→Cell) × FCell × FProperty;
that is, a table t is represented as a tuple of the form (D,C, P), where D maps
its positions onto the cells in its body, C denotes its context-data cells, and P
denotes its set of properties.

Definition 2.4 (Datasets) A dataset is a structured representation of the data
that is provided by a single table. Formally, we define them using the
following sets: Dataset = FDatum, where Datum = Descriptor 7→Value,
Descriptor = SimpleDescriptor | FieldDescriptor | ArrayDescriptor,
SimpleDescriptor = Value, FieldDescriptor = Descriptor × Value, and
ArrayDescriptor = Descriptor × Natural. Simply put, a dataset is a set of
data of the form {(d1, v1), (d2, v2), . . . , (dn, vn)}, where each di is a descriptor
that helps endow value vi with semantics (i = 1 . . n, n ≥ 1).

2.2.3 Extraction tasks

Figure

2.2 illustrates the tasks involved in the extraction process, which
we define below. One proposal may address one or more tasks, cf. Table

2.1.

Definition 2.5 (Location) This task searches an input document for excerpts
that contain tables. Formally, we define Location = Document→ FExcerpt.
Specific proposals differ regarding the encodings that they can identify
regarding the bodies of the tables and their context-data cells.

Definition 2.6 (Segmentation) This task searches for cells in an excerpt that
encodes a data table. Formally, we define Segmentation = Excerpt→ Table.
Specific proposals differ regarding how they deal with spanned, multi-part
cells, and context-data cells.

Definition 2.7 (Discrimination) This task classifies a table according to a tax-
onomy. Formally, Discrimination = Table → Type. Every proposal must
make non-data tables apart from data tables; specific proposals differ in the
specific types of data tables that they can discriminate.

Definition 2.8 (Functional analysis) This task identifies the function of a cell.
Formally, we define FunctionalAnalysis = Table→ Table; note that we as-
sume that the results of this task are stored using some properties of the
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Figure 2.2: Sample table extraction process.
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Table 2.1: Tasks addressed by each table extraction proposal.

cells of the output table. Every proposal must make meta-data cells apart
from data cells; specific proposals differ regarding their ability to identify
decorator cells.

Definition 2.9 (Structural analysis) This task groups cells. Formally, we de-
fine StructuralAnalysis = Table→ Table; we also assume that the results
are stored using some properties of the cells of the output table. Every pro-
posal must be able to identify headers and records; specific proposals differ in
their ability to identify different header structures and layouts, the dimen-
sionality, orientation, and multiplicity of the records, and how they deal with
separators.

Definition 2.10 (Interpretation) This task extracts the data in a table into a
dataset. Formally, we define Interpretation = Table→ Dataset. Every pro-
posal must be able to create pairs of simple descriptors and values; specific
proposals differ in their ability to create more complex descriptors and their
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ability to make factorised cells apart from void cells and to distinguish
between atomic cells and structured cells.

2.2.4 Comparison characteristics

We compare the proposals that we have surveyed by means of
a comparison framework that includes both general and task-specific
characteristics.

The general characteristics are the following: a) Foundation: it is a hint
on the technique behind each proposal. b) Tables required: it is the minimum
number of tables required for a proposal to work; the less tables required, the
better. c) Effectiveness: it is the extent to which a proposal succeeds in imple-
menting a task correctly according to an effectiveness measure; the higher the
effectiveness, the better. d) Efficiency: it is the amount of computing power
that a proposal requires to implement a task; the more efficient (i.e., the less
computing power is required), the better. e) Resources: it refers to the re-
sources that a user must provide so that a proposal can work properly; the
less resources, the better. f) Features: it refers to the features onto which the
input data must be projected in order to machine learn a predictor or to make
a decision according to a heuristic. Features can be either structural, which are
related to the HTML or the DOM representation of the input documents, vi-
sual, which are related to their rendering, or value features, which are related
to the values of the cells. g) Parameters: it refers to the settings that must be
tuned so that a proposal works well, which can be either pre-defined, learn-
able, or user-defined parameters. Pre-defined parameters have a value that
the authors of a proposal have found generally appropriate; they are prefer-
able to learnable parameters, whose values must be experimentally learnt by
the user; in turn, they are preferable to user-defined parameters, which must
be set by the user using his or her intuition; the less parameters, the better.

Note that it is easy to make decisions building on the general features that
we presented above since we have characterised their preferred values; the
same applies to the task-specific features that we describe in the follow-
ing sub-sections. The only exceptions are the foundation characteristic and
the features characteristic. The reason is that it is not generally clear whether
a heuristic-based approach is preferable to a machine-learning approach or
vice versa, or whether structural, visual, or value features are preferable to
each other. Note, too, that effectiveness and efficiency are decision-making
characteristics, but the figures provided by an author are not generally com-
parable to the figures provided by a different author because they evaluated
their proposals using different machines, learning sets, and evaluation sets.
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Table 2.2: Taxonomy of data tables.

2.2.5 Taxonomy of tables

HTML tables can be classified as non-data tables, which are used for lay-
out purposes or to display utilities, and data tables, which are used to display
relevant data.

We classify data tables as listings, forms, matrices, or enumerations build-
ing on the following properties, cf. Table

2.2 and Figure

2.3: a) Record
dimensionality: it refers to the dimensions of the records shown in the ta-
ble; its values are 0, which means zero-dimensional records that consist of
single data cells, 1, which means one-dimensional records that consist of ev-
ery data cell in a row or a column, and 2, which means two-dimensional
records that consists of every data cell in a table. b) Record multiplicity: it
refers to the number of records that a table is intended to show; its val-
ues are 1, which means exactly one record, or *, which means zero, one,
or more records. Note that listings are data tables with record dimen-
sionality 1 and record multiplicity *, forms are data tables with record
dimensionality 1 and record multiplicity 1, matrices are data tables with di-
mensionality 2 and record multiplicity 1, and enumerations are data tables
with record dimensionality 0 and record multiplicity *.

The variants depend on some additional properties: a) Record orienta-
tion: it refers to how the records are laid out; its values are none, which means
that records are not explicitly oriented, horizontal, which means that the
records are laid out in a row-wise manner, or vertical, which means that they
are laid out in a column-wise manner. b) Header layout: it refers to how
headers are laid out in a table; its values are none, which means that a ta-
ble does not have any headers, single, which means that its headers lay at the
first rows and/or columns, horizontally repeated, which means that they are



18 Chapter 2. Background Information

��������	
 �������

�������
 �	
�������

����
 ����������

������
 ��	���

������
 �����

���
� �� 

��� ���� ����

�!��" �	�� #�
$�

%&��� �����	 #'
��

���$$ ���	 #�
��

�(��$ ���) #*
$'

&!��� +, #-
$'

���������	
	������

���
����	�
�������

����� ����� ���,�

����� � %��. �(/

������  0�  0�

��� /1�23 /1�23

����� � �

������ ��4) ����

α �
� ε "
*

β "
* ζ "
1

γ -
1

δ $
-

�������	
����


���
��	��
�������

�� �  �

� "
� ! �
�

� 5 " "
�

# *
1

� "
$

$ "
$

���������	
����


���
����	�
�������

��%���

#�&� ���� ���

��3��� 4��� *'
$�6

���4����������4��� 7�4�	�+���	

������ #��&	 ���

�	. ����5 "1�

8���. �//�5 "��"�

������ #��&	 ���

0	�� '��5 "1�

!	��. �*'/�5 �-�

���������	
	������
���

���������		�
����
�������

���� '���� #�&�

 �� ���	� 94��.

����� �	,  ���

!��� �����

"��� :�:�:�:�:

�$�� :�:�:

���������	
	������


���
��	��
�������

�� � �� *

� *
* � *
$

( 1
" ( *
$

� �
* � $
�

� "
/ � "
'

) 1
' ) $
$

*+,- *+,.

���)� 6$'�� 6����

�/��) 6$�� 6��*�

���$� 6$"� 6�$�

��) 6/'� 6-��

$��� 6-�� 6�"�

������

���������	
����


���
��	��
�������

#��� ���� ���

�	
 %���	 1'

#�&� ��0���

���. �	;<.

���� %��	�

�������  =��>

��� 1-

(��0&���� �������������

�������	 ����


���
����	�
�������

�������	
	������


���
����	�
�������

�������	
	������
���

�������		�
����
�������

�������	
	������


���
��	��
�������

���� ��� ���� ���

���� "* 	�.� '/

��) �- �,�� *�

��, �" ���� 1�

�� /- ��4 "�

,�� *1 3� 1�

���������	
	������
���


�������		�
����
�������

�� � " *

� *
* /
� *
$

( 1
" '
� *
$

�� ' / -

� "
/ *
' "
'

( 1
' *
1 "
�

�������	
	������
���

���������		�
����
�������

�-?'� ���� %���

��?�� ,	; %���

��?�� ��@�. 5�( 

��?�" ��@�. %���

��?�* ��, %���

�-?�� ���� %���

���������	
	������



������
�������

!A !�� ����


�) 
�. 
�.

B11 B� B*1

!C�B� !C��' !C�B�

 +7 (�� ���

�"D � ��D � �1D �

�������	
	������



������
�������

�������	
����

������
�������

#���


�	


����


�,���

$��


√

���������	
����

������
�������

����
 �	;

���
 �$

����
  ��

���
 $�

����
 E���

���
 "-

����
 C�,

���
 �-

����
 %���	

���
 �1

����
 7�.�

���
 *1

0��,�	����

Figure 2.3: Sample data tables.
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repeated every some rows, vertically repeated, which means that they are re-
peated every some columns, and split, which means that they spread across
several non-adjacent rows or columns.

Note that once meta-data cells are made apart from data cells and head-
ers are identified, it is relatively easy to identify the records and to classify a
table. Headerless tables are a bit more difficult to classify because they re-
quire to analyse the homogeneity of their cells both from a lexical and a
semantic point of view. For instance, independently from whether a list-
ing has headers or not, its cells are expected to be column-wise homogeneous
in a horizontal listing and row-wise homogeneous in a vertical listing; the key
property of a form is that it is intended to display a single record, so the cells
are not expected to be homogeneous; contrarily, an enumeration is ex-
pected to display multiple records that consists of only one cell, so they all are
assumed to be homogeneous.

2.3 Location

Yoshida et al. [

136], Elmeleegy et al. [

38], Lautert et al. [

74], Braunschweig
et al. [

14], and Nishida et al. [

96] did not pay attention to the location task.
Chen et al. [

23], Cohen et al. [

25], Hurst [

58], Yang and Luk [

134], Kim and Lee
[

67], Jung and Kwon [

64], Okada and Miura [

97], Cafarella et al. [

17], Son and
Park [

119], Chu et al. [

24], Eberius et al. [

34], Wu et al. [

131], and Liao et al.
[

77] reported on naive approaches that consisted in extracting every HTML
excerpt with a table tag; Penn et al. [

99], Wang and Hu [

127], and Crestan and
Pantel [

31] followed the same approach but discarded tables with nested
tables. The other proposals provide more sophisticated approaches.

2.3.1 Summary of proposals

Lerman et al. [

75,

76] focused on tables that are encoded using listing tags.
Their proposal works as follows: a) first, the input documents are first to-
kenised and each token is assigned one or more lexical types; b) then, the
smallest input document is picked as a base template; c) the remaining docu-
ments are then iteratively compared to the template in order to make the
sequences of tokens that appear exactly once apart from the others; d) finally,
the excerpts of the document that have the largest repetitive sequence of to-
kens are returned. The authors did not evaluate their procedure in isolation,
but their complete system.

Gatterbauer et al. [

48] presented a visual approach that analyses the
bounding boxes used to render the elements of a document in an attempt to
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identify tables, lists, and so-called aligned graphics. Their proposal works as
follows: a) first, every excerpt that meets some user-defined constraints that
typically hold for tables, lists, or aligned graphics is retained as a data ta-
ble while the others are discarded as non-data tables (i.e., they do not have to
wait for the discrimination task); b) some heuristics are then applied in or-
der to find so-called frames, which consist of data and meta-data cells that are
close to each other; c) finally, the frames are expanded to four orthogonal di-
rections by finding elements whose bounding boxes are near to each other;
d) finally, the corresponding excerpts are returned. The authors evalu-
ated their proposal on 493 tables from their own repository plus 19 additional
tables from Wang and Hu’s [

127] repository.

Fumarola et al. [

45] also presented a visual approach to the problem.
Their proposal works as follows: a) it first creates a bounding box that en-
closes the whole input document; b) it then iterates recursively and creates a
bounding box for every element in that document; c) next, it analyses the po-
sitions of the inner bounding boxes and finds those that are laid out in a row-
or a column-wise manner; d) then, the corresponding excerpts are re-
turned. The authors did not evaluate their procedure in isolation, but their
complete system.

Ling et al. [

78] presented a proposal whose focus is on locating context-
data cells. It works as follows: a) first, it locates the elements in the input
document that have a table tag; b) then, it extracts some context data from the
title tag; c) next, it segments the text around the tables and aligns the resulting
segments using a multiple string alignment algorithm; d) finally, the seg-
ments that are repetitive enough are considered context-data cells. The
authors did not evaluate their procedure in isolation, but their whole system.

2.3.2 Comparison

Table

2.3 summarises our comparison regarding location proposals. The
task-specific characteristics are the following: a) Body encodings: it refers to
how the tables that a proposal can locate must be encoded; the more kinds
of encodings are identified, the better. b) Context-data encodings: it refers
to how context-data cells are encoded; the more kinds of encodings are
identified, the better.

Regarding the general characteristics, it is surprising that all of the loca-
tion proposals are based on heuristics; there is no record in the literature of a
single proposal that has tried a machine-learning approach. Most propos-
als can work on a single table, but the ones by Lerman et al. [

75,

76] and
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Table 2.3: Comparison of location proposals.

Ling et al. [

78] require at least a pair of tables to perform table align-
ment. None of the proposals was presented in isolation, but as a component
of a larger system, which is the reason why no author reported on effective-
ness or efficiency. Realise that only the proposal by Gatterbauer et al. [

48]
projects the input documents onto structural and visual features in order to
apply their heuristics; note, too, that it is the only one that requires a pre-
defined parameter. The proposal by Crestan and Pantel [

31] is the only that
requires the user to set a learnable parameter.

Regarding the task-specific characteristics, most of the proposals locate
tables that are encoded using tabular tags, a few focus on tables that are en-
coded using listing tags, and only Gatterbauer et al. [

48] and Fumarola
et al. [

45] are independent from the tags used, since they analyse the
rendering of the input documents, which makes them the only propos-
als that might deal with tables that are encoded using block tags. Note,
too, that the vast majority of proposals focus on locating the tables them-
selves, not their context-data cells. Chen et al. [

23] and Ling et al. [

78] are the
exceptions: the former presents a simple approach that searches for cap-
tion tags and the latter presents a more sophisticated approach that analyses
the title tags and the text that surrounds the tables.



22 Chapter 2. Background Information

2.4 Segmentation

Penn et al. [

99], Yoshida et al. [

136], Hurst [

58], Wang and Hu [

127], Kim
and Lee [

67], Okada and Miura [

97], Cafarella et al. [

17], Crestan and Pantel
[

31], Fumarola et al. [

45], Lautert et al. [

74], Son and Park [

119], Braun-
schweig et al. [

14], Eberius et al. [

34], Wu et al. [

131], Nishida et al. [

96], and
Liao et al. [

77] did not report on any proposals to implement this task. Chen
et al. [

23], Yang and Luk [

134], Jung and Kwon [

64] relied on a naive ap-
proach that searches for the cells as they are encoded in the input documents
using specific-purpose tags. The other proposals provide more sophisticated
approaches.

2.4.1 Summary of proposals

Lerman et al. [

75] segmented tables that are encoded using listing tags
building on the tags themselves and some punctuation symbols; implic-
itly, they assumed that records are shown in a row-wise manner. Prior to
segmentation, the authors applied a document alignment method to de-
tect the template of the documents and their repetitive segments, which are
very likely to contain the lists. Once the lists are located, their proposal
works as follows: a) the segments are clustered according to their separa-
tors to the left and to the right; b) then, the DataPro pattern-learning system is
invoked on the previous clusters in an attempt to learn patterns that charac-
terise their data; c) then, for each segment in each cluster, it computes binary
features that indicate whether it matches the previous patterns or not; d) next,
the AutoClass clustering algorithm is invoked to learn the optimal number of
clusters and to learn a set of rules that assign new segments to the most simi-
lar cluster; e) finally, the data in each cluster is assumed to be a column of the
corresponding table, which facilitates identifying the cells in a row-wise man-
ner. The evaluation was performed on the tables from a repository with 50
documents that were taken from 14 different sources. The authors did not
evaluate their procedure in isolation, but their complete system.

Cohen et al. [

25] relied on some transformations that help normalise ta-
bles before they are segmented. Their proposal works as follows: a) the
HTML structure is cleaned up using HTML Tidy and the extra cells gener-
ated by this tool are removed; b) structured cells are divided into multiple
atomic cells by splitting inner tables, paragraphs, or pre-formatted text;
c) spanned cells are split into several cells unless this results in more cells
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than the height or the width of the table. The authors did not evaluate their
procedure in isolation, but their complete system.

Lerman et al. [

76] segmented tables by learning a probabilistic model from
the repetitive segments in which they decompose tables that are encoded us-
ing listing tags; they assumed that records are shown in a row-wise manner.
Their proposal works as follows: a) lists are split into columns according to
candidate separators, which can be tags or punctuation symbols; b) some
value features are then computed on each column and their siblings; c) then,
an inference algorithm learns a probabilistic model from the previous fea-
tures; d) the parameters are then used to find the best column assignment for
a segment, which is the one that maximises the probability of the features ob-
served given the model. Their evaluation was performed on the tables from
a repository with approximately 283 tables from 12 web sites on book sell-
ers, property taxes, white reports, and corrections. They also experimented
with a constrain satisfaction approach that was less accurate.

Gatterbauer et al. [

48] presented a proposal that requires to identify the
spatial relationships between the individual cells of a table. It works as fol-
lows: a) it computes the boxes that represent the elements of an input
document, taking into account their contents area, padding, border, and mar-
gin areas according to the CSS2 visual formatting model; b) it then overlaps a
grid that helps identify each box by means of the co-ordinates of its upper-
left corner and its lower-right corner; c) then, it aligns the boxes according to
their horizontal and vertical projections; d) next, an adjacency relation is com-
puted according to how distant the cells are; e) finally, some cells are selected
and a recurrent expansion algorithm is invoked in an attempt to explore the
adjacency relation to find their neighbours. The authors evaluated their pro-
posal on the tables provided by a repository with 1 537 documents that were
retrieved from search engines, from Wang and Hu’s [

127] repository, or writ-
ten by the authors. The authors did not evaluate their procedure in isolation,
but their complete system.

Elmeleegy et al. [

38] tried to find columns by checking how homoge-
neous the cells in a table are. The homogeneity is analysed through the
data types, the syntax, and/or delimiters. To perform this step, the au-
thors used two sources, a large-scale language model, which helps know
sentences that should not be split because they have previously occurred
within a cell, and a corpus of tables, which helps identify data that ap-
pear in the same column in other tables. Their proposal works as follows:
a) each row is split into a (possibly different) number of columns using two
scoring functions, namely: a field quality score, which measures the qual-
ity of an individual column candidate, and a field-to-field consistency score,
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which measures the likelihood that two column candidates are actually the
same column; b) then, it sets the number of columns to the most frequent one;
c) padding columns are added to rows that have less columns than ex-
pected and some columns are merged otherwise; d) finally, the segmentation
of cells is refined by checking the consistency amongst the cells in a per-
column basis; e) if the consistency check fails, the procedure is re-launched.
Their evaluation was performed on 20 tables from 20 different domains plus
100 additional tables that were randomly sampled from the Web.

Ling et al. [

78] assumed that HTML tables can be segmented very eas-
ily searching for td tags; their key contribution was regarding how to segment
context-data cells. Their proposal works as follows: a) it first uses a number
of heuristics to generate candidate context-data cells, namely: tokens in be-
tween some punctuation marks, the longest common sub-sequences, pieces
of text that can be wikified [

102], and pieces of text that vary from docu-
ment to document but are located at the same position; b) then, the previous
context-data cells are added to the original table as additional columns; c) fi-
nally, a pairwise adaptation of the Multiple Sequence Alignment algorithm is
used to segment the context-data cells. The evaluation was performed on
20 000 tables that were picked from a repository with 130 million tables from
10 different web sites.

Chu et al. [

24] also focused on finding the columns of a data table. Their
proposal works as follows: a) each row is tokenised using a set of user-
defined delimiters; b) then candidate columns are generated using two
approaches: a seed record is provided and the system discards segmentations
that are very different; a custom pruning procedure that borrows some ideas
from the well-known A* procedure is also used; c) it then measures the homo-
geneity of each column using lexical and semantic similarity functions that
are averaged (the former computes the difference regarding the number of to-
kens, characters, and tokens in a number of user-defined categories; the latter
computes the point-wise mutual data function); d) the process is repeated un-
til a segmentation that maximises similarity is found. Their evaluation was
performed on 100 million data tables that were transformed into lists; they
used 20 additional tables encoded as lists from five different domains.

2.4.2 Comparison

Table

2.4 summarises our comparison regarding segmentation proposals.
The task-specific characteristics are the following: a) Spanned cells: it de-
scribes if a proposal is able to identify cells that have been merged to create a
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Table 2.4: Comparison of segmentation proposals.
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larger cell; a proposal that can identify spanned cells is better than a proposal
that cannot. b) Multi-part cells: it describes if a proposal is able to identify
multiple cells must be interpreted as a single value; a proposal that can iden-
tify multi-part cells is better than a proposal that cannot. c) Context-data cells:
it describes if a proposal can identify context-data cells or not; a proposal that
can identify context-data cells is better than a proposal that cannot.

Regarding the general characteristics, it is easy to realise that only the pro-
posals by Lerman et al. [

75,

76] have tried a machine-learning approach; the
others build on heuristics that their authors have proven to work well
in practice. Furthermore, most of them can work on as few as one in-
put table. Unfortunately, roughly 70% of the authors did not report on
the effectiveness of their proposals; roughly 30% reported on precision,
recall, and the F1 score. Only Elmeleegy et al. [

38] and Chu et al. [

24] re-
ported on the efficiency of their approaches; their figures reveal that the
algorithms behind the scenes might not be scalable enough. Regarding the re-
sources required, only the proposals by Elmeleegy et al. [

38] and Ling et al.
[

78] require the user to provide a few, but they do not seem to be diffi-
cult to find. Only the proposals by Lerman et al. [

75,

76] and Gatterbauer
et al. [

48] require to project the input tables onto some simple features. Re-
garding the parameters, only the proposals by Elmeleegy et al. [

38], Ling et al.
[

78], and Chu et al. [

24] need the users to set a few.

Regarding the task-specific characteristics, it is surprising that many pro-
posals do not make an attempt to analyse spanned cells and that none of them
can identify multi-part cells, both of which are very common in practice. It is
also surprising that only the proposals by Chen et al. [

23] and Ling et al. [

78]
can identify context-data cells, which are also very common in practice.

2.5 Discrimination

Lerman et al. [

75], Yoshida et al. [

136], Lerman et al. [

76], Elmele-
egy et al. [

38], Ling et al. [

78], Braunschweig et al. [

14], and Chu et al. [

24] did
not pay attention the discrimination task. The other proposals provide more
sophisticated approaches.

2.5.1 Summary of proposals

Chen et al. [

23] devised a proposal to discriminate tables by means of
heuristics. It works as follows: a) a cell similarity measure is computed by
combining string similarity, named-entity similarity, and number similarity
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functions; b) then, the tables whose cells do not exceed a threshold regard-
ing the number of similar neighbour cells are discarded; c) finally, tables with
less than two cells or tables with many links, forms, or figures, are also dis-
carded. The evaluation was performed on 3 218 tables from their own
repository with documents on airlines from the Chinese Yahoo! site.

Penn et al. [

99] also devised a heuristic-based approach. Their proposal
works as follows: a) tables that do not have multiple rows and columns are
discarded; b) tables whose cells have more than one non-text-formatting tag
are also discarded; c) finally, tables whose cells have more than a user-
defined number of words are also discarded. The authors also mentioned
that a desirable feature is to have syntactic and semantic homogeneity
into account, but they did not go further regarding this idea. They experi-
mented with an unspecified number of tables from their own repository with
documents from 75 sites on news, television, radio, and companies.

Cohen et al. [

25] devised a proposal that builds on machine learning a
classifier. It works as follows: a) some structural and value features are com-
puted from a learning set with tables that are pre-classified as either data
tables or non-data tables; b) then, several classifiers are then machine-learnt
and evaluated; c) the classifier that achieves the best effectiveness is selected
to implement the discrimination task. The authors experimented with Multi-
nomial Naive Bayes, Maximum Entropy, Winnow, and a decision tree learner
that was based on C4.5; their conclusion was that the best results were
achieved using Winnow. They evaluated their proposal using a 5-trial ap-
proach on 339 tables from their own repository; in each trial, 75% of the tables
were used for learning and the remaining 25% for evaluation purposes.

Hurst [

58] presented a similar machine-learning approach. The difference
is that his proposal also takes visual features into account. He performed his
evaluation on 89 data tables and 250 non-data tables from his own reposi-
tory, which were randomly grouped into five sets from which 25% of the
tables were selected for learning purposes and 75% for evaluation pur-
poses. The results confirmed that Naive Bayes achieved the best results when
the whole set of features was used, whereas Winnow worked better when
only a subset of geometric features was used.

Wang and Hu [

127] devised another machine-learning proposal. They
computed structural and value features that they transformed into new fea-
tures using Naive Bayes or weighted k-NN; the resulting features were fed
into a custom decision tree learner. Note that value features rely on the words
found in the input documents, which requires a large learning set so as to
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minimise the chances that a classifier is applied to a document with a
word that was not in the learning set. The evaluation was performed us-
ing 9-fold cross evaluation on 11 477 tables from their own repository with
documents from Google’s directories.

Yang and Luk [

134] reported on another heuristic-based method. Their
proposal works as follows: a) tables that have th tags are considered data
tables; b) tables that do not only contain links, forms, or images are also con-
sidered data tables; c) meta-data and data cells are then located using some
user-defined patterns; d) tables that do not have both meta-data and data cells
are discarded. They evaluated their method on 1 927 tables from their own
repository, which was assembled with random documents from the Web.

Kim and Lee [

67] used heuristics and an algorithm to check how ho-
mogeneous the cells are. Their proposal works as follows: a) tables are
considered data tables if they contain caption or th tags and there are td tags at
the right or the bottom sides; b) they are discarded if they have a sin-
gle cell, if they have nested tables, or if they seem to have meta-data
cells only; c) if they have too many links, images, or empty cells, then
they are also discarded; d) then, it checks that the cells in the tables se-
lected previously are consistent using a number of user-defined patterns; e) if
the degree of homogeneity per row or column does not exceed a pre-
defined threshold, then the corresponding table is discarded. The evaluation
was performed on the 11 477 tables from Wang and Hu’s [

127] repository.
Jung and Kwon [

64] presented a machine-learning proposal. It works as
follows: a) it first removes empty rows and columns, splits spanned cells by
duplicating their values, and discards tables with only one cell; b) then, it
computes many structural, visual, and value features of the table to find out if
it has meta-data cells, in which case the table is assumed to have data; c) fi-
nally, a C4.5 learner is fed with the input features and the classified tables.
The evaluation was performed using 10-fold cross evaluation on 10 000 ta-
bles from their own repository plus some tables from Wang and Hu’s [

127]
repository.

Gatterbauer et al. [

48] reported on an approach that identifies tables us-
ing some rendering heuristics. Their proposal works as follows: a) elements
with td, th, and div tags are considered candidate tables; b) it tries to iden-
tify frames that rely on those elements, which are assumed to be tables;
c) overlapping tables are discarded; d) tables are also discarded if, af-
ter removing separator columns and rows, they have less than three rows,
a single cell is more than 40% the total size of the table, or they con-
tain cells with more than 20 words. The evaluation was performed on 493
tables from a repository that was assembled by students.
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Okada and Miura [

97] devised another machine-learning approach that
requires to binarise discrete features before feeding them into an ID3 learner.
The evaluation was performed using 10-fold cross evaluation on 100 data
tables and 100 non-data tables from their own repository.

Cafarella et al. [

17] proposed another machine-learning approach. Their
proposal works as follows: a) it considers tables that have at least four cells,
are not embedded in forms, and do not seem to be calendars; b) the tables
that meet the previous criteria are classified as either data or non-data ta-
bles by a person; c) then, a statistical classifier is machine-learnt from a
dataset that vectorises the previous tables using both structural and value
features that are intended to measure how consistent the cells are. They eval-
uated their proposal using 5-fold cross evaluation over several thousand
tables from their own repository.

Crestan and Pantel [

31] also presented a machine-learning proposal. It
works as follows: a) tables that have less than four cells or have cells with
more than 100 characters are discarded; b) next, some structural and value
features are computed; c) then, a Gradient Boosted Decision Tree classifica-
tion model is machine-learnt. The evaluation was conducted on 5 000 tables
from their own repository by performing 20-fold cross evaluation without
overlapping.

Fumarola et al. [

45] proposed a heuristic-based approach. Their pro-
posal works as follows: a) it selects the elements whose bounding boxes
are arranged in a grid; b) it then computes their similarity by compar-
ing their DOM trees; c) next, the number of nodes in each list is computed;
d) if the similarity is above a user-defined threshold and the difference in the
number of nodes is below another user-defined threshold, then the ta-
bles are considered data tables. The evaluation was performed on 224 tables
from Gatterbauer et al.’s [

48] repository.

Lautert et al. [

74] devised a machine-learning proposal that builds on neu-
ral networks. It work as follows: a) it computes some structural, visual, and
value features; b) then, it uses them to machine-learn a perceptron with one
hidden layer and resilient propagation; c) it has one output neuron per type
of data table, which is encoded using a score in range [0.00 . . 1.00]; the classi-
fication is performed in two steps, namely: the first one uses the 25 features to
classify the tables into the corresponding types and the second step uses the
previous 25 features plus the type of table output by the previous classi-
fier. The evaluation was performed on a repository with 342 795 tables that
were sampled from many different sites.
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Son and Park [

119] also tried a machine-learning approach. Their pro-
posal works as follows: a) it selects every DOM node with tag table and
their corresponding parents; b) the features described by Wang and Hu
[

127] are then computed to create a learning set; c) finally, an SVM classi-
fier is machine-learnt using a structure kernel that works with structural
features plus a linear kernel that works with value features; the structure ker-
nel is based on two other kernels, one of which works on the table nodes and
the other on the corresponding parent nodes. The authors performed 10-fold
cross evaluation on a subset of 11 477 tables from Wang and Hu’s [

127] repos-
itory; roughly 89% of the tables were used for learning purposes and roughly
11% were used for evaluation purposes.

Eberius et al. [

34] devised a proposal that builds on machine learning a
classifier. It works as follows: a) some heuristics are applied to filter most
non-data tables out, namely: tables with less than two rows or columns, tables
with an invalid HTML structure, and tables that cannot be displayed cor-
rectly; b) some structural and value features are then computed regarding the
tables and some of their sub-regions in order to compute local features; c) two
alternatives are now tried: learning one classifier for every table type or using
one classifier to discriminate between data and non-data tables and an addi-
tional classifier to classify some kinds of data tables; d) several classifiers are
machine-learnt and evaluated, namely: CART, C4.5, SVM, and Random
Forest; e) the classifier that achieves the best effectiveness is selected to imple-
ment the discrimination task. They evaluated their proposal on a repository
with 24 654 tables from the October 2014 Common Crawl. According to their
experience, the best results were achieved with Random Forest.

Wu et al. [

131] provided a method to cluster tables that are similar accord-
ing to their structure. Their proposal works as follows: a) for every two
tables, it computes the set of paths that corresponds to caption, td, and th
tags; b) then, the similarity between the paths of every two tables is com-
puted according to a normalised similarity function; c) in a first stage, tables
are clustered according to their local density plus the previous similari-
ties; d) for each cluster, a second clustering is performed building on the
paths that lead to elements with tags li, span, or div; e) finally, a so-called artifi-
cial judgment method is used to decide on the class of each cluster. The
authors used a repository with 5 000 tables from the Wikipedia to evaluate
their system, but no results were provided regarding this task.

Nishida et al. [

96] devised a proposal that analyses a subset of cells at the
top-left corner of a table using a deep neural network. It works as fol-
lows: a) for each td or th tag, an embedding is generated by tokenising
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words, tags, and row and column indexes; b) each token is encoded as a one-
hot vector; c) an LSTM with an attention mechanism is then used to obtain a
semantic representation of each cell; d) a convolutional neural network is
then connected to three residual units and applied to vectorise the input ta-
ble; e) finally, a classification layer is used. The authors learnt the network
using 3 567 tables from 200 web sites, and evaluated the results on 60 678 ta-
bles from 300 web sites; the documents were selected from the April 2016
Common Crawl. They also experimented with an ensemble of five neural
networks, which attained the best results.

Liao et al. [

77] presented a heuristic-based approach that takes into ac-
count the existence of nested data tables. It works as follows: a) tables with a
th or caption tag are considered data tables; b) tables with a large num-
ber of pictures, frames, forms, or script tags are discarded; c) tables with a
small number of elements or many empty cells are discarded, too; d) ta-
bles with too many consistent values in their rows are considered incomplete
data tables, which must be stitched to other sibling tables to create a complete
data table. They evaluated their method on 226 tables from 50 different sites.

2.5.2 Comparison

Tables

2.5 and

2.6 summarise our comparison regarding discrimination
proposals. The only task-specific characteristic is Types of data tables, which
refers to the kinds of data tables that a proposal can discriminate; the more
types can be discriminated, the better.

Regarding the general characteristics, it is easy to realise that 64% of the
proposals use a machine-learning approach and 36% use heuristic-based ap-
proaches. The former require at least two tables to learn a predictor that
implements the discrimination task, whereas the latter can generally work on
a single table. Except for Wu et al.’s [

130], the other authors report on effec-
tiveness measures that are specific to this task; most of the authors selected
precision, recall, and the F1 score as effectiveness measures; the exceptions are
Cohen et al. [

25], Lautert et al. [

74], and Nishida et al. [

96], who report on the
F1 score only, Okada and Miura [

97], who reported on accuracy, and Fu-
marola et al. [

45], who reported on recall only. Apparently, the effectiveness of
the machine-learning proposals seems very high compared to heuristic-based
ones; however, due to the differences in the evaluation processes, this conclu-
sion is not sound. Unfortunately, only Son and Park [

119] and Eberius et al.
[

34] reported on the efficiency of their proposals, which does not seem to be
very good according to their figures; Wu et al. [

130] did not report on the effi-
ciency of their proposal but they mentioned that it relies on a linear clustering
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Table 2.5: Comparison of discrimination proposals (Part 1).
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Table 2.6: Comparison of discrimination proposals (Part 2).
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Table 2.7: Comparison of discrimination proposals (Part 3).
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algorithm. The only proposals that require resources are the ones by Eberius
et al. [

34] and Nishida et al. [

96]; fortunately, they do not seem to be a major
obstacle since they consists of a corpus that was gathered from the Wikipedia.
The ones that rely on machine learning methods need to project the in-
put data onto a space of structural, visual, and/or value features that seems
simple to compute. Regarding their parameters, most of them have pre-
defined parameters for which the authors recommend some values that they
have found out to work well; none of the proposals require any learnable
parameters, but a few require to provide some user-defined parameters.

Regarding the task-specific characteristics, the only proposals that can
sub-classify data tables are the following ones: Crestan and Pantel [

31] distin-
guish amongst listings, forms, matrices, and enumerations; Lautert et al. [

74],
Eberius et al. [

34], and Nishida et al. [

96] distinguish amongst listings, forms,
and matrices; and Liao et al. [

77] distinguishes between complete and incom-
plete tables (which are encoded as independent tables, but must be stitched
together so that they can be properly interpreted).

2.6 Functional analysis

Lerman et al. [

75], Penn et al. [

99], Cohen et al. [

25], Hurst [

58], Wang and
Hu [

127], Lerman et al. [

76], Okada and Miura [

97], Crestan and Pan-
tel [

31], Elmeleegy et al. [

38], Fumarola et al. [

45], Lautert et al. [

74], Son and
Park [

119], Chu et al. [

24], Eberius et al. [

34], Nishida et al. [

96], and Liao et al.
[

77] did not report on any proposals to implement the functional analy-
sis task. Gatterbauer et al. [

48] presented a naive approach that matches the
structure of a table to a number of pre-defined structures in which it is rela-
tively easy to set the meta-data cells apart from the data cells. Ling et al. [

78]
and Wu et al. [

131] assumed that meta-data cells can be easily located by
searching for th tags. Braunschweig et al. [

14] also presented a naive solu-
tion since they assumed that meta-data cells are located on the first row. The
other proposals provide more sophisticated approaches.

2.6.1 Summary of proposals

Chen et al. [

23] devised a proposal that is based on computing
row/column similarities. It works as follows: a) if there is only one row or
column, then the first cell in that row or column is considered to be a meta-
data cell; b) otherwise, the last row is compared to the others; if at least half
the rows are similar and the similarity of the first and the last rows is smaller
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than the average, then the top-most row is assumed to be composed of meta-
data cells; c) otherwise, the last column is compared to the others; if at
least half the columns are similar and the similarity of the first and the
last columns is smaller than the average, then the left-most column is
assumed to be composed of meta-data cells; otherwise, the first row is consid-
ered to be composed of meta-data cells. The evaluation was not performed
on this task, but on their whole system.

Yoshida et al. [

136] suggested using ontologies. Their proposal works as
follows: a) for each cell in a table, it computes the ratio of times that its value
is recorded in the ontology; b) these ratios are then used to feed the
Expectation-Maximisation algorithm in order to learn a classifier that makes a
few sub-types of listings apart; c) once the exact type of listing is clear, identi-
fying meta-data cells is relatively easy and the rest of cells are assumed to be
data cells. (Note that the authors assume that the input tables are data tables,
which is the reason why this cannot be considered a discrimination pro-
posal.) They evaluated their proposal on 175 tables that were randomly
sampled from a repository with 35 232 tables.

Yang and Luk [

134] applied some heuristics to differentiate rows with
meta-data cells from rows with data cells. Their proposal works as follows:
a) a row is considered to have meta-data cells if it has at most 50% the aver-
age number of cells per row, if it contains no structured cells, or if the visual
features are different from the visual features of the others rows; b) then, it
tries to detect if the input table is a listing or a matrix; c) once the table struc-
ture is identified, it is easy to identify the meta-data. (Note that the authors
assume that the input tables are data tables, which is the reason why this can-
not be considered a discrimination proposal.) The authors did not report on
their experimental results regarding this task, but their whole system.

Kim and Lee [

67] devised a proposal that first attempts to classify the in-
put table. It works as follows: a) in the case of tables with one single
row/column, the first cell is considered to be a meta-data cell and the rest are
considered to be data cells; b) in the case of tables with two rows and two
columns that do not have any spanned cells, the first row/column is as-
sumed to have meta-data cells and the second row/column is assumed
to have data cells; c) tables with two rows/columns and three or more
columns/rows whose upper-left cell spans a whole row/column are dis-
carded altogether; otherwise if the first row/colum has some spanned cells
(but not all), then the first column/row is assumed to have meta-data cells
and the others are assumed to have data cells; d) otherwise, the homogeneity
of the cells is checked per rows and columns using the following func-
tions: a lexical similarity function that focuses on the data types and the
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length of the values, and a semantic similarity function that builds on some
user-provided key words and patterns. The authors did not provide any
experimental results regarding this task.

Jung and Kwon [

64] proposed a heuristic-based technique to locate the
meta-data within the tables. Their proposal works as follows: a) cells with a
th tag are assumed to have meta-data; b) if the table can be partitioned into
two blocks with the same background colour or font, then the top and/or the
left blocks are assumed to contain meta-data; c) if the cells in a row or column
have some user-defined values or match some user-defined patterns, then
they are also considered to contain meta-data; d) spanned cells that are em-
bedded in td tags are also assumed to have meta-data as long as they are
located at the top-left areas of the table; its adjacent cells are also consid-
ered to have meta-data; e) if the top-right cell is empty, then it is likely that
the cells in the first row or column have meta-data; f) a probability is fi-
nally computed for every cell building on the previous heuristics and the
cells whose probability exceeds a threshold are then considered to be meta-
data cells whereas the others are assumed to be data cells. The evaluation
was performed using 10-fold cross evaluation on 10 000 tables from their own
repository plus some tables from Wang and Hu’s [

127] repository.

Cafarella et al. [

17] devised a machine-learning proposal. It works as fol-
lows: a) a learning set is assembled with data tables in which the cells are
classified as either meta-data or data cells; b) in cases in which a table does
not have any meta-data cells, synthetic cells are created and the meta-data is
fed from a separate database with similar tables; c) some structural and value
features are computed for each cell; d) a classifier is machine-learnt from the
previous features; e) the results of the classifier are used to enrich the other
database. The authors evaluated their proposal by means of 5-fold cross
evaluation on a repository with 1 000 tables that were gathered from the Web.

2.6.2 Comparison

Table

2.8 summarises our comparison regarding functional analysis pro-
posals. The only task-specific characteristic is Decorators, which refers to the
ability of a proposal to identify decorator cells; a proposal that can find
decorators is better than a proposal that cannot.

Regarding the general characteristics, 80% of the proposals rely on heuris-
tics and 20% rely on machine-learning approaches. Most of them can work on
as few as a single table. Many of the authors report on the effectiveness of
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Table 2.8: Comparison of functional analysis proposals.
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their proposals, which is not as good as was the case with the previ-
ous tasks. Unfortunately, no result on their efficiency is available. Regarding
the resources required, Yoshida et al.’s [

136] and Gatterbauer et al.’s [

48] pro-
posals require domain-specific ontologies, whereas Cafarella et al.’s [

18]
requires a publicly-available database. The proposal by Cafarella et al. [

18] is
the only that projects the input data onto a space of simple structural and
value features. The proposal by Yoshida et al. [

136] requires a pre-defined pa-
rameter that is auto-adjusted, and the proposals by Yang and Luk [

134] and
Kim and Lee [

67] require another pre-defined parameter for which the au-
thors provide a default value; the only proposals that require user-defined
parameters are the ones by Chen et al. [

23], Kim and Lee [

67], Jung and Kwon
[

64], and Ling et al. [

78].

Regarding the task-specific characteristics, note that none of the propos-
als that we have surveyed seem to be able to identify decorator cells, which
are very common in many tables, chiefly due to the abundance of separators
that contain advertisements in many popular sites.

2.7 Structural analysis

Chen et al. [

23], Penn et al. [

99], Hurst [

58], Wang and Hu [

127], Kim and
Lee [

67], Jung and Kwon [

64], Gatterbauer et al. [

48], Okada and Miura [

97],
Cafarella et al. [

17], Crestan and Pantel [

31], Lautert et al. [

74], Son and Park
[

119], Eberius et al. [

34], Nishida et al. [

96], and Liao et al. [

77] did not re-
port on any proposals to implement the structural analysis task. Yoshida
et al. [

136] presented a naive proposal that classifies tables in a num-
ber of categories, which makes identifying the records quite a trivial task.
Elmeleegy et al. [

38] also assumed that the records within tables that are en-
coded as lists are always laid out row-wise. Ling et al. [

78] and Braunschweig
et al. [

14] assumed that records are displayed row-wise or column-wise de-
pending on the number of meta-data or data cells found in the first few rows
or columns. Chu et al. [

24] also presented a naive approach that assumes that
the records within tables that are encoded as lists are always laid out row-
wise. Wu et al. [

131] presented an additional naive approach since they just
identify records in horizontal listings. The other proposals provide more
sophisticated approaches.

2.7.1 Summary of proposals

Lerman et al. [

75] used a couple of algorithms to detect row-wise records.
Their proposal works as follows: a) first, it uses DataPro to find the patterns
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that describe the data in each column; b) such patterns can be interpreted as
tags that allow to transform a table into a sequence of symbols; c) then, a ver-
sion of ALERGIA is used to infer a finite automaton from those sequences;
d) the automaton is then transformed into a regular expression; e) finally, it
identifies repeating sub-patterns that correspond to the records in the original
table. No experimentation was performed regarding this task.

Cohen et al. [

25] presented a proposal that relies on four so-called
builders, namely: a builder focuses on meta-data cells that cut in on the ta-
ble, one that focuses on columns of headers, another that focuses on rows of
headers, and an additional one that takes the tag paths into account. The
builders are fed into a FOIL-based inductive logic programming system in or-
der to learn a classification rule that allows to identify both horizontal
and vertical records. No experimental results were reported regarding this
specific task, but their whole system.

Yang and Luk [

134] presented a proposal that specialises in numerical ta-
bles. It works as follows: a) first, it removes the headers of the input table;
b) then, it checks whether the records seem to be one-dimensional or two-
dimensional using some heuristics; c) the type of cells is analysed using
pre-defined patterns in order to label numeric data cells; d) given the types of
cells and the dimensionality of the records, their proposal tries to match a
number of pre-defined patterns that help identify the records. The evaluation
was performed on 169 one-dimensional and 50 two-dimensional tables.

Lerman et al. [

76] devised two proposals to identify records, namely: a
constraint solving technique and a probabilistic technique. The first proposal
works as follows: a) it models the cells in the tables using Boolean variables;
b) it then adds constraints on those variables that ensure that each cell be-
longs to a single record, only contiguous cells can be assigned to the same
record, and two cells cannot be at the same position in the same table; c) then
a constraint solver is used to find a solution to the constraints. The sec-
ond proposal works as follows: a) it uses a set of observable variables that
model the types of tokens in the data cells, as well as a set of hidden vari-
ables that provide the record number or the column number of every cell; b) a
probabilistic model is then learnt by assuming a number of dependencies be-
tween token types, cells, columns, neighbour columns, format, or record
numbers; c) finally, the values of the hidden variables are inferred build-
ing on the probabilistic model. Their evaluation was performed on the tables
from their own repository, which were gathered from 12 web sites on book
sellers, property taxes, white reports, and corrections.

Fumarola et al. [

45] presented a proposal that was described very shal-
lowly. It seems to work on so-called candidate lists, which are sets of cells



2.7. Structural analysis 41

that correspond to different columns and form a single record; each candi-
date list is a sub-tree of the DOM tree and they all are required to satisfy some
structural similarity constraints, including a minimum size in terms of nodes.
The evaluation was performed on 224 tables from Gatterbauer et al.’s [

48]
repository.

2.7.2 Comparison

Table

2.9 summarises our comparison regarding structural analysis
proposals. The task-specific characteristics are the following: a) Header
structure: it describes the kinds of headers that a proposal can identify ac-
cording to their structure, namely: none, which means that it can analyse
tables without headers, simple, which means that it can analyse simple head-
ers that consists of one meta-data cell only, and complex, which means that it
can identify complex headers that consists of multiple meta-data cells; the
more header structures a proposal can identify, the better. b) Header lay-
out: it describes the kinds of headers that a proposal can identify according
to how they are laid out, namely: none, which means that it can iden-
tify that a table does not have any headers, single, which means that it can
identify headers in the first rows and/or columns of a table, horizontally re-
peated, which means that it can identify that the headers are repeated every
some rows, vertically repeated, which means that it can identify that the head-
ers are repeated every some columns, and split, which means that it can
identify series of headers that are split across several non-adjacent rows
or columns; the more header layouts a proposal can identify, the better.
c) Record dimensionality: it describes the dimensionality of the records that a
proposal can identify, namely: 0 if it can identify the records in an enumera-
tion, 1 it can identify the records in a listing or a form, and 2 if it can identify
the records in a matrix; the more record dimensionalities a proposal can iden-
tify, the better. d) Record multiplicity: it describes the number of records that
a table is intended to show, namely: 1 in the case of forms and matrices, and
* in the case of listings and enumerations; the more record multiplici-
ties a proposal can identify, the better. e) Record orientation: it describes the
orientations that it can identify, namely: none in the case of matrices and enu-
merations, horizontal or vertical in the case of listings and forms; the more
record orientations a proposal can identify, the better. f) Separators: it de-
scribes whether a proposal can identify separator rows and/or columns; a
proposal that can identify separators is better than a proposal that cannot.

Regarding the general characteristics, many proposals rely on heuristic-
based approaches; the exceptions are the proposals by Lerman et al. [

75,

76],
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Table 2.9: Comparison of structural analysis proposals.
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which leverage some grammar induction techniques, and Cohen et al.’s [

25]
proposal, which leverages inductive logic programming. Most of the propos-
als require as few as one input table. Unfortunately, only Yang and Luk [

134]
and Elmeleegy et al. [

38] reported on the effectiveness of their propos-
als, and none of the authors reported on their efficiency. Note that none
of the proposals require to project the input data onto a space of fea-
tures and that only Yang and Luk’s [

134] and Fumarola et al.’s [

45] proposals
require some parameters to be set.

Regarding the task-specific characteristics, it is surprising that all of the
proposals assume that the tables do not have any headers or they are sim-
ple; it is also surprising that the only proposal that can identify single and
split headers is the one by Yoshida et al. [

136]. Regarding the record dimen-
sionality, only the proposal by Yang and Luk [

134] can make uni-dimensional
records apart from two-dimensional records; the proposal by Fumarola et al.
[

45] implicitly assumes that the records in a table are zero-dimensional and
does not make an attempt to analyse the structure of the corresponding cells;
the other proposals implicitly assume that the records are uni-dimensional.
Regarding the record multiplicity, it is interesting to see that all of the propos-
als assume that tables may display more than one record; simply put, they
cannot make listings apart from forms. Regarding the record orientation,
most proposals implicitly assume that the records are oriented horizontally;
the only exceptions are the proposals by Yoshida et al. [

136], Cohen et al. [

25],
and Yang and Luk [

134], which can make horizontal records apart from verti-
cal records. It is surprising that none of the proposals that we have surveyed
can identify separators, even though they are very common in practice.

2.8 Interpretation

Lerman et al. [

75], Penn et al. [

99], Yoshida et al. [

136], Cohen et al. [

25],
Hurst [

58], Wang and Hu [

127], Lerman et al. [

76], Kim and Lee [

67], Jung and
Kwon [

64], Gatterbauer et al. [

48], Okada and Miura [

97], Crestan and Pan-
tel [

31], Elmeleegy et al. [

38], Fumarola et al. [

45], Lautert et al. [

74], Ling et al.
[

78], Son and Park [

119], Braunschweig et al. [

14], Chu et al. [

24], Eberius et al.
[

34], Nishida et al. [

96], and Liao et al. [

77] did not report on this task. The
other proposals provide more sophisticated approaches.

2.8.1 Summary of proposals

Chen et al. [

23] presented an atypical proposal whose goal is to inter-
pret tables as bags of key-value pairs, without making an attempt to identify
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records. It works as follows: a) if there is only one header row/column, then
the data cells in the remaining rows/columns are assigned simple descrip-
tors on a per row/column basis; b) if there are both header rows and
columns, then the table is assumed to be a matrix and the data are as-
signed field descriptors that merge the meta-data in the corresponding
column and row header. The authors did not evaluate their proposal.

Yang and Luk [

134] proposed a procedure that is similar to Chen et al.’s
[

23] procedure, but takes multiple header rows or columns into account, in
which case the cells are simply merged to create field descriptors, as well
as cells that contain both meta-data and data, in which case the meta-
data are transformed into simple descriptors. The authors did not report on
the evaluation of this task.

Cafarella et al. [

17] followed Chen et al.’s [

23] procedure, too, but they
went a step forward in cases in which a table does not provide any meta-
data cells. In such cases, they collect the data on a per-column basis and
attempt to find the most similar data in the ACSDb database, which is a re-
source that has many data with correct descriptors. The authors did not
report on the evaluation of this task.

Wu et al. [

131] suggested to use an ad-hoc interpretation method depend-
ing on the structure of the table identified in the discrimination task. They
only reported on a method to extract data from horizontal listings with head-
ers using some heuristics that are related to how the th and the td tags
encode a subject-predicate-object relation. They conducted their experimen-
tation on a repository with 100 horizontal listings from Wikipedia. The
authors did not report on the evaluation of this task.

2.8.2 Comparison

Table

2.10 summarises our comparison regarding interpretation proposals.
The task-specific characteristics are the following: a) Descriptors: it reports
on the kind of descriptors that a proposal can assign to the data in a table; the
more kinds of descriptors a proposal can generate, the better. b) Empty val-
ues: it refers to the ability of a proposal to make a difference between empty
cells whose values are factorised and cells that are actually empty; a proposal
that can make a difference between factorised and void cells is better than an-
other proposal that cannot. c) Value structure: it refers to the ability of a
proposal to make a difference between cells whose value is an atomic piece of
data and cells whose values are structured and can be decomposed fur-
ther; a proposal that can make a difference between cells with an atomic
value and cells with a structured value is better than a proposal that cannot.
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Table 2.10: Comparison of interpretation proposals.
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Regarding the general characteristics, most proposals rely on heuristics
that have proven to work well in practice; the only exception is the pro-
posal by Cafarella et al. [

18], which uses a reference matching approach.
Wu et al. [

130] were the only authors who reported on effectiveness, but
they measured precision only; unfortunately, none of the proposals re-
port on efficiency. Cafarella et al.’s [

18] proposal is the only one that requires
a publicly-available resource. None of the proposals project the input data
onto a feature space and none of them require any parameters to be set.

Regarding the task-specific characteristics, note that Chen et al.’s [

23] and
Yang and Luk’s [

134] proposals are the only that can generate field descrip-
tors by analysing headers that are composed of several cells; the remaining
can only generate simple descriptors that consists of the value of a single cell.
Unfortunately, none of the proposals can make a difference between fac-
torised cells and void cells. Regarding making a difference amongst atomic
and structured cells, it seems that only the proposal by Yang and Luk [

134]
can deal with this interpretation problem.

2.9 Summary

The Web provides many data in user-friendly tabular formats that are en-
coded using HTML. Data extractors are intended to extract those data as
datasets that can feed business applications. There exist many proposals to
implement them, which has motivated several previous surveys. Unfortu-
nately, they are outdated and we do not think that it suffices to update them
because they do not provide a good conceptual framework, they do not pro-
vide a taxonomy of tables, they do not analyse the exact tasks involved, and
they do not provide a good comparison framework. In this chapter, we have
presented a review of the literature that does not have any of the previous
problems, which we hope will be useful to both researchers and practitioners.



Chapter3

TOMATE: theHTMLtableextractorT
his chapter describes TOMATE, which is a proposal to extract
data from HTML tables with no supervision. It is organised as fol-
lows: Section

3.1 introduces our proposal; Section

3.2 presents some
preliminaries; Section

3.3 describes the location task; Section

3.4
describes the segmentation task; Section

3.5 describes the discrimination
task; Section

3.6 describes the functional analysis task; Section

3.7 de-
scribes the structural analysis task; Section

3.8 describes the interpretation
task; Section

3.9 presents a case study; finally, Section

3.10 summarises our
conclusions.

47
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3.1 Introduction

We are interested in datasets that are encoded using HTML tables, with
an emphasis on tables that are generated by a person instead of a ma-
chine. Very often, the data in those tables cannot be found in any knowledge
bases, which makes it difficult to use them in automated business processes.

Data extractors are software components that analyse web documents and
output their data as records that facilitate integrating them into common
knowledge bases. There are many proposals to implement data extractors:
some of them are general-purpose, since they do not expect the data to be
rendered using any specific layouts [

22,

43,

111,

123]; some others focus on
data that are laid out in tables [

27,

39,

58,

82,

107,

138,

139]. The table-specific
proposals implement a pipeline that is commonly known as table under-
standing. It consists of the following tasks [

107]: locating the tables in the
input documents, segmenting them into cells, discriminating the ones that
provide data, analysing the functions of their cells, analysing their structure,
and, finally, interpreting the data and outputting the corresponding records.

We have analysed many of the table-understanding proposals in the liter-
ature [

27,

39,

58,

82,

107,

138,

139]. Our focus is on the proposals that provide
a solution to analyse the functions of the cells [

17,

18,

23,

24,

38,

40,

64,

67,

87,

96,

134,

136], since the other tasks have been extensively studied in the litera-
ture and there are many alternatives to implement them. Unfortunately, only
a few can deal with arbitrary table layouts (horizontal listings, vertical list-
ings, or matrices), they have problems to deal with the many different
formats used to display the data (multi-line headers, no headers at all, con-
text cells, repeated headers, or factorised cells), and they also have problems
with typical encoding problems (inconsistent row lengths or incorrect uses of
tags td and th) [

107]. Simply put: the previous proposals cannot deal well
with 64.41% of the tables in our experimental datasets.

In this chapter, we present TOMATE†1, which is a new proposal to ex-
tract data from tables that are encoded using HTML. Our key contribution is
regarding functional analysis; we have devised a novel approach that re-
lies on clustering the cells using a variety of features and then applying some

†1TOMATE is a recursive acronym that stands for “TOMATE: Online Multi-document
Automated Table Extraction”. Its implementation and instructions on how to in-
stall and run it are available at

https://pypi.org/project/tablextract. The experimental datasets
are available at

http://datasets.tdg-seville.info and the tool to assemble them is available at

http://tomatera.tdg-seville.info.
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heuristics to correct the results. Our proposal can deal with any table lay-
outs and the problems that we mentioned before regarding the formats used
to display the data and how they are encoded. Our experimental analysis re-
veals that it can attain an F1 score of 89.50% and takes an average of 0.09 CPU
seconds to process each table. That F1 score is 24.11% better than the best pro-
posal that does not require supervision and 5.68% better than the F1 score
attained by the best of the supervised proposals; the average time to pro-
cess each table is slightly worse, but good enough for practical purposes and
clearly compensates for the improvement regarding the F1 score. The differ-
ence in effectiveness was proven to be statistically significant at the standard
confidence level. To illustrate its practical value, we present a case study in
which we describe how TOMATE is being used to feed a real-world IARPA
geopolitical forecasting system with data that are extracted from Wikipedia
tables. Most such tables are not generated using Wikipedia’s pre-defined
templates, which means that their data cannot be extracted and integrated by
the data extractors that are currently deployed at major knowledge bases.

3.2 Preliminaries

In this section, we introduce the mathematical notation used in this article
and define the main concepts behind our proposal.

Definition 3.1 Mathematical notation We represent a vector m as a map of
the form {ki : vi}

p
i=1, where each ki is a key and each vi is a value (p ≥ 1). We

denote its domain as domm = {ki}
p
i=1 and its range as ranm = {vi}

p
i=1. Given

key k, we denote its value in vector m as m[k]. Given a real number z and
vectorsm,m1, andm2, we define the following operations:

m+ z = {ki : m[ki] + z | ki ∈ domm}

m− z = {ki : m[ki] − z | ki ∈ domm}

zm = {ki : zm[ki] | ki ∈ domm}
m/z =

{
ki :

m[ki]/z | ki ∈ domm
}

m1 +m2 = {ki : m1[ki] +m2[ki] | ki ∈ domm1 ∩domm2}

m1 −m2 = {ki : m1[ki] −m2[ki] | ki ∈ domm1 ∩domm2}

dist(m1,m2) =

√√√√ ∑
k∈domm1 ∩domm2

(m1[k] −m2[k])2

A matrix M is a map of the form {(i, j) : mi,j}
α,β
i=1,j=1 (α ≥ 1, β ≥ 1). Given

two indices 1 ≤ i ≤ α and 1 ≤ j ≤ β, we denote the component of matrix M
at position (i, j) asM[i, j].
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Table 3.1: Taxonomy of DOM node attributes.

Definition 3.2 Documents A document is a text file whose contents are en-
coded using the HTML mark-up language, which allows to represent it using
a DOM tree. Given a node a in a DOM tree, we denote its sequence of chil-
dren as childen(a), the area of its bounding box as area(a), and its attribute
vector as attr(a). Table

3.1 presents the attributes that we take into ac-
count, namely: style attributes, which are related to their display properties,
structural attributes, which are related to their DOM-tree properties, lexi-
cal attributes, which are related to properties of their textual contents, and
miscellaneous attributes, which are related to some syntax and statistical
properties.

Definition 3.3 Tables and cells A table is a grid that can be used to dis-
play data or to position other elements on the screen. They are represented as
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DOM sub-trees with a table root tag and their cells are represented as DOM
sub-trees with either td or th root tags. We are interested in tables that are
used to display data, which are commonly referred to as data tables. There
are three common layouts for data tables, namely: horizontal listings, which
are row-wise tables, vertical listings, which are column-wise tables, and ma-
trices, which are table-wise tables. According to the estimates by Crestan and
Pantel [

31], the previous table layouts amount to 86.30% of the data ta-
bles in the Web; the remaining 13.70% of the tables form a long tail in which
there are a variety of layouts whose individual frequencies are negligible; it
is also arguable whether some such layouts are actually data tables, po-
sitioning grids, or other types of diagrams [

39]. The cells can be either
meta-data cells, which provide semantic hints to understand the mean-
ing of the data, or data cells, which provide the data themselves†2. A group of
related meta-data cells is a header and a group of related data cells is a tuple.

Definition 3.4 Features A feature is a numeric characteristic of a cell that is
computed from the attributes of its DOM node, cf. Table

3.1. They can be
either base features, which are computed directly from the attributes, or devi-
ation features, which measure how different the base features of a cell are
from the features of the other cells in the same row, column, or table. Here-
inafter, we use κ to denote the number of base features; that is, there are a
total of 4κ features per cell if we take the deviation features into account.

Definition 3.5 Record sets A record set is a collection of records, which are
vectors of the form {di : vi}

r
i=1, where each di is a descriptor and each vi is a

value (r ≥ 1). The descriptors are computed from the meta-data cells, some of
which may be generated artificially in cases in which the original table does
not provide them; the values are computed from the data cells. Simply put: a
record highlights the relational nature of the data by making it explicit the
relation between the components of a tuple and their corresponding headers.

Definition 3.6 Table understanding Table understanding is the set of tasks
involved in the process of obtaining a record set given a document that
contains tables. It encompasses the following tasks with no specific order:
a) location, which identifies the excerpts of the input documents where the ta-
bles are located; b) discrimination, which discards the tables that do not seem

†2In theory, tag th must be used to encode meta-data cells and tag td must be used to en-
code data cells. Unfortunately, 34.96% of the tables in our experimental datasets encode
meta-data cells with td tags and 11.74% of them encode data cells with th tags. This clearly
motivates the need for a method to analyse the function of the cells independently from
how they are encoded.
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Figure 3.1: Pipeline and data flow of TOMATE.

to provide any useful data; c) segmentation, which transforms the ex-
cerpts into grids of cells; d) functional analysis, which identifies the functions
of the cells, that is, whether they provide data or meta-data; e) structural anal-
ysis, which identifies groups of related meta-data cells (the headers) and
groups of related data cells (the tuples); and f) interpretation, which trans-
forms the input tables into record sets in which the components of the tuples
are mapped onto their corresponding headers. TOMATE implements all of
these tasks in the order described in Figure

3.1.

Definition 3.7 Variation point A variation point is a stage of a proposal
with multiple interchangeable alternatives in which none of them stands
out from a conceptual point of view. Variation points require some experi-
mentation to decide the alternative to be used in the implementation. A
configuration maps every variation point of a proposal onto a specific al-
ternative. After the implementation of a proposal, a search algorithm is
performed to find the best configuration. Two notable examples of those
algorithms are grid search, which tests every possible configuration; and se-
quential search, which starts using a default configuration, and then adjusts
every variation point individually while updating the default configuration.
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3.3 Location

This task works on the input HTML documents and returns their raw
HTML tables, if any. It performs the following steps:

i. The input documents are downloaded using a headless browser, which
injects a script that decorates each HTML element with its attributes
before saving them, cf. Table

3.1.

ii. The documents are then transformed into their corresponding DOM
trees using a standard HTML parser.

iii. Every sub-tree whose root node has tag table is extracted using an
appropriate CSS selector.

These steps can be implemented very straightforwardly using commodity
technology, so we do not provide any additional details.

3.4 Segmentation

This task works on the tables returned by the previous task; for each of
them, it returns a new table in which every row has the same number of
columns and empty and factorised cells have been processed; it also re-
turns a matrix with the feature vectors of each cell and the context data
identified surrounding the table. This task performs the following steps:

i. The table is applied several pre-processing operations.

ii. The base features are computed.

iii. The deviation features are computed.

iv. All of the features are normalised.

v. Empty and factorised cells are processed.

Next, we provide additional details on each step.
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Step 1: pre-processing operations This step applies several pre-processing
operations to the input table and outputs a table with α rows and β columns
(α ≥ 1, β ≥ 1) using the following procedure:

i. If the dir attribute is present in either the table tag or any of its ances-
tors and its value is rtl, then the table is flipped horizontally. Thus, the
first column is always the left-most column.

ii. The maximum cell span is set to 200 cells. We think that it is very
unlikely that a correct table has such large cell spans; setting this
limit helps avoid overhead when processing tables that are incorrectly
encoded.

iii. The cells whose span is greater than one are replicated accordingly and
their span is set to one.

iv. The rows that are shorter than the largest row are padded to the right
using empty cells, which prevents outputting ragged tables.

v. Duplicated rows or columns are removed, except for the top-most and
the left-most ones.

Step 2: computing base features This step analyses the cells in the input
tables and outputs a matrix with their feature vectors.

First, it computes the attributes of the DOM nodes, cf. Table

3.1. The style
attributes are computed using a headless browser and most of the other at-
tributes are computed using straightforward procedures. The only attributes
that deserve a little more explanations are the “Is node repeated?” structural at-
tribute and the “Likelihood of being meta-data” miscellaneous attribute. The
former is a Boolean attribute that indicates whether more nodes with the
same path and content can be found in other tables in the set of input docu-
ments; the latter was pre-computed as follows using the Dresden Web Table
Corpus [

35]:

i. The tables in the corpus were cleaned by lower-casing their contents,
stripping white spaces, and replacing the digits with a generic “D” token.

ii. Every cell in the first row or column was flagged as a meta-data cell and
the remaining ones were flagged as data cells.

iii. Then, the meta-data likelihood of every cell was computed by divid-
ing the number of occurrences of its content in a meta-data cell by the
total number of occurrences of that content in the corpus.
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iv. The previous likelihood was adjusted using another heuristic, namely:
every cell in a row or column with an average meta-data likeli-
hood greater than 0.50 was considered meta-data; otherwise, it was
considered data.

v. The previous two steps were repeated five times, which was enough for
the likelihoods to stabilise.

Please, note that we do not claim that the likelihoods computed by the
previous procedure are strongly correlated to the probability of a particu-
lar content to be meta-data or data. It simply provides an estimate that has
proven to work well in practice when it is combined with the other attributes
that our proposal takes into account.

Next, we project the nodes onto feature vectors that are computed from
their attributes. Before computing them, we need to replace the composite at-
tributes by new attributes that represent their individual components and the
categorical attributes by binary attributes that represent them using one-
hot encoding. This simplifies working with the attributes since they all can be
assumed to be numeric from now on.

Then, for every node a, we compute its base features as follows:

bfeat(a) = ω1(a)attr(a) +
∑

b∈children(a)

ω2(a, b)bfeat(b)

ω1(a) = 1−
∑

b∈children(a)

ω2(a, b)

ω2(a, b) =
area(b)

area(a)

Note that the base features are computed as the weighted average of the
values of the attributes of node a and the base features of its children. The
weight of the attributes and the base features is computed taking into ac-
count the relative area of the bounding box of the corresponding node. ω1(a)
denotes the weight of the attributes of node a, which is computed as the per-
centage of the area of the bounding box of node a that depends exclusively
on that node, not its children. Similarly, ω2(a, b), where b ∈ children(a), de-
notes the percentage of area of the bounding box that depends on node b
relative to the total area of node a.

Step 3: computing deviation features This step takes the matrix of base fea-
tures as input and returns a new matrix in which each component has the
base features plus the deviation features.
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For every base feature f, we compute three additional deviation features,
namely: fr, which measures the deviation of feature f in a cell with regard to
the other cells in the same row, fc, which measures the deviation of feature f
in a cell with regard to the other cells in the same column, and ft, which mea-
sures the deviation of feature f in a cell with regard to the other cells in the
same table. To compute them, we need the following ancillary variables:

Ri =

β∑
j=1

1/βM[i, j] (1 ≤ i ≤ α)

Cj =
α∑
i=1

1/αM[i, j] (1 ≤ j ≤ β)

T =
α∑
i=1

β∑
j=1

1/(αβ)M[i, j],

where M denotes the matrix returned by the previous step and Ri, Ci, and T
are vectors with the per-row, per-column, and per-table averages of the base
features, respectively.

Assume now that {fp : vp}κp=1 is the base feature vector computed for the
cell at position (i, j). The deviation features are then defined as follows:

frp = (vp − Ri[fp])
2

fcp = (vp − Cj[fp])
2

ftp = (vp − T [fp])
2,

where 1 ≤ p ≤ κ.

Step 4: normalising features This step takes the α × β matrix with the 4κ-
dimensional vectors computed by the previous step and normalises the
values of the features so that they all range in interval [0.00, 1.00].

In the literature, we have found the following common approaches, where
Z denotes the set of values of a feature in a table, Z ′ denotes its set of nor-
malised values, Z∗ denotes the set of values of that feature across all of the
tables in our experimental datasets, and clamp denotes a function that clamps
the value to which it is applied into interval [0.00, 1.00]:

Global min-max: it normalises the values of a feature taking into account its
minimum and its maximum across all of the tables in our datasets,
namely:

Z ′ =

{
z− minZ∗

maxZ∗ − minZ∗
| z ∈ Z

}
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Local min-max: it is similar to the previous one, but the minimum and the
maximum are computed on a per-table basis, namely:

Z ′ =

{
z− minZ

maxZ− minZ
| z ∈ Z

}
Standard normal: it transforms the values of a feature into a set of val-

ues that are distributed according to a standard normal distribution that
is shifted to and clamped into our target interval, namely:

Z ′ =

{
clamp

(
z− meanZ+ stdevZ

2 stdevZ

)
| z ∈ Z

}
Softmax: it transforms the values of a feature into a set of probabilities that

are proportional to the exponential of each feature value, namely:

Z ′ =

{
ez1∑
z2∈Z e

z2
| z1 ∈ Z

}

Since of them stands out from a conceptual point of view, this is a
variation point.

Step 5: processing empty and factorised cells This step works on the in-
put table and returns a new table in which empty cells are identified and
removed if necessary and factorised cells are made explicit.

The first operation performed by this step consists in identifying the cells
that can be considered empty. Our proposal is to flag as such every cell whose
content consists exclusively of white spaces, dashes, asterisks, or question
marks. If the lang attribute is present in the table tag or any of its ances-
tors, then other language-dependent symbols are also considered, e.g., “N/A”
and “void” in English, “N/A” and “N/D” in Spanish, or “ND” and “S.O.” in French.

The second operation processes the factorised cells as follows:

i. First, full-span rows are identified. They are rows that originally con-
sisted of just one spanned cell. According to their positions, they can be
classified as top full-span rows, middle full-span rows, and bottom
full-span rows.

ii. If there is at least one middle full-span row and it is repeated every two
rows, then we analyse how similar the middle full-span rows are to the
last top full-span row and the first bottom full-span row by measuring
the Euclidean distance of their feature vectors. If they are more similar
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to the former, then the last top full-span row and every middle full-
span row are appended to the end of the next row as an additional
column. If they are more similar to the latter, then the first bottom full-
span row and every middle full-span row are appended to the end of
the previous row as an additional column.

iii. If the full-span rows are not repeated periodically, then the last top
full-span row and every middle full-span row are appended to the fol-
lowing rows as additional columns until another full-span row is found.
The new column can be placed either at the beginning or the end of the
row. To determine its position, we need to compute c as the average of
the deviation features per column, and r as the average of the devia-
tion features per row, excluding full-span rows in both cases. If r > c,
then the column is placed at the last position since the table is more
likely to be a horizontal listing and the factorised cells are more likely to
be spanned data. Otherwise, the column is placed at the first posi-
tion, since the table is more likely to be a vertical listing and the
factorised cells are more likely to be spanned meta-data.

The procedure is then repeated on a per-column basis to deal with ta-
bles that have full-span columns. Next, the rows and columns in which every
cell is empty or the result of repeating a spanned cell are removed. The re-
maining full-span rows or columns are removed and saved as context cells
that will be used in the interpretation task since they usually provide captions
or footnotes that are worth preserving.

Example 3.1 Figures

3.2,

3.3, and

3.4 illustrate how to process factorised cells.

The table in Figure

3.2.a shows data about a TV show. There is a mid-
dle full-span row that is repeated every two rows and it is clearly more
similar to the bottom full-span row than to the top full-span row. Our heuris-
tic indicates that they must be added to the right of the previous rows as an
additional column, cf. Figure

3.2.b.

The table in Figure

3.3.a shows data about the medals won by a basket-
ball player, grouped by competition. In this case, the middle full-span rows
are not repeated periodically and it is easy to realise that the per-row de-
viation is significantly higher, since the columns are very homogeneous.
According to our heuristic, this implies that a new column must be added to
the right of the table and the contents of the full-span rows must be replicated
for each row until a new full-span row is found, cf. Figure

3.3.b.
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No. Title Directed by Written by Original air date U.S. viewers

1 "Pilot" Bharat Nalluri Jason Rothenberg March 19, 2014 2.73 millions

2 “Earth Skills" Dean White Jason Rothenberg March 26, 2014 2.27 millions

3 "Earth Kills" Dean White Elizabeth Craft & Sarah Fain April 2, 2014 1.90 millions

 Set in an indeterminate year in the distant future, 97 years after a nuclear apocalypse has devastated the 

surface of Earth, all known humans are residents of merged orbiting space stations known as "The Ark". 100 

juvenile delinquents are sent to Earth's surface to test its habitability, having been given...

Chancellor Jaha recovers and learns of his son Wells' supposed fate on the ground. Abby recruits Raven, a 

zero-gravity mechanic, to fix a drop pod to send herself to the ground. Meanwhile on Earth, Clarke, Wells, 

Murphy, and Bellamy set out to rescue Jasper, who was taken by the grounders after being attacked...

In flashbacks, Clarke's engineer father Jake discovers a life support problem with The Ark, and is arrested for 

threatening to tell the people and "floated" by Jaha. In the present, Clarke, Finn, and Wells search for antibiotic 

seaweed to treat Jasper's wounds. Bellamy assembles a hunting group who are followed by...

a) Before processing the table.
No. Title Directed by Written by Original air date U.S. viewers

1 "Pilot" Bharat Nalluri Jason Rothenberg March 19, 2014 2.73 millions
Set in an indeterminate 

year in the distant future...

2 “Earth Skills" Dean White Jason Rothenberg March 26, 2014 2.27 millions
Chancellor Jaha recovers 

and learns of his son...

3 "Earth Kills" Dean White

Elizabeth Craft

&

Sarah Fain

April 2, 2014 1.9 millions
In flashbacks, Clarke's 

engineer father Jake...

b) After processing the table.

Figure 3.2: Factorisation of periodic full-span cells.

The table in Figure

3.4.a shows data about a comparative analysis of vac-
uum cleaners. In this case, the full-span rows are not repeated periodically
and the deviation per row seems to be smaller than the deviation per col-
umn. Thus, our heuristic suggests that a new column must be added to the
left and the contents of the full-span rows must be replicated to the new cells
until a new full-span row is found, cf. Figure

3.4.b.

3.5 Discrimination

This task takes a table returned by the segmentation task and keeps it or
removes it from the pipeline flow depending on whether it can be considered
a data table or not. It performs the following steps:

i. Tables whose width or height attributes are 0px or whose display attribute
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Silver  2012 London

Bronze  2016 Rio de Janeiro

Gold  2006 Japan

Gold  2011 Lithuania

Gold  2015 France

Silver  2007 Spain

Medals Men's basketball 

representing Spain (Pau Gasol)

Summer Olympics

World Cup

EuroBasket

a) Before processing the table.

Silver  2012 London Summer Olympics

Silver  2016 Rio de Janeiro Summer Olympics

Gold  2006 Japan World Cup

Gold  2011 Lithuania EuroBasket

Gold  2015 France EuroBasket

Silver  2007 Spain EuroBasket

Medals Men's basketball representing Spain 

(Pau Gasol)

b) After processing the table.

Figure 3.3: Factorisation of non-periodic full-span cells to the right.

is none are discarded†3.

ii. Tables that have a single row or a single column are discarded.

iii. Tables with an ancestor table tag, a descendant textarea tag, or a de-
scendant input tag with attribute type="text" are also discarded

†3. This
proved very useful to remove utilities like pagination controls that are
formatted as inner tables and input forms.

3.6 Functional analysis

This task takes a data table and its corresponding feature vector matrix
and returns an α × β matrix in which each component identifies the func-
tion of the corresponding cell plus some scores that help guess the orientation
of the input table. This task performs the following steps:

i. The dimensionality of the feature vectors is reduced.

ii. Candidate cell functions are computed.

iii. Cell functions are identified.

Next, we provide additional details on each step.
†3

For the sake of efficiency, TOMATE implements this operation during the location task
since this helps discriminate some tables without segmenting them.
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 Brand  Cecotec  iRobot  Xiaomi

 Model  Conga 4090  Roomba 960  Mi Robot 

 Dimensions  35 x 35 x 8 cm  35 x 35 x 9,1 cm  34,5 x 34,5 x 9,6 cm

 Price 349  422.92  278

 Suction Power  2700 Pa  900 Pa  1800 Pa

 Wet Mopping  Yes  No  No

 Run time  240 minutes  75 minutes  150 minutes

 Rating  4.2  4.5

Product details

Features

Others

a) Before processing the table.

Product details  Brand  Cecotec  iRobot  Xiaomi

Product details  Model  Conga 4090  Roomba 960  Mi Robot

Product details  Dimensions  35 x 35 x 8 cm  35 x 35 x 9,1 cm  34,5 x 34,5 x 9,6 cm

Product details  Price  349  422.92  278

Features  Suction Power  2700 Pa  900 Pa  1800 Pa

Features  Wet Mopping  Yes  No  No

Features  Run time  240 minutes  75 minutes  150 minutes

Others  Rating  4.2  4.5

b) After processing the table.

Figure 3.4: Factorisation of non-periodic full-span cells to the left.

Step 1: reducing feature dimensionality This step takes the α × β matrix
with the 4κ-dimensional vectors computed by the segmentation task and re-
turns an α × β matrix with new feature vectors that result from selecting
some features and then reducing their dimensionality.

Regarding feature selection, recall that we take four categories of features
into account, namely: style, structural, lexical, and miscellaneous. Conceptu-
ally, there is not a clear argument in favour of using any of them, so we need
to introduce a variation point in which we consider the following alterna-
tives: a) using all of the features, b) using a single category of features,
c) using combinations of two categories, and d) using combinations of three
categories. This results in a total of 15 alternatives.



62 Chapter 3. TOMATE: the HTML table extractor

Regarding dimensionality reduction, we need to introduce a new varia-
tion point with the following alternatives: a) not performing dimensionality
reduction, b) using Principal Component Analysis, which creates new uncor-
related features that consecutively maximise variance, and c) using feature
agglomeration, which merges the features that are similar using an agglomer-
ative clustering approach. We do not consider the more recent t-SNE method
because our preliminary experiments confirmed that its results are very poor
in our context; this method is very good at reducing a dataset to two or three
dimensions, which is appropriate for visualisation purposes but clearly not
enough to compute the functionality of the cells.

Step 2: computing candidate cell functions This step takes the α × β ma-
trix with vectors computed by the previous step and returns an α × β matrix
in which each component is the candidate function of the corresponding cell.

First, we cluster the cells into two clusters K1 and K2. The exact method
used is another variation point since it is not clear which one performs the
best. We consider the following alternatives: a) k-means using k-means++ as
the initialisation method and mini-batches when dealing with more than one
thousand cells, which is a well-known approach that typically performs very
well; and b) agglomerative clustering, which recursively merges pairs of clus-
ters that minimally increase the linkage distance until two clusters are found.
We could not use alternatives like DBSCAN, OPTICS, Mean Shift, or Affin-
ity Propagation because they are intended to find the optimal number of
clusters, which typically resulted in more than two clusters.

Finally, we need to determine which cluster corresponds to meta-data
cells and which one corresponds to data cells. We use a heuristic that builds
on the following variables: a) ri = (ai/β +

bi/α)/2, where ai and bi denote the
number of cells in the first row and column, respectively, that are in clus-
ter Ki; intuitively, ri measures the ratio of cells in cluster Ki that are in the first
row and column; thus, the higher ri, the higher the chances that clus-
ter Ki consists of meta-data cells since such cells are typically placed in
the first row or column (i ∈ {1, 2}). b) si = 1 − |Ki|/αβ; intuitively, si mea-
sures the one-complement of the relative size of cluster Ki; thus, the higher si,
the higher the chances that cluster Ki consists of meta-data cells since these
cells are typically a minority (i ∈ {1, 2}). c) ci = 1 −

∑
(p,q)∈Ki

√
p2+q2/|Ki|; intu-

itively, ci measures the closeness of a cluster to the top-left corner of a table;
thus, the higher ci, the higher the chances that cluster Ki consists of meta-
data cells since such cells are typically near the top-left corner of the tables
(i ∈ {1, 2}). Our heuristic assumes that the meta-data cells are in cluster K1
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and the data cells in cluster K2 if (r1+s1+c1)/3 ≥ (r2+s2+c2)/3; otherwise, we assume
that the data cells are in cluster K1 and the meta-data cells are in cluster K2.

Step 3: identifying cell functions We identify the functions of the cells
building on the previous candidate functions and the orientation of the table.

The orientation is guessed using three scores, namely: wr, which stands
for row-wise orientation, wc, which stands for column-wise orientation, and
wt, which stands for table-wise orientation. To compute them, we split the ta-
ble into the following regions: A1, which consists of the cell at position (1, 1),
A2, which consists of the set of cells at positions (1, j), 2 ≤ j ≤ β, A3, which
consists of the set of cells at positions (i, 1), 2 ≤ i ≤ α, and A4, which con-
sists of the set of cells at positions (i, j), 2 ≤ i ≤ α, 2 ≤ j ≤ β. Then, we use
two methods to compute the scores depending on the size of the table.

The first method is used with tables that have more than two rows and
more than two columns. It computes the scores as follows, where silh denotes
the Silhouette coefficient:

wr = silh{A1 ∪A2, A3 ∪A4}
wc = silh{A1 ∪A3, A2 ∪A4}
wt = silh{A1, A2, A3, A4}

The intuition behind the previous formulation is that the Silhouette score
is expected to be the highest when each of the clusters has only regions with
the same function; otherwise, it should drop. If a table has row-wise orienta-
tion, then regions A1 and A2 should consist almost exclusively of meta-data
cells, whereas regions A3 and A4 should have a majority of data cells;
that is: clustering {A1 ∪ A2, A3 ∪ A4} should have a better Silhouette coeffi-
cient than the others. If a table has column-wise orientation, then regions A1
and A3 should consist almost exclusively of meta-data cells, whereas re-
gions A2 and A4 should have a majority of data cells; that is: clustering
{A1 ∪ A3, A2 ∪ A4} should have a better Silhouette coefficient than the oth-
ers. Finally, if a table has table-wise orientation, then we have experimentally
found that computing the Silhouette coefficient of clustering {A1, A2, A3, A4}

provides a better estimate than the other clusterings. We also explored com-
puting wt as silh{A1 ∪ A2 ∪ A3, A4} since our intuition suggested that this
would result in the highest Silhouette score in the case of table-wise ta-
bles, but our experience confirmed that the Silhouette coefficient of clustering
{A1, A2, A3, A4} works much better.

However, the Silhouette coefficient tends to increase with the num-
ber of clusters, which makes the wt score artificially higher than it should be
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in the case of tables with only two rows or only two columns. We use a differ-
ent method with such tables. We first compute the average feature vector of
the cells that belong to each area Ai (which is denoted as ui), and then com-
pute the orientation scores by measuring the differences between the four
regions as follows (1 ≤ i ≤ 4):

wr = dist(u1, u3) + dist(u2, u4) − dist(u1, u2) − dist(u3, u4)
wc = dist(u1, u2) + dist(u3, u4) − dist(u1, u3) − dist(u2, u4)
wt = dist(u3, u4) + dist(u2, u4) − dist(u1, u2) − dist(u1, u3)

Assuming that each region has the function that corresponds to the major-
ity vote provided by its cells, the intuition is that we expect the score for a
given orientation to be the highest when we maximise the distance between
two regions that have different functions and when we minimise the distance
between two regions that have the same functions. Simply put, if we are deal-
ing with a row-wise table, then we expect the cells in regions A1 and A2 to be
meta-data cells and the cells in regions A3 and A4 to be data cells. There-
fore, their distances should be minimal. Any other combination of two
regions should have different functions with regard to each other and, there-
fore, their distance should be larger. Thus, we expect to maximise wr if the
distances between u1 and u3 and between u2 and u4 are high and the dis-
tances between u1 and u2 and between u3 and u4 are low, as long as
the correct orientation is row-wise. The reasoning is similar in the case of
column-wise or table-wise tables.

The procedure to identify the functions of the cells works as follows: a) if
the orientation is guessed to be row-wise or table-wise, then we set R to the
set of row indices in which the majority of cells are candidate meta-data cells;
otherwise, we set R = ∅; if the orientation is column-wise or table-wise, then
we set C to the set of column indices in which the majority of cells are candi-
date meta-data cells; otherwise, we set C = ∅. b) next, we declare as data the
cells at positions (i, j) such that i /∈ R and j /∈ C; c) now, we declare as meta-
data the cells at positions (i, j) such that i ∈ R and 1 ≤ j ≤ β or 1 ≤ i ≤ α
and j ∈ C; d) finally, if both R and C are non-empty sets, then we de-
clare as data the cells at positions (i, j) such that i ∈ R and 1+ maxC ≤ j ≤ β
or 1+ maxR ≤ i ≤ α and j ∈ C.

Example 3.2 Figures

3.5 and

3.6 illustrate our method to identify the
functionality of the cells.

Figure

3.5.a shows a table with data about the terrestrial planets of the so-
lar system. Figure

3.5.b shows the four regions in which we divide the table
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 Name Diameter Moons Rings

 Mercury 0.382 0 no

 Venus 0.949 0 no

 Earth 1.000 Moon no

 Mars 0.532
Phobos, 

Deimos
no

a) Sample input table.
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b) Regions and candidate functions.
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c) Orientation scores.
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d) Cell functions.

Figure 3.5: First method to correct cell functions.

 Day 1 21 41 61

 Total cases 27 239 37552 85203

a) Sample input table.
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b) Average vectors and candidate
functions.
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c) Results of the area distances.
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27 239 37552 85203

d) Corrected table functions.

Figure 3.6: Second method to correct cell functions.

and the candidate functions of the cells (black cells correspond to meta-data
cells and white cells correspond to data cells). Note that most candidate func-
tions are correct, except for the highlighted cells on the third column, which
seem more similar to the meta-data cells at the top than to the remaining data
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Figure 3.7: Canonical tables after functional analysis.

cells. To identify the correct functionality, we have to guess the orientation of
the table. This table has more than two rows and more than two columns, so
the first method must be used. Recall that it computes the three scores using
the Silhouette coefficient of three different clusters and guesses the orienta-
tion according to the highest one. Figure

3.5.c illustrates the three clusterings
that are analysed and their corresponding scores. In this example, the high-
est score is wr, which means that the table is assumed to be row-wise.
Therefore, the candidate functionality is corrected according to the major-
ity vote on a per-row basis; note that this assigns the correct functionality to
the two highlighted cells in the third row, cf. Figure

3.5.d.

Figure

3.6.a shows a table with data about the COVID-19 outbreak. It has
two rows only, so the second method to guess the orientation is used. If the
first method was used, the orientation would be estimated as table-wise, since
having so few rows makes the difference between the silhouette coefficient of
clusterings with different number of clusters artificially high and results in
the clustering with four clusters being selected. Figure

3.6.b illustrates the
four average feature vectors that are computed for the cells in each of the re-
gions. Note that vectors u1 and u3 refer to the regions that have the meta-data
cells, whereas vectors u2 and u4 refer to the regions that have the data cells.
Figure

3.6.c illustrates the operations performed to compute the distance of
the average feature vectors of the table. Since vectors u1 and u3 are very simi-
lar, the highest score is wc, which means that our heuristic considers that the
table is oriented column-wise. Figure

3.6.d shows the functionality returned
by the functional analysis task after the candidate functions are corrected.

Example 3.3 Figure

3.7 illustrates the four types of tables that result from the
functional analysis task, namely: a table with no meta-data cells, a ta-
ble in which they are at the top rows, a table in which they are on the left
columns, or a table in which they are at the top-left corner. The first case cor-
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responds to tables in which the clustering process cannot identify any rows
or columns with a majority of meta-data cells; such tables are common
in cases in which the reader can be assumed to understand the mean-
ing of the cells using their background knowledge as well as the context
around the table. The second and the third cases correspond to horizon-
tal and vertical listings, respectively; note that there are some listings in
which the meta-data cells are repeated several times for the sake of readabil-
ity, but the repetitions were removed by the segmentation task because they
do not provide any data of interest for the remaining tasks. The fourth
case corresponds to a matrix, which is typically a table with a few meta-
data cells and many data-cells; furthermore, the data cells in the first few
rows and columns act as indexers for the remaining data cells.

3.7 Structural analysis

This task works on a cell function matrix, a feature vector matrix, and the
orientation scores of a table. It returns the collection of headers and the
collection of tuples in the input table.

The procedure that this task executes is as follows. Note that it requires to
create some artificial meta-data cells. Such cells have contents that are gener-
ated according to a user-defined pattern. (Any pattern may be used as long as
the artificial meta-data can be clearly identified later.)

i. If there are not any meta-data cells, then we proceed as follows: if the
wr score that was computed by the functional analysis task is greater
than or equal to thewc score, then a new row of artificial meta-data cells
is added at the top of the table; otherwise, a new column of arti-
ficial meta-data cells is added to the left of the table. In the first
case, the headers are the column-wise blocks of artificial meta-data
cells and the tuples are the row-wise blocks of data cells; in the sec-
ond case, the headers are the row-wise blocks of artificial meta-data
cells and the tuples are the column-wise blocks of data cells.

ii. If there are one or more rows of meta-data cells at the top, then
each column-wise block of such meta-data cells is a header and each
row-wise block of data cells is a tuple.

iii. If there are one or more columns of meta-data cells on the left, then
each row-wise block of such meta-data cells is a header and each
column-wise block of data cells is a tuple.
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CL LNF

2017 2018

F.C. Barcelona 84 99

Atl. Madrid 74 58

Real Madrid C.F. 84 94

València C.F. 46 65

Villareal C.F. 63 57

Team

a) Sample input table.
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b) Collections of headers and tuples.

Figure 3.8: Sample results of structural analysis.

iv. Otherwise, there is a block of meta-data cells at the top-left corner. In
this case, we set R and C to the sets of row indices and column in-
dices with meta-data cells, respectively. Given a cell at position (i, j)
such that i /∈ R and j /∈ C, we define its row indexers as the set of cells at
positions {(i, k) | k ∈ C} and its column indexers as the set of cells at po-
sitions {(k, j) | k ∈ R}. In this case, the headers are the column-wise
blocks of meta-data cells plus |R|+ 1 artificial headers and there is a tu-
ple for each data cell at position (i, j) (i /∈ R, j /∈ C) that is composed of
its row indexers, plus its column indexers, plus the cell itself.

Example 3.4 Figure

3.8.a shows a sample table with some statistics about a
few Spanish soccer teams. Our proposal identifies it as a table-wise table that
has one meta-data cell at the upper-left corner and many data cells; the meta-
data cell is split into two individual cells by the segmentation task to take its
two-row span into account. It then computes four headers and ten tu-
ples. The first header is composed of the two meta-data cells; the others were
generated artificially using pattern $attr_i, where i denotes a sequential in-
dex (i ≥ 0). The tuples correspond to the cells in the body of the matrix plus
their corresponding row and column indexers.

3.8 Interpretation

This task takes the context cells output by the segmentation task and the
collections of headers and tuples returned by the structural analysis task
as input. It returns a collection of records that are expected to facilitate
processing the data in the input table automatically.
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Type A Type B

AMZN 2145 156 $ 234.89

NFLX 8922 302 $ 212.22

TSLA 123 22 $ 567.2

AAPL 4561 223 $ 892.99

Table 2.1: Top companies.

ValueCompany
Stock

a) Sample input table.
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b) Result of the interpretation task.

Figure 3.9: Sample result of the interpretation task.

Recall that records are modelled as maps of the form {di : vi}
r
i=1, where

each di is a descriptor and each vi is a value (r ≥ 1). The descriptors are com-
puted from the headers as follows: the meta-data cells in a header are
collapsed by catenating their contents using an appropriate user-defined sep-
arator (any separator can be used as long as it can be clearly identified in the
descriptors); in cases in which two adjacent meta-data cells have the same
content, the second one is ignored since, very likely, it resulted from split-
ting a spanned cell; in cases in which two resulting descriptors are the same, a
sequential index is added to disambiguate them. There must also be a user-
defined descriptor to represent the data in the context cells; as usual, any
descriptor is valid as long as it can be clearly identified.

The procedure to compute the output record set is straightforward: it cre-
ates a new record per tuple in which each component takes its value
from the corresponding data cell in the tuple and its descriptor from the
corresponding header, as explained before.

Example 3.5 Figure

3.9.a shows a sample table with some stock market data.
Our proposal identifies it as a row-wise table in which the first two rows are
composed of meta-data cells, then come some tuples, and there is a final con-
text cell. Note that the meta-data cells in the first and the last column have
vertical spans, which means that they are segmented as two independent
cells each. Note, too, that the meta-data cell in the last column actually spans
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two columns because the author of the table decided to format the values us-
ing a column to display the currency symbol and another column to display
the nominal value. The interpretation task results in the record set in Fig-
ure

3.9.b. Realise that the headers are “Company”, which corresponds to the
first component of the tuples, then come “Stock / Type A” and “Stock / Type B”,
which correspond to the second and the third component of the tuples, and
finally come “Value / 1” and “Value / 2”, which correspond to the fourth and the
fifth component of the tuples. In this example, we use symbol “/” to cate-
nate the contents of the original meta-data cells and create the descriptors.
Note that the caption to the table is identified as a context cell, which is added
to the resulting record set using the user-defined “$context” descriptor.

3.9 Case study

Our proposal was integrated into a hybrid geopolitical forecasting sys-
tem [

89]. It gets from 5 to 10 multiple-choice questions from IARPA every
week and forwards them to a crowdsourcing platform where the users are
asked to answer them. To help the users provide informed answers, it
presents charts with quantitative data and forecasts using machine-learning
models. HTML tables are plenty of relevant data for many of those questions.

Automation is very important because the questions posed to the system
are about current events and the data are not expected to be generally avail-
able in any major knowledge bases. Furthermore, the users are only expected
to perform clerical tasks, e.g., specifying the URL of a document with a table
of interest or mapping its headers onto the choices for a given question.

Our proposal helps extract data from the HTML tables that feed the sys-
tem, so that it can provide charts and forecasts. Figure

3.10 illustrates the
system in the context of El Salvador 2019 presidential election. Given a ques-
tion, the system searches the Wikipedia for documents that match that
question using a standard search engine. The user may select some docu-
ments with tables, like the one in Figure

3.10.a, and then activate TOMATE,
which analyses it as follows:

Location: it fetches the document and makes its attributes explicit, then
parses it to create its DOM tree representation, and finally selects the
sub-trees whose roots have tag table.

Segmentation: the first step pre-processes the input document as follows: in
this case there is no dir attribute, so the table does not need to be flipped
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a) Sample Wikipedia table with opinion polls.
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b) Results of functional analysis.
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c) Table after performing structural analysis.

d) Results of structural analysis.

Figure 3.10: Sample opinion poll from Wikipedia.
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horizontally; neither are there any cells that span more than 200 rows or
columns, so no correction must be performed; the three cells at the top-
left corner span three rows each, so they are replicated accordingly
(note that there are three rows at the top of the table: the first one has
the pictures of the politicians, the second one has the corresponding
party colour, and the third one has the names of the politicians and their
parties); in this case all of the rows have the same number of columns,
so no correction is performed; neither are there any duplicated rows or
columns, so none of them needs to be removed. The second step com-
putes the base features from the attributes of the DOM tree. The third
step computes the deviations of the previous features on a per-row, per-
column, and per-table basis. The fourth step identifies the empty cells
and processes the factorised cells; note that the second row of the ta-
ble consists exclusively of empty cells (with the party colours) and cell
that have resulted from spanning the “Data”, “Polling firm”, and “Sam-
ple size” cells; that is, our heuristic removes it from the table; there are
not any full-span rows or columns, so there are not any factorised cells
to process in this example.

Discrimination: the table in our sample document must be passed on to the
next task because it is visible to the user, it has more than one row and
one column, does not have any ancestor table, and it does not contain
any input elements.

Functional analysis: first, this task reduces the dimensionality of the features
that represent the cells, next computes the candidate cell functionality,
and then computes the final functionality. Figure

3.10.b illustrates its re-
sults. Note that the table is identified as a table-wise table, which is
correct but not evident on a first sight. Realise that the six cells at
the top-left corner are clearly meta-data cells that provide a seman-
tic hint for the data cells that are below them; but the remaining
cells in the corresponding rows do not actually provide any meta-
data, but data that consists of the pictures of the politicians plus their
names and the names of their parties.

Structural analysis: since the functional analysis identifies a unique block of
meta-data cells at the top-left corner, the table is a matrix. The struc-
tural analysis task creates three headers from the meta-data cells, i.e.,
("Date"), ("Polling firm"), and ("Sample size"), plus two artificial head-
ers for the data cells in the first two rows, i.e., ("$attr_0") and ("$attr_1"),
plus an additional artificial header for the cells in the body of the ma-
trix, i.e., ("$attr_2"). The tuples combine each of the cells in the body
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of the matrix with their corresponding row and column indexers.
Figure

3.10.c illustrates the results of this task.

Interpretation: this task leverages the results of the previous tasks and
creates a record set in which the data in the tuples are explicitly associ-
ated with the descriptors that are computed from their corresponding
headers. For instance, this is the first record returned by this task:
{

"Date": "30 July 2018",
"Polling firm": "CID-Gallup",
"Sample size": "806",
"$attr_0": "Carlos Calleja",
"$attr_1": "Calleja (Alianza por un nuevo país)",
"$attr_2": 24

}

The system shows the user the results of the interpretation task and helps
him or her decide on which records and which of their components must be
used to feed the machine-learning engine that is responsible for generating
the forecasts, which are shown in charts like the one in Figure

3.10.d. More
sophisticated automatic approaches are currently being evaluated [

94,

121].

3.10 Summary

In this chapter we have presented TOMATE, which is an automated
method to extract data from HTML tables. Given one or more input HTML
documents, it locates the tables, segments them, discriminates the ones that
provide data, analyses the function of their cells, finds their structure, and
provides an interpretation as a record. Our most important contribution is re-
garding the functional analysis task: we project the cells of the input tables
onto a feature space in which we first perform reduction and then cluster-
ing to find the candidate functions; the final functions are computed taking
into account the orientation of the input tables.

TOMATE can deal with all of the common problems that we have found
with other proposals in the literature: regarding the table layouts, it can deal
with horizontal listings, vertical listings, and matrices; regarding the format-
ting problems, it can deal with tables that have multi-line headers, no headers
at all, context cells, repeated headers, or factorised cells; regarding encod-
ing problems, it can deal with tables that have inconsistent row lengths or
tables that use tags td and th incorrectly.
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Chapter4

ExperimentalanalysisA
good experimental study is mandatory to prove that our proposal
performs correctly and outperforms the others in the literature,
which is our goal in this chapter. It is organised as follows: Sec-
tion

4.1 introduces this chapter; Section

4.4 presents the proposals
with which we have confronted TOMATE; Section

4.2 reports on the datasets
on which the experiments were run; Section

4.3 describes the variation points
in TOMATE and how we configured them; Section

4.5 presents our re-
sults; Section

4.6 confirms that our results are statistically sound; and Section

4.7 summarises our conclusions.

75
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4.1 Introduction

Our experiments consisted in running TOMATE and the proposals that
we presented previously on our two datasets. The proposals were imple-
mented using the Python 3.6 language, Selenium, BeautifulSoup, and the
Scientific Python ecosystem. The experiments were run on a Windows 10 Pro
computer that was equipped with an AMD Ryzen 5 3600X processor with six
3.79 GHz cores and 16 GiB of DDR4 RAM memory.

We addressed the evaluation using the 3-fold cross method. In the case of
TOMATE and the proposals by Yoshida et al. [

136], Jung and Kwon [

64], and
Embley et al. [

40] the training splits were ignored because these propos-
als do not require to learn any models; in the case of Nishida et al.’s [

96]
proposal, the training splits were used to fit their neural network.

We measured the performance of the proposals in terms of effectiveness
and efficiency. Regarding effectiveness, we computed precision (P), recall (R),
and the F1 score (F1); regarding efficiency, we computed the average number
of CPU seconds to process each table (Time). The effectiveness measures were
computed by averaging the results on the three testing splits that we got from
each dataset. The efficiency measures were also averaged across the three
testing splits; in the case of Nishida et al.’s [

96] proposal, the training time
was apportioned amongst all of the tables in the corresponding testing splits.

To confirm that our conclusions are sound, we performed a statistical
analysis at the standard confidence level. The ultimate goal of such an analy-
sis is to compute a ranking of proposals in which the differences in rank are
proven to be statistically significant. Simply put, the goal is to discern if the
differences regarding a particular performance variable are inherent to a par-
ticular proposal or an unfortunate consequence of outliers that may distort
the average. We used a common approach in the literature to perform the
analysis [

47,

112], namely: first, the empirical ranking is computed using each
of the performance measures; second, an omnibus test is used to deter-
mine if there are any significant differences in the empirical ranks; if there
are, then it proceeds to perform a post-hoc test to compare the propos-
als to each other and find out which exact differences in rank are statistically
significant. Which tests must be used depends on whether the experimen-
tal results are normally and homocedastically distributed or not, which can
be checked using Shapiro-Wilk’s and Levene’s tests, respectively. If they are,
one can use ANOVA-F as the omnibus test and Dunnett’s as the post-
hoc test; otherwise, one can use Iman-Davenport’s as the omnibus test and
Bergman-Hommel’s as the post-hoc test.
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4.2 Datasets

We assembled two large experimental datasets with real-world tables that
were fetched from the English Wikipedia [

128] and the subset of English
documents in the Dresden Web Table Corpus [

35]. We sampled enough docu-
ments from these repositories to assemble two datasets with 1 496 and
1 513 tables, respectively. In the case of the Wikipedia, we only selected
user-generated tables, since the data in tables that are generated using tem-
plates like infobox, navbox, or sistersitebox can be readily extracted by major
knowledge bases.

We created a ground truth from the previous datasets with the help of
four independent annotators. They were presented the tables found and the
segmentation computed by TOMATE; they had to classify the tables ac-
cording to their layout as horizontal listings, vertical listings, matrices, or
unknown, and their cells as either meta-data or data cells. Their agreement to
annotate the ground truth was very good: they annotated 84.24% of the ta-
bles with the same layout and 97.58% of the cells with the same functionality;
the Krippendorff Alpha coefficients were 80.36% and 96.11%, respectively.
This degree of agreement was considered very good and enough to trust our
ground truth for evaluation purposes. The relative disagreement regarding
table layouts was mainly due to matrices, since the authors of the original ta-
bles used a variety of formats that made it difficult to agree on whether they
were actual matrices or listings in many cases; however, the agreement re-
garding the cell functionality is almost perfect, which makes our datasets
excellent to assess how the compared proposals perform on real-world tables.

Figure

4.1.a reports on the dimensions of the tables in terms of rows and
columns: the darker a dot, the more tables with the corresponding dimen-
sionality, but realise that the scale of colours is exponential due to the large
number of tables in our dataset. Note that most of the tables have less than
10 columns and less than 10 rows and that the DWTC tables are usu-
ally smaller and more unbalanced regarding their dimensions. Figure

4.1.b
reports on the table layouts in our datasets, namely: 70.65% of the ta-
bles are horizontal listings, 18.69% are vertical listings, 9.68% are matrices,
and 0.97% of the tables have an unknown layout. Clearly, horizontal listing is
the most common layout, chiefly in the case of the Wikipedia dataset. Fig-
ure

4.1.c reports on the cells in our datasets: overall, there are 190 600, 89.42%
of which are data cells and 10.46% of which are meta-data cells. This distribu-
tion is not surprising since, typically, a single meta-data cell can be used to
endow many more data cells with semantics.
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a) Number of tables according to their dimensions.

b) Frequency of table layouts.

c) Frequency of cell functions.

Figure 4.1: Comparative statistics about our datasets.

Table

4.1 provides an additional insight into the formatting and encod-
ing problems considered in this article. Note that 64.41% of the tables have
one or more extraction problems, which is a very large percentage.

Regarding the formatting problems, it is interesting to note that 14.39% of
the tables have multi-line headers, but the figure raises to 22.54% of the ta-
bles in the Wikipedia dataset; the reason might be that the authors of
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Table 4.1: Frequency of table extraction problems by dataset.

Wikipedia tables tend to provide a homogeneous format and they commonly
use structured headers that provide as much context as possible to inter-
pret the corresponding data cells; in the case of the DWTC dataset, only a
6.15% of the tables rely on multi-line headers; the reason might be that the ta-
bles were gathered from many different sites in the Web, which means that
they are not homogeneous at all. The previous hypothesis might be partially
supported by the percentage of tables with no headers: note that only 4.69%
of the tables in the Wikipedia dataset do not provide any headers, whereas
this indicator raises to 13.70% in the case of the DWTC dataset. Finally, note
that there are about 1.82% and 0.83% of tables that have factorised cells or re-
peated headers; the figures are not as large as was the case with the previous
problems, but they definitely contribute to the number of different formatting
problems with which a good proposal to extract data from tables must deal.

Regarding the encoding problems, it is interesting to realise that 25.38% of
the tables in the Wikipedia dataset and 3.94% of the tables in the DWTC
dataset have inconsistent row lengths; this is clearly due to the fact that the
tables in the Wikipedia dataset were encoded by a person, whereas many of
the tables in the DWTC dataset were encoded by a machine. It is also inter-
esting to realise that 34.96% of the meta-data cells are encoded using td
tags and 11.74% of the data cells are encoded using th tags. These fig-
ures are not surprising in the case of the Wikipedia tables because they are
encoded manually; in the case of the DWTC the conclusion is that develop-
ers seem to forget that they must use the th tag to encode meta-data cells (note
that the figure raises to 53.15% of the tables in this dataset). Our conclu-
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Table 4.2: Average performance of each alternative to configure TOMATE.

sion is that these figures clearly justify the need for specific-purpose methods
to identify the functionality of the cells.

4.3 Variation points

We performed a grid search to find the best alternatives to implement the
variation points in TOMATE. There are several variation points in TO-
MATE, which allow to fine tune it. We experimented on both datasets,
performing a grid search to implement the variation points in TOMATE. Re-
call that there are four variation points, namely: how to normalise the
features (four alternatives), which categories of features must be selected
to produce the candidate functionalities (fifteen alternatives), which tech-
nique must be used to reduce their dimensionality (three alternatives), and
which technique must be used to perform the clustering (two alternatives).
This results in a total of 360 configurations that were explored in sequence.
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Table

4.2 shows a summary with the average performance attained by
each alternative on our experimental datasets, which was computed as the
average performance in all of the experiments in which that alternative was
used.

Regarding normalisation, we found that the min-max global alternative
was the best. We realised that min-max local normalisation or the SoftMax
normalisation usually give more importance to features that are not signifi-
cant for a person, e.g., padding, which usually ranges from 1 to 5 pixels. We
also realised that the standard normalisation works significantly worse be-
cause there are many feature values that are normalised as +1.00, which
results in clusters that group cells that are actually very different.

Regarding feature selection, we found that there are two good alterna-
tives, namely: using the four categories of features together or leaving the
lexical features out. Furthermore, we observed that using a single feature
group does not suffice in most experiments because each group of fea-
tures provides some discriminatory power that cannot be replaced by any of
the other groups.

Regarding feature reduction, we found that using a dimensionality reduc-
tion technique improves the results. The best result was obtained using
feature agglomeration, both regarding effectiveness and efficiency.

Regarding the clustering method, we found that both alternatives pro-
vide fairly similar results. However, the performance of the agglomerative
clustering method is slightly better than k-means. We profiled our implemen-
tation and we found out that the difference was due to the initialisation
procedure in k-means.

The previous analysis helps have an overall understanding of how each
alternative performs. To make a decision, we need to analyse the top configu-
rations. Table

4.3 reports on the top 10 configurations according to their F1
score. The best two alternatives provide very similar precision, recall, and F1
score, but the second one is faster. We profiled our implementation and we
found out that the reason is that the second alternative does not require to
perform any regular expression match because it does not use any lexi-
cal features. The decision regarding which of the alternatives should be
selected was difficult. We finally leaned towards the top one because we es-
timated that difference regarding efficiency would not be significant for
practical purposes, but the difference regarding effectiveness would be.
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Table 4.3: Top 10 TOMATE configurations according to the F1 score.

4.4 Compared proposals

Assuming that several proposals are confronted with exactly the same
tables, their overall effectiveness depends completely on their ability to per-
form the functional analysis task correctly, since the structural analysis and
the interpretation tasks can be implemented using a common procedure. Our
experimental approach borrowed the location, segmentation, and discrimina-
tion tasks from TOMATE, since this allowed us to confront different proposals
on exactly the same tables; we then implemented the functional analysis task
using the proposals by Yoshida et al. [

136], Jung and Kwon [

64], Embley et al.
[

40], and Nishida et al. [

96], which resulted in different subsets of meta-data
and data cells; finally, we applied the structural and interpretation proce-
dures in TOMATE to extract the data. Below, we provide an overall picture of
the competitors; the reader should consult the references to learn the details.

Yoshida et al. [

136] devised an Expectation Maximization method in
which cell functions and table layouts are iteratively adjusted using a proba-
bility model that relies on the contents of the cells. The authors did not
describe the initialisation strategy or the stopping criterion used, so we re-
sorted to a common approach in the literature: we initialised the probabilities
with random values, we adjusted them in 10 iterations, we repeated the
process 100 times, and we kept the best result only.

Jung and Kwon [

64] proposed seven heuristics to identify meta-data cells.
They rely on style and syntax features, and each of them results in a binary ta-
ble in which the cells are labelled as either data or meta-data. Then, these
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Year Artist Album Label Tracks

2001  Film  Rolling  Projector  6 tracks

2003  The Rising  Future Unknown  Maverick  11 tracks

2004  The Rising  Live Shine  Maverick  5 tracks

2007  Michael Johns  Michael Johns  - 12 tracks

2008  Michael Johns  Another Christmas  TRP records  1 track

2009  Michael Johns  Don't Look Down  TRP records  17 tracks

a) Table with a highlighted numeric column.

 Member  B. May  R. Taylor  F. Mercury

 Role  Guitar  Drums  Lead vocals

 Alt. role  Keyboards  Vocals  Piano

 Born  1947  1949  1946

b) Table with non-repeated values.

Figure 4.2: Sample tables from Wikipedia.

tables are combined using a linear interpolation method whose weights were
estimated by the authors using a hill-climbing procedure.

Embley et al. [

40] devised an algorithm whose emphasis is on identify-
ing a number of critical cells that help delimit the header and the data areas of
a table. The clever part of this proposal is the procedure that shifts the criti-
cal cells so as to identify which regions of the table can be used as indexers for
the other regions, which basically helps make meta-data cells apart from data
cells.

Nishida et al. [

96] proposed a deep neural network that encodes the cells
as fixed-size vectors using a long short-term memory approach to compute
their semantic representations. Then, a third-order tensor that represents the
table was connected to a convolutional layer and a sequence of filters to com-
pute a likelihood for every table layout. The cell functions can then be easily
inferred according to the table layout.

4.5 Experimental results

Table

4.4 presents our experimental results. For each proposal, we report
on its performance measures in the Wikipedia and the DWTC datasets inde-
pendently, plus its overall average performance on both datasets. We first
group the results according to the table layout and then present the aggre-
gated results on all layouts. The best results in each group are highlighted in
boldface.

Our proposal attains the best overall precision, recall, and F1 score in both
datasets. Regarding horizontal listings, Nishida et al.’s [

96] proposal attains a
better precision and F1 score in the Wikipedia dataset, since simple horizontal
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Legend: P0 = TOMATE; P1 = Yoshida et al.’s [

136] proposal; P2 = Jung and Kwon’s
[

64] proposal; P3 = Embley et al.’s [

40]; P4 = Nishida et al.’s [

96] proposal.

Table 4.4: Experimental results of table extraction proposals.

listings are much more frequent. We have found that the problem with this
layout is that our orientation detection method tends to classify some hori-
zontal listings as matrices when the first rows and columns are very different
from the others; for instance, see the “Year” column in the table in Figure

4.2.a.

The proposal by Yoshida et al. [

136] did not attain the best result regard-
ing any of the measures since it builds on the assumption that the meta-data
cells usually have the same common contents across different tables, but the
variety of topics covered by Wikipedia tables does not meet this assumption.
Their frequency-based approach also has problems when processing cells
with numeric contents, since many of them occur only once in the datasets.

The proposal by Jung and Kwon [

64] works reasonably well on horizontal
listings, but it is less effective when processing other layouts. We found that
the main source of errors are some data cells that the user highlights in a way
that resembles meta-data cells; for instance, see the “Year” column in the ta-
ble in Figure

4.2.a. Style and structural features provide good hints to identify
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the function of a cell, but they are very dependent on an author’s preferences.
Contrarily, lexical features are less dependent on such preferences.

The proposal by Embley et al. [

40] is significantly faster than the others,
but it has some problems when dealing with listings. We found that tables
with no repeated contents are interpreted as matrices with one row and one
column of headers, e.g., see the table in Figure

4.2.b. This technique was de-
vised to extract data from spreadsheets by analysing the column and row
content repetitions, and trying to find a set of rows and columns that in-
dex the rest of the data. However, the tables in our dataset do not typically
have many repeated values and matrices are not the most frequent layout.

The proposal by Nishida et al. [

96] is the one that obtains the closest
results to TOMATE. However, it seems to be the most inefficient because it re-
lies on using neural networks that are very complex from a computational
point of view. This proposal works well when extracting tables with a lay-
out that is similar to other tables in the training set. Note that it attains good
results with the tables in the Wikipedia dataset in which there are many simi-
lar tables regarding the climate, sports results, books, or TV shows, just to
mention a few examples.

4.6 Statistical analysis

In this section, we analyse our experimental results from a statistical point
of view [

47,

112]. Our goal is to compute a ranking of the proposals that we
have compared and to make sure that it is statistically sound.

We first checked our experimental results for normality and homoscedas-
ticity using Shapiro-Wilk’s and Levene’s tests, respectively. We do not
provide a specific chart regarding the results of these tests because the
p-value that we got was zero or nearly zero in every case, which is a
strong indication that the experimental results are neither normal nor ho-
moscedastic. It then proceeds to use Iman-Davenport’s as the omnibus test
and Bergman-Hommel’s as the post-hoc test.

Tables

4.5.a–d show the results of the post-hoc tests regarding our perfor-
mance measures. In each case, we present the empirical ranking that is
computed from our experimental results in the first two columns; the next
two columns present the F statistic that is computed by Iman-Davenport’s
test and its corresponding p-value; the following three columns report
on the proposals compared, the Z statistic that is computed by Bergman-
Hommel’s test and its corresponding p-value. The cells that correspond to
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c) Analysis of the F1 score.
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b) Analysis of recall.
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d) Analysis of time.

Legend: P0 = TOMATE; P1 = Yoshida et al.’s [

136] proposal; P2 = Jung and Kwon’s
[

64] proposal; P3 = Embley et al.’s [

40]; P4 = Nishida et al.’s [

96] proposal.

Table 4.5: Statistical analysis of table extraction proposals.

p-values that are smaller than the standard significance level (α = 0.05) are
highlighted in grey to facilitate the interpretation.

Note that TOMATE ranks the first regarding precision, recall, and the F1
score, but the third regarding time. Iman-Davenport’s test returns a p-
value of 0.00 in every case, which is a very strong indication that there are
experimental differences in the empirical rankings. It then proceeds to ap-
ply Bergman-Hommel’s test to compare the empirical rank of every proposal
to every other. Note that the differences are statistically significant in almost
every case, which confirms that TOMATE actually ranks the first regard-
ing precision, recall, and F1 score and also that the differences in rank
regarding to the techniques immediately after is statistically significant.

Unfortunately, the improvement regarding effectiveness comes at the cost
of some inefficiency when compared to the other proposals. The empiri-
cal ranking establishes that Embley et al.’s [

40] proposal (P3) is the quickest
one, but realise that it ranks at the fourth position regarding the effective-
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ness measures; it also establishes that Jung and Kwon’s [

64] proposal (P2)
ranks at the second position regarding efficiency, but it ranks the third regard-
ing the effectiveness measures. Bergman-Hommel’s test confirms that the
previous differences in rank are statistically significant.

Summing up: the statistical analysis confirms that TOMATE is 5.68% more
effective than the second best proposal in the ranking, which is a supervised
one. Note, too, that it is 24.11% better than the third proposal in the rank-
ing, which does not require any supervision. This improvement makes it a bit
more inefficient, but it takes an average of 0.09 CPU seconds to process each
of the tables in our datasets, which we think is good for practical purposes.

4.7 Summary

In this chapter, we have compared TOMATE with 5 state-of-the-art com-
petitors. First, we have performed a grid search in order to find the best
configuration of TOMATE. Then, we have evaluated every alternative with
two large table datasets, to measure both their efficiency and their perfor-
mance overall and in a per-layout basis. Our proposal attains the best overall
precision, recall, and F1 score in both datasets, and our statistical analysis con-
firmed that TOMATE ranks the best among the compared proposals. Note
that it is 24.11% better than the next proposal in the ranking which does not
require any supervision and 5.68% more effective than the best super-
vised one. This improvement makes it a bit slower, but it takes an average of
0.09 CPU seconds to process each of the tables in our datasets, which we
think is good for practical purposes.
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Chapter5

Conclusions

The Web has become one of the most common communication means. It
provides a vast repository of data about a plethora of topics. Many such
data are encoded using human-friendly HTML tables, which makes it diffi-
cult to integrate them into automated business processes. There has been a
rapid rise of data-hungry products and services in the recent years, which
have motivated the need for automatic web data extractors.

In this dissertation, we have studied the problem of extracting data from
HTML tables with no supervision. Our extensive review of the literature re-
vealed that none of the available proposals provided a holistic approach to
solve this problem since most of them have difficulties to deal with the long
tail of challenges to be taken into account. This motivated us to work on a
proposal to overcome them.

We have devised and implemented TOMATE, which is a table extrac-
tion proposal that encompasses every task, from locating the HTML excerpts
containing tables to transforming them into schema-less records that can
be easily adapted for the application of interest. It focuses on the cru-
cial cell function analysis step by clustering the cells according to their
features. In future, we would like to explore unsupervised learning ap-
proaches as a way to deal with the long tail of minor problems without
exploring each of them individually.

Furthermore, we produced some marginal contributions while working
on the main ones. Initially, we designed AQUILA, a supervised general-
purpose extraction tool intended to synthesise meta-data tags for HTML
documents. The amount of effort required to build and curate annotations
motivated us to work on Kizomba, an unsupervised take on the previ-
ous problem that is based on identifying recurrent representation patterns in
the Web. Web tables were one of the most frequent patterns, and while study-
ing how to extract them we realised that their difficult encodings required a

89
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specific-purpose proposal. During the development of TOMATE, we stud-
ied better approaches to feature selection and clustering, which motivated us
to work on Romulo, which is a multi-way single-subspace approach to
clustering.

Last, but not least, we would like to highlight that the work that was car-
ried out during the development of the previous results led to setting up a
start-up company in an international context.

Summing up, assuming that our research hypothesis is accepted, we think
that we have sufficiently proven our thesis. We hope that our results can ef-
fectively help companies reduce the effort involved in obtaining up-to-date
data about a plethora of topics. We also think that we have opened up an
interesting research path that may soon lead to new research results.



AppendixA

Aquila: synthesisofmeta-data tags
forHTMLfilesA

quila is a supervised proposal to generate meta-data tags from
HTML documents. It is organised as follows: Section

A.1 intro-
duces our proposal; Section

A.2 reports on the related work;
Section

A.3 provides an overall picture of its design; Section

A.4
reports on our experiments; finally, Section

A.5 presents our conclusions and
some future work.
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A.1 Introduction

The data in an HTML document can be easily endowed with seman-
tics by using meta-data tags that can be encoded using RDFa, JSON-LD,
Microdata, or Microformats. Such tags either provide links to the correspond-
ing entities in an external knowledge graph or to the corresponding types in a
vocabulary. Simply put, they pave the way for software agents that can eas-
ily sift through HTML documents and understand their data, which is
particularly interesting in the case of search engines. Unfortunately, a re-
cent analysis of the November 2018 Common Crawl revealed that only
29.20% of the domains provide meta-data tags [

11].

In the literature, there are a few approaches to overcome this problem,
namely: proposals to synthetise meta-data tags that target Content Man-
agement Systems (CMS) [

5,

93], text editors that authors can use to add
meta-data tags to their documents [

37,

52], proposals that attempt to link
data records in an HTML document to entities in an external knowledge
graph [

16,

36], and a recent proposal [

98] that can identify new entities in ta-
bles that are not in the external knowledge graph and map their properties
onto the corresponding vocabulary. However, none of these proposals pro-
vides a general solution to the problem of synthetising meta-data tags for
HTML documents with arbitrary structures. This motivated researchers to
exploring graph embedding techniques [

20,

49,

126] because the problem of
synthesising meta-data tags in a DOM tree can be straightforwardly mapped
onto a node classification problem. Unfortunately, the results were not good
at all since the best F1 score attained on our evaluation dataset was 0.69.

The previous problems inspired us to work on a new proposal to synthe-
sise meta-data tags that links the data in an HTML document to their types in
a vocabulary. It targets documents that provide semi-structured data and it
does not require any external resources. It builds on a new graph embedding
technique that preserves the original attributes of the nodes and does not re-
quire to preset an embedding size. Basically, it finds a common path in
the DOM trees of a set of HTML documents that identifies a subset of
DOM nodes whose attributes help learn a good tagger. We have experi-
mented with four state-of-the-art embedders on a repository with 40 datasets
on eight topics that were collected from a variety of popular sites; our conclu-
sion is that our proposal can attain an F1 score as high as 0.78, whereas the
best F1 score attained by the other embedders is 0.69. Summing up, we think
that ours is a novel and promising approach to the problem.
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A.2 Related work

A few natural language tagging proposals provide a solution to this
problem. Dodero et al. [

33] described a methodology that can be used to re-
engineer a software system so that it produces HTML documents with
meta-data tags. However, we restrict our attention to proposals that can be
plugged into existing systems. Adrian et al. [

5] presented a method that
matches noun phrases in an HTML document onto a knowledge graph,
Ngomo et al. [

93] presented the architecture of a module that can be inte-
grated in a CMS so that it can generate HTML documents with meta-data
tags, Eldesouky et al. [

37] and Guerrero-Contreras et al. [

52] decribed editors
that helps content producers include meta-data tags in their text without re-
quiring any technical knowledge. Unfortunately, these proposals cannot be
applied in our context because they all rely on natural-language components,
but do not work well with semi-structured data, which is a non-grammatical
encoding.

More recent tagging approaches focus on semi-structured data. Burget
[

16] devised a proposal that computes a collection of tags for non-
overlapping rectangular areas of HTML documents. Efthymiou et al. [

36]
focused on HTML tables by using three basic approaches that were also hy-
bridised, namely: a look-up method, a word-embedding method, and an
ontology-matching method. Oulabi and Bizer [

98] presented a proposal fo-
cused on HTML tables that performs schema matching and clustering in an
attempt to augment an external knowledge graph. Unfortunately, these pro-
posals require a knowledge graph per domain and all of the entities in the
input HTML document must be recorded in that knowledge graph. Further-
more, the proposals that focuses on tables [

36,

98] assume that data are
organised in rows, each column corresponds to an attribute, and there are
headers that provide hints on the attributes.

We also studied graph embedding proposals [

20,

49,

126], since the prob-
lem of synthesising meta-data tags in a DOM tree can be straightforwardly
mapped onto a node classification problem. We have implemented a tag-
ger using some state-of-the-art graph embedders but the results were not
good at all since the best F1 score attained on our evaluation dataset was 0.69.
We believe that the problem with such embedders is that they just at-
tempt to preserve the distance between the nodes connected by an edge, but
the classification power of the original attributes is lost in the embedding.
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A.3 Our proposal

Aquila is intended to learn a meta-data tagger (or tagger for short),
which is a classifier that works on an embedding of a node; the embed-
ding, in turn, is a map with its attributes and the attributes of its neighbours
along a given path. The key of our proposal is to find the path that results in
an embedding from which the best possible classifier can be learnt.

To do so, it first learns a classifier given a ground truth and a path. The
documents in the ground truth have annotations, which are mappings that
make it explicit the meta-data tag that corresponds to each DOM node to-
gether with its attributes. The documents in the ground truth are split into
a learning set and a validation set. To learn a classifier it uses a base
learner [

129] on the learning set and assesses how good it is on the docu-
ments in the validation set; the assessment is computed as a normalised score
in interval [0.00 . . 1.00] (the greater, the better). Note that the classifier re-
turned by the first step is learnt using an empty path, which means that it is
learnt from the attributes of the nodes themselves.

Then, it iteratively attempts to extend the path by finding neighbours
whose attributes help learn a better classifier. On each iteration, it explores
the links that extend the current path to the parent node, the left node, and
the right node. For each such extended path, it learns a new classifier build-
ing on the attributes of the nodes and their neighbours along the extended
path. If the score of the new classifier is greater than the previous one, it is
then kept; otherwise, it is discarded.

The method returns the best classifier found and its corresponding path.
Given a new document, it must be transformed into a embedding set with the
attributes of the nodes and their neighbours along the path and then the clas-
sifier must applied in order to predict a meta-data tag for each node. Note
that it finishes when no extension of the current path allows to learn a better
classifier. This is guaranteed to happen because the method works on DOM
trees, which are finite by definition. That means that the method eventually
reaches the root node, which does not have any parent, left, or right siblings.

A.4 Experimental analysis

Figure

A.1.a summarises the datasets that we used to evaluate our pro-
posal. Each dataset consists of 30 documents that were downloaded from a
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a) Description of our web data extraction datasets.
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b) Performance results of tagger proposals.

Table A.1: Experimental results of Aquila.

popular web site in the corresponding category. The categories were ran-
domly selected from The Open Directory and the web sites were randomly
selected from the 100 best ranked sites in each category according to Google’s
search engine. The datasets were split into learning sets with four documents,
validation sets with two documents, and testing sets with 24 documents.
Since the majority of nodes have a null tag, we balanced the datasets by
re-weighting the classes using Weka’s class balancer [

129].

We selected four state-of-the-art graph embedders as baselines: Com-
plEx [

122], HolE [

95], Node2Vec [

51], and TransD [

60]. To generate weighted
graphs we transformed each DOM node into a graph node; connected them
according to their links in the DOM tree (parent, left, right); and com-
puted their weights by measuring the similarity of the corresponding nodes
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in terms of their attributes. To generate labelled graphs from the input docu-
ments, we transformed the DOM nodes and the values of their attributes into
graph nodes, connected the nodes according to their links in the DOM tree or
the values of their attributes; and labelled the edges with the corresponding
link or attribute.

Figure

A.1.b shows the performance results that we computed from run-
ning the baselines and our proposal on our datasets. Regarding the baselines,
they attain an average recall as high as 0.87 but an average precision as low as
0.21; in other words, the taggers learnt from their embeddings tend to re-
turn many nodes for each tag and have little ability to make them apart. The
results using our proposal are clearly better in every case: our average preci-
sion is 0.78; our average recall is 0.78; and our average F1 score is 0.76. Our
best F1 score was attained using Naive Bayes base learner.

Our conclusion from the previous results is that the embeddings com-
puted by the baselines do not capture well the features of the original
documents so that a good tagger can be inferred from them, whereas the em-
beddings computed by our proposal do. We conjecture that it is the ability of
our proposal to find a path that maximises the performance of the classi-
fier returned and its ability to preserve the original attributes that helps it
learn better taggers.

A.5 Summary

In this appendix, we have presented a new proposal to synthesise meta-
data tags that link the data in an HTML document to their types in a
vocabulary. It relies on a novel embedding technique that preserves the
original attributes and does not require to preset an embedding size. Our ex-
perimental results prove that our approach can attain an F1 score on our
evaluation dataset that is better than using four state-of-the-art embed-
ders, independently from the base learner used. In future, we are planning on
doing additional research regarding the following ideas: exploring addi-
tional links, exploring backtracking, and exploring different strategies to
compare the scores.



AppendixB

Kizomba: general-purposewebdata
extractionK

izomba is a heuristic-based proposal to extract data from HTML
documents that relies on recurrent representation patterns. It is
described as follows: Section

B.1 introduces our proposal; Sec-
tion

B.2 describes the related work; Section

B.3 describes its details;
Section

B.4 reports on the results of our experiments; finally, Section

B.5
concludes our work.
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B.1 Introduction

In the Web, there are many semi-structured documents that provide data
that might help humans make decisions. Data extraction techniques are re-
quired to analyse those documents and transform them into structured
records that can be fed into typical data extraction systems [

22,

116,

123].
Nowadays, the web data extraction field is evolving towards developing pro-
posals at web scale. A proposal is considered to work at web scale, when it
requires as little user intervention as possible and can extract data from as
many sites as possible.

In the literature, there are some unsupervised proposals that do not re-
quire the user to annotate the learning set [

8,

30,

66,

118], but they have an
important drawback: they focus on extracting the information that varies
from a document to the rest, but they focus on data and forget about their
structure and the labels that endow them with semantics. The Open Informa-
tion Extraction (OIE) proposals attempt to solve the previous problems [

42]
but most of them extract information encoded using natural language, but do
not work well with semi-structured data, with cannot be processed using
POS tagging methods. The only proposal that can work with HTML docu-
ment structures requires human effort in order to generate an extractor for a
new domain or language.

We bet on heuristic-based proposals because they are the closest to a truly
web scalable proposal since they do not require any learning phases, data
models or schemas, and labelling the information that they extract is getting
easier thanks to automatic semantic typers [

120]. In this paper, we present
an unsupervised heuristic-based technique that extracts information build-
ing on common web representation patterns, which is a term that we use to
refer to the typical regular templates used to render information in web docu-
ments, e.g., an attribute-value table, a variable list, HTML meta-information,
and so on. Since the heuristics are used to extract the information instead of
learning a rule, a learning step is not required. Our technique does not re-
quire any human intervention since it extracts the information as it processes
the web documents, which makes it appropriate to perform OIE from semi-
structured documents at web scale. Furthermore, it can make a difference
between data themselves and the labels used to endow them with semantics.
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B.2 Related work

Typical information extractors are machine-learnt from a set of web docu-
ments, known as learning set. Many proposals require the learning set to be
gathered from a single web site and can work on documents from that site
only; many also require the user to annotate the learning set with la-
bels that endow the information to be extracted with semantics, known
as supervised approaches. These supervised approaches are not scalable
to the Web because they require too much user intervention to annotate
the learning set. There are some unsupervised proposals that do not re-
quire the user to annotate the learning set [

8,

30,

66,

118]; furthermore,
they can be applied to a variety of sites and are not bound with a pre-
defined data model. This makes them quite appealing to extract information
at web scale, but they have an important drawback: they focus on ex-
tracting the information that varies from a document to the rest, but do
not take their structure into account. In other words, they can extract at-
tributes and group them into records without any semantics, but do not
attempt to analyse the actual structure of the information so that the result-
ing records make sense. Simply put: they focus on data and forget about their
structure and the labels that endow them with semantics.

The proposals in the OIE field attempt to solve the previous problems [

42].
Unfortunately, an immense majority of proposals in this field focus on web
documents in which the information to be extracted is rendered in natu-
ral language passages [

6,

41,

135]; they typically require the text to be POS
tagged in order to identify patterns from which the information of inter-
est can be extracted. To the best of our knowledge, there has been only one
attempt to devise an OIE proposal for semi-structured documents [

21]. How-
ever, this proposal requires human effort in order to generate an extractor for
a new domain or language. It is not clear whether it is general enough to be
applied to a whole domain, instead of a subset of sites from that domain.
That is, the technique seems to be domain- or site-dependent, which prevents
it from working at web-scale. Furthermore, it cannot be applied to docu-
ments with multiple records because it is only intended to extract attributes
without a structure. It has trouble dealing with optional attributes, cannot
deal with multi-valued ones and it requires attributes to be fully-contained
within the context of a DOM node. Nodes that do not appear in at least 50%
of the documents are discarded, which is a strong assumption, since there are
cases in which relevant attributes appear in less than a half of the documents.
Last, but not least, it is unclear whether the proposal is resilient to changes.
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B.3 Our proposal

In this section we describe Kizomba, which works on sets of two or
more structurally-similar documents within a web site. It applies a num-
ber of heuristics that we identified during the development of previous web
data extractors [

61–

63,

103,

114,

115,

117,

118].
Our heuristics have proven to be general enough so as to be applica-

ble to a variety of web sites since they focus on identifying representation
patterns, which are recurrent web design patterns that people are famil-
iar with. They provide structural and behavioural common features across
different sites. Identifying these patterns is essential in order to identity
records and attributes. A record instance is a piece of text that encapsulates
the data regarding an entire item. Record instances might rely on sub-
pieces of text with an atomic structure, namely, attribute instances. Next, we
provide some details on the representation patterns covered by Kizomba.

Data nodes: We align nodes that have the same tag paths to identify the
ones that are likely to carry some data of interest, that is, those that con-
tain data that varies from one document to another. These nodes are marked
as data nodes, and their ancestors are marked as child-data nodes.

Key-value tables: This representation pattern attempted to extract the most
frequent table structure in e-commerce sites, which are tables that display at-
tributes about one or more records. The first column encodes the names
of the attributes, while the next columns present the values of such at-
tributes in a record. Since the input documents are structurally similar, we
can collect every child-data table with the same tag path across different docu-
ments. Then, we can compute the variability ratio of the nodes of each
column of the tables as n/k, where n denotes the total number of unique val-
ues, and k denotes the number of values. In a key-value table, the variability
ratio of the first column must be smaller than the variability ratio of the other
columns. This pattern was an early version of TOMATE, c.f. Chapter

3.

Description lists: This heuristic is similar to the previous one, since a de-
scription list can be seen as a two-column table in which the terms constitute
the first column and the descriptions the second column. So, it also re-
lies on computing and checking variability ratios. The name of a property is
encoded using dt tags and their values are encoded using dd tags. Alterna-
tively name-value pairs can be encoded usign tags ol or ul, wrapping the
names with b nodes.
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b) Scalability analysis.

Table B.1: Experimental results of Kizomba.

Global data: There are some nodes that are used to provide global data of
the document, such as title, h1, and meta nodes. They typically contain
data about more than one property, so they are aligned across the docu-
ments and split according to the set of tokens that does not vary from one
document to another.

Breadcrumbs: A breadcrumb is a hint that helps users to keep track of their
location within a site. The path consists of a sequence of hyperlinked words
or short phrases that are separated by a glyph, plus a final word or short sen-
tence that is not hyperlinked but is separated by the same glyph. We identify
breadcrumbs by searching for such sequences and requiring the degree of
variability of the components of the path to increase monotonically from left
to right.

Remaining data nodes: After the previous heuristics have been applied,
some data nodes may remain. Although this remaining data is not structured
according to a representation pattern, it might still be relevant for fur-
ther analysis. They are extracted using their CSS selector as their field name
and their own text as their values.

B.4 Experimental analysis

To evaluate our results, we compared our proposal with some unsuper-
vised data extraction proposals that have been widely used in the literature
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for empirical comparison purposes [

30,

66,

118]. We ran the data extractors on
a dataset with 20 sites with 30 documents each from multiple domains.

Table

B.1.a reports on the effectiveness of the proposals that we have anal-
ysed. The precision and recall of each site were computed as the average of
the precision and recall of each value of an attribute extracted in each docu-
ment. The per-document standard deviation was also computed. To measure
the efficiency of our proposal, we applied it to a collection of 500 documents
from the book domain. Starting with 50 documents, we increased the num-
ber of documents by 100 up to 500. The performance results are shown in
Figure

B.1.b.

Our conclusion is that the precision of our proposal is better the other pro-
posals. Despite the recall falls in some sites, the F1 score stands out over the
results of the other proposals. Since our proposal is based on a catalogue of
heuristics, at the time of performing the experimentation, some representa-
tion patterns were not identified. In practice, our results suggest that our
proposal can be used to extract data from semi-structured documents at web
scale with good precision and recall, since it scales in a linear manner.

B.5 Summary

Feeding decision support systems with web data typically requires sifting
through an unwieldy amount of data that is available in human-friendly for-
mats only. In this appendix, we have presented a proposal to extract data
from semi-structured documents in a structured format, with an empha-
sis on it being scalable and open. In the literature, there is only one open
but not scalable proposal, since it requires human supervision on a per-
domain basis. In this paper, we present a new proposal that relies on a
number of heuristics to identify patterns that are typically used to repre-
sent the data in a web document. Our experimental results confirm that our
proposal is very competitive in terms of effectiveness and efficiency.
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Romulo: clusteringinthecontextof
data lakesR

omulo is a novel approach to multi-way single-subspace clustering
using a meta-heuristic. It is described in this chapter, which is or-
ganised as follows: Section

C.1 introduces our proposal; Section

C.2
analyses the related work; Section

C.3 presents the proposal; Sec-
tion

C.4 shows the experimental analysis; finally, Section

C.5 concludes the
chapter.
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C.1 Introduction

The Web is currently the most important data source since it provides a
plethora of datasets on virtually any topic of interest. Data lake is an um-
brella term that refers to an array of technologies and techniques that help
data engineers store and understand the datasets that they collect from differ-
ent repositories [

68,

84,

100]. Typically, they are used to store as many
datasets as possible, with as many data and attributes as possible since the ul-
timate goal is not to miss any opportunities to leverage them; unfortunately,
this makes it very difficult to explore them. Usually, engineers start explor-
ing the datasets in a data lake by identifying a subspace of informative
attributes, projecting the dataset onto that subspace, and clustering the
resulting projected dataset [

54].

In the literature, there are many clustering proposals to address the previ-
ous problem [

2–

4,

7,

13,

32,

46,

50,

55,

59,

70,

92,

101,

113,

132,

133]. These
methods are classified depending on whether they execute the steps indepen-
dently or co-ordinately (single-way or multi-way), whether they compute a
single subspace or multiple subspaces of attributes (single-subspace or multi-
subspace), and whether they require an engineer to provide the number of
clusters or not (manual or automatic). Many of them use algorithmic ap-
proaches; but most recent proposals use meta-heuristic approaches that
map the problem onto nature-inspired processes. It is particularly shinning
that no meta-heuristic approach has been explored in the context of multi-
way single-subspace automatic clustering. Abualigah [

1] highlighted that
meta-heuristic approaches have been related to unsatisfactory outcomes and
inaccurate clusters in the past and the reason might be that they have not
been sufficiently studied in this context.

This chapter presents Romulo, which is the first attempt in the literature
to use a meta-heuristic to address the problem of multi-way single-subspace
automatic clustering. The approach was confronted with four strong competi-
tors to find subspaces of informative attributes and perform the clustering,
as well as P3C, which is a proposal for multi-way multi-subspace auto-
matic clustering. The evaluation was performed on a challenging data lake
with 139 datasets from 10 different repositories. The Silhouette coefficient at-
tained by Romulo was 0.57, which is 18.75% better than the score attained by
the best competitor. These results make Romulo a good contribution to the
array of techniques that data engineers can use to explore their data lakes.
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C.2 Related work

It is also clear that most authors have focused on devising single-way
clustering proposals [

59,

132]. Originally, most approaches to clustering were
algorithmic, but meta-heuristic approaches [

7,

13,

44,

46,

55,

92,

101] have
found their way into this field because their nature-inspired approaches are
very good to explore complex search spaces and they can be implemented
very efficiently using current multi-threaded CPUs. Unfortunately, they are
not the most appropriate in the context of data lakes since their datasets com-
monly consist of many data with many attributes that are dumped from their
original repositories with as little processing as possible. In such a con-
text, multi-way clustering is a must since it helps find the subspaces of
attributes that result in the best possible clusters co-ordinately.

Single-way clustering is a hard problem, but multi-way clustering [

32,

46,

59,

113] is even harder. Most of them use algorithmic approaches. It is then
surprising that meta-heuristics have been explored so little in this context.
For instance, there is not a single record in the literature of a meta-heuristic
approach to multi-way single-subspace clustering. Abualigah [

1] mentioned
that such approaches have commonly been related to poor results, very likely
because they have not been sufficiently studied in this context. Furthermore,
the existing algorithmic approaches have a number of problems that hinder
their applicability to real-world datasets, namely: they neglect between-
cluster isolation and they do not deal well with imbalanced datasets, not to
mention their sensitivity to the configuration parameters [

32,

70,

113].

The analysis of the literature that was presented in the previous sections
makes it clear that there are a variety of approaches to clustering. Unfortu-
nately, there is not a single proposal that can be considered universal.
Typically, the motivation to work on a new proposal originates from the in-
ability of another proposal to deal with a particular kind of datasets. This has
resulted in many approaches that commonly require fine tuning their config-
uration parameters so that they can find the clusters in the input datasets
[

113]. The previous findings make it clear that there is a research niche
regarding multi-way single-subspace automatic clustering. This was the mo-
tivation to explore this problem using a genetic approach that led to the
development of Romulo. The experimental results prove that it is a good tool
for data engineers who have to explore complex data lakes. This, in turn, mo-
tivates some future work regarding how to improve it by incorporating a
data engineer’s background knowledge in the search for subspaces and
clusters, as well as exploring other nature-inspired approaches.
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C.3 Our proposal

This section introduces the core algorithm of Romulo. It works on an
input dataset and outputs a subset of attributes and its corresponding cluster-
ing. It relies on a genetic strategy [

9] that creates an initial population,
evolves it genetically, and selects the best individual to compute the output.

The first step consists in generating the initial population of random indi-
viduals. They are tuples of the form (k,A), where k denotes the number of
clusters and A is a vector of the form (a1, a2, . . . , ad) in which each ai is a
Boolean that denotes whether the corresponding attribute must be used or
not to compute the clusters; d represents the number of attributes in the input
dataset (d ≥ 1).

Next, the population is evolved multiple times. In each generation the
offspring is computed by applying one of the following genetic op-
erations: crossing two existing individuals, mutating an individual, or
randomly picking an individual. The crossover is performed as follows:
first, two individuals are sampled from the population along with their
components (k1, A1) and (k2, A2); then, it computes the number of at-
tributes in the population and generates a random natural p in interval
[1, d − 1]; finally, it generates two offsprings (k2, A2[1 : p] • A1[p + 1 : d])
and (k1, A1[1 : p] • A2[p + 1 : d]), where • is the vector catenation opera-
tor. The mutation is performed as follows: first, an individual is picked from
the population along with its components (k,A); next, it computes a ran-
dom natural in interval [k− 1, k+ 1] which is set as the number of clusters in
the offspring; finally, it flips a random attribute from A in the offspring.

Then, the best individuals from both the current population and the off-
spring are selected to generate the next population. It is implemented using
the version of the Lexicase method that was described by la Cava et al. [

72].
Helmuth et al. [

53] published an in-depth analysis of Lexicase; their conclu-
sion was that this method is very appropriate in cases in which it is not easy
to aggregate multiple quality indicators into a single value. This is the case of
Romulo, whose fitness function relies on the number of clusters to com-
pute and the resulting Silhouette coefficient. Aggregating both indicators
into a meaningful single value is not easy because they range in differ-
ent intervals and assess the quality of the clusters from very different
perspectives. In such cases, the Lexicase procedure provides a simple yet ef-
fective solution to implement the fitness function, which was confirmed by
the experimental analysis.
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Finally, the result is computed very straightforwardly: first, it selects the
best individual (k,A) from the last generation using the Lexicase method;
second, it projects the input dataset onto the attributes selected by A; third, it
computes k clusters on the projected dataset using any single-way manual
clustering proposal; and, finally, it assembles the result and returns it.

C.4 Experimental analysis

The experiments were executed on a data lake with 139 datasets that were
randomly collected from 10 different repositories. The datasets range in size
from 15 to 20 640 data, with an average of 2 248.36 data per dataset. The num-
ber of attributes ranges from 4 to 1 196, with an average of 106.26 attributes
per dataset. According to the GSPPCA method, 39.09% of the attributes were
estimated not to be informative. Summing up, the data lake provides an as-
sorted collection of heterogeneous datasets that ensures that no bias was
introduced in the experimentation.

The analysis of the related work reveals that Romulo is the only proposal
in the literature that addresses the multi-way single-subspace automatic clus-
tering problem using a meta-heuristic approach. As a conclusion, there are
not any direct competitors with which it can be compared empirically. The
comparison was then carried out using five closely-related proposals that
were adapted to deal with multi-way single-subspace automatic cluster-
ing problems. Four of the competitors resulted from combining the recent
GSPPCA method to find subspaces of informative attributes and Affini-
tyPropagation, DBScan, MeanShift, and OPTICS-XI to perform the clustering.
The fifth competitor is an algorithmic proposal for multi-way multi-subspace
auto clustering that is known as P3C [

88]. Every proposal was configured by
performing a grid search on a subset of ten datasets that were randomly
picked from the data lake.

Table

C.1 presents the performance results achieved on the reposito-
ries. The columns report on the repositories and the performance results
achieved by the proposals that were compared, namely: the Silhouette coeffi-
cient (Silh.), which captures well the idea that clusters must be compact and
isolated [

65]; it ranges in interval [−1.00,+1.00], where the lower bound indi-
cates that the clusters evaluated are neither compact nor isolated and the
upper bound indicates that they are very compact and very isolated; and the
execution time (Time), which was measured in CPU seconds. A cell with
“N/A” means that the corresponding proposal threw an exception and could
not process the corresponding dataset. The averages are provided in the last
row. The best results per repository or dataset are highlighted in grey.
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Table C.1: Experimental results of Romulo.

Regarding effectiveness, Romulo ranks the first one because it attains an
average Silhouette coefficient of 0.54 on the repositories. Regarding efficiency,
Romulo ranks fourth because it takes 78.07 and 71.50 CPU seconds in aver-
age. The intuitive conclusion is that Romulo outperforms the other proposals
in terms of effectiveness while it remains efficient enough for practical pur-
poses. Note that it is 14.89% more effective than the next proposal in the
ranking. Obviously, this improvement comes at the cost of some inefficiency
since it takes an average of 20.63 more CPU seconds. This drop regarding
efficiency clearly compensates for the increase regarding effectiveness.

C.5 Summary

This appendix has introduced Romulo, which is a proposal that helps data
engineers analyse the datasets in their data lakes by finding a subspace of at-
tributes from which it extracts the best possible clusters of data. It is the first
attempt in the literature to explore this problem using a meta-heuristic ap-
proach. The proposal was confronted with five strong competitors on a
challenging real-world data lake. They all were configured using grid search
on a small subset of datasets. The conclusion is that Romulo is the most effec-
tive proposal, which clearly compensates for the extra time that it requires.
Summing up: Romulo is a good contribution to a data engineer’s toolbox in
the context of data lakes.
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