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1 Definition

Digitization is a mathematical model of converting continuous subsets of the
plane or space (representing real objects) to digital sets in Z2 or Z3 or similar
grids (representing segmented images of these objects). This definition can be
generalized to any dimension n > 3: Digitization converts (transforms) contin-
uous subsets of Rn to digital sets in Zn or, equivalently, to functions from Zn

to {0, 1}.

2 Background

A fundamental task of knowledge representation and processing is to infer prop-
erties of real objects or situations given their representations. In spatial knowl-
edge representation and, in particular, in computer vision and medical imaging,
real objects are represented in a pictorial way as finite and discrete sets of pix-
els or voxels. The discrete sets result by a quantization process, in which real
objects are approximated by discrete sets. In computer vision, this process is
called sampling or digitization and is naturally realized by technical devices like
computer tomography scanners, CCD cameras or document scanners. Digital
images obtained by digitization are suitable to estimate the real object proper-
ties like volume and surface area. Therefore, a fundamental question addressed
in spatial knowledge representation is: Which properties inferred from discrete
representations of real objects correspond to properties of their originals, and
under what conditions this is the case? While this problem is well-understood
in the 2D case with respect to topology [1, 2, 3, 4, 5], it is not as simple in 3D, as
shown in [7]. Only recently a first comprehensive answer to this question with
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respect to important topological and geometric properties of 3D objects has been
presented in [8, 9].

Some recent works done for the general case are shown below. It is proven in
[10] that although Gauss digitized boundaries of subsets of Rn, for n ≥ 3 may
not be manifolds, non-manifoldness may only occur in places where the normal
vector is almost aligned with some digitization axis, showing that although an
object and its digitization are close in the Hausdorff sense through the projection
map, they may not be homemomorphic. Nevertheless, in that paper, the authors
prove the validity of the digital surface integral as a multigrid convergent integral
estimator of subsets of Rn, for n ≥ 3, as long as the digital normal estimator is
also multigrid convergent. In addition, [11] is a short survey on digital analytical
geometry where the main idea is to analytically characterize digital sets to
describe its continuous counterpart in Rn, for n ≥ 3 and related transform.
This way, digital subsets of Zn are defined by a list of inequalities and not by
an enumeration of points in Zn. Finally, in [12], a modus operandi is proposed
to model a digital subset of Zn as a cubical complex proving that the digital
fundamental group of a digital subset of Zn is isomorphic to the fundamental
group of its corresponding cubical complex, ensuring the topological correctness
of the approach. Thus, properties of digital subsets of Zn can be computed
on their corresponding cubical complexes using powerful Algebraic Topological
tools. Observe that this last approach ‘closes’ a loop: starting from a continuous
subset of Rn, a digital subset of Zn is obtained and used to compute a cubical
complex whose embedding in Rn is again a continuous subset of Rn.

The description of geometric and, in particular, topological features in dis-
crete structures is based on graph theory, which is widely accepted in the com-
puter science community. A graph is obtained when a neighborhood relation
is introduced into a discrete set, e.g., a finite subset of Z2 or Z3, where Z de-
notes the integers. On the one hand, graph theory allows investigation into
connectivity and separability of discrete sets (for a simple and natural defini-
tion of connectivity see [13, 21], for example). On the other hand, a finite graph
is an elementary structure that can be easily implemented on computers. Dis-
crete representations are analyzed by algorithms based on graph theory, and the
properties extracted are assumed to represent properties of the original objects.
Since practical applications, for example in image analysis, show that this is not
always the case, it is necessary to relate properties of discrete representations to
the corresponding properties of the originals. Since such relations can describe
and justify the algorithms on discrete graphs, their characterization contributes
directly to the computational investigation of algorithms on discrete structures.
This computational investigation is an important part of the research in com-
puter science, and in particular, in computer vision (Marr [14]), where it can
contribute to the development of more suitable and reliable algorithms for ex-
tracting required shape properties from discrete representations.

It is clear that no discrete representation can exhibit all features of the
real original. Thus one has to accept compromises. The compromise chosen
depends on the specific application and on the questions which are typical for
that application. Real objects and their spatial relations can be characterized
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using geometric features. Therefore, any useful discrete representation should
model the geometry faithfully in order to avoid false conclusions. Topology
deals with the invariance of fundamental geometric features like connectivity
and separability. Topological properties play an important role, since they are
the most primitive object features and human visual system seems to be well-
adapted to cope with topological properties.

However, one does not have any direct access to spatial properties of real
objects. Therefore, real objects are represented as bounded subsets of the Eu-
clidean space R3, and their 2D views (projections) as bounded continuous sub-
sets of the plane R2. Hence, from the theoretical point of view of knowledge
representation, the goal is to relate two different pictorial representations of
objects in the real world: a discrete and a continuous representation.

Already two of the first books in computer vision deal with the relation
between the continuous object and its digital images obtained by modeling a
digitization process. Pavlidis [1] and Serra [2] proved independently in 1982
that an r-regular continuous 2D set S (the definition follows below) and the
continuous analog of the digital image of S have the same shape in a topological
sense. Pavlidis used 2D square grids and Serra used 2D hexagonal sampling
grids.

In 3D this problem is much more complicated. In 2005 it has been shown in
[7] that the connectivity properties are preserved when digitizing a 3D r-regular
object with a sufficiently dense sampling grid, but the preservation of connec-
tivity is much weaker than topology. Stelldinger and Köthe [7] also found out
that topology preservation can even not be guaranteed with sampling grids of
arbitrary density if one uses the straightforward voxel reconstruction, since the
surface of the continuous analog of the digital image may not be a 2D manifold.
The question how to guarantee topology preservation during digitization in 3D
remained unsolved until 2007.

The solution was provided in [8], where the same digitization model as
Pavlidis and Serra is used, also r-regular sets (but in R3) are used to model
the continuous objects. As already shown in [7] the generalization of Pavlidis’
straightforward reconstruction method to 3D fails since the reconstructed sur-
face may not be a 2D manifold. For example, Figure 1 shows a continuous object
and its digital reconstruction whose surface is not a 2D manifold. However, it
is possible to use several other reconstruction methods that all result in a 3D
object with a 2D manifold surface. Moreover it is also shown in [8] that these
reconstructions and the original continuous object are homeomorphic and their
surfaces are close to each other.

The first reconstruction method, Majority interpolation, is a voxel-based
representation on a grid with doubled resolution. It always leads to a well-
composed set in the sense of Latecki [15], which implies that a lot of problems
in 3D digital geometry become relatively simple.

The second method is the most simple one. It just uses balls with a cer-
tain radius instead of cubical voxels. When choosing an appropriate radius the
topology of an r-regular object will not be destroyed during digitization.

The third method is a modification of the well-known Marching Cubes algo-
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Figure 1: The digital reconstruction (b) of an r-regular object (a) may not be
well-composed, i.e., its surface may not be a 2D manifold as can be seen in the
magnification

rithm [16]. The original Marching Cubes algorithm does not always construct a
topologically sound surface due to several ambiguous cases [17, 18]. As shown
in [8, 9] most of the ambiguous cases can not occur in the digitization of an
r-regular object and that the only remaining ambiguous case always occurs in
an unambiguous way, which can be dealt with by a slight modification of the
original Marching Cubes algorithm. Thus the generated surface is not only
topologically sound, but it also has exactly the same topology as the original
object before digitization. Moreover it is shown that one can use trilinear inter-
polation and that one can even blend the trilinear patches smoothly into each
other such that one gets smooth object surfaces with the correct topology. Each
of these methods has its own advantages making the presented results applicable
to many different image analysis algorithms.

In the general case, well-composed digital subsets of Zn do not present
topological paradoxes. They also have very interesting properties and prac-
tical applications. Different “flavors” of well-composedness (WC) are present in
the literature: WC based on equivalence of connectivities (EWC), digital WC
(DWC), WC in the Alexandrov sense (AWC) and WC in the continuous sense
(CWC). All these definitions are equivalent in 2D. For the 3D case, we have:
DWC ⇔ AWC ⇔ CWC. For the nD case, n ≥ 3, we have: EWC ⇐ DWC.
The rest of equivalences for the case n > 3 are open problems nowadays. The
definition of well-composedness has also been extended to arbitrary grids and
multivalued images (AGWC), see [19].

Methods for repairing digital subsets of Zn, for n > 3, to convert them in
well-composed ones is a complicated open problem. A first step in this direction
is done in [20] in which a combinatorial method is given for computing a simpli-
cial complex homotopy equivalent to the cubical complex associated to a given

4



Figure 2: We start from I = (Zn, FI) being FI a digital subset of Zn (in fact,
FI ⊂ 4Zn). The digital subset FJ of Zn encodes the cells of the associated
cubical complex Q(I) (blue is used for 0-cells, red for 1-cells and green for 2-
cells). Now, we ‘repair’ FJ to obtain the digital subset FL of Zn by ‘thickening’
the critical points of FJ . Then, we compute the simplicial complex PS(I) whose
set of vertices is FL, satisfying that there exists a face-connected path of n-
simplices in PS(I) joining any two n-simplices incident to a common vertex in
PS(I), that is, PS(I) is weakly well-composed, see [20].

digital subset of Zn. This simplicial complex is continuously well-composed for
n ≤ 3 and weakly well-composed for n > 3 in the sense that for any two n-
simplices incident to a common vertex v, there always exists a face-connected
path of n-simplices incident to v. A graphical diagram of the method is given in
2. Observe that cubical and simplicial complexes derived from that method are
also stored as digital subsets of Zn, so that later calculations on the elements
of the complex can be done efficiently.

3 Theory

The (Euclidean) distance between two points x and y in Rn is denoted by d(x, y),
and the (Hausdorff) distance between two subsets of Rn is the maximal distance
between each point of one set and the nearest point of the other. Let A ⊂ Rn

and B ⊂ Rm be sets. A function f : A → B is called homeomorphism if it is
bijective and both it and its inverse are continuous. If f is a homeomorphism,
then A and B are homeomorphic. Let A, B be two subsets of Rn (particularly,
n = 2 or 3). Then a homeomorphism f : Rn → Rn such that f(A) = B
and d(x, f(x)) ≤ r, for all x ∈ Rn, is called an r-homeomorphism of A to B
and A and B are r-homeomorphic. A Jordan curve is a set J ⊂ Rn which
is homeomorphic to a circle. Let A be any subset of Rn. The complement
of A is denoted by Ac. All points in A are foreground while the points in Ac

are called background. The open ball in Rn of radius r and center c is the set
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Figure 3: For each boundary point of a 2D/3D r-regular set exists an outside
and an inside osculating open r-disc/ball

Figure 4: (a) Critical configuration (C1). (b) Critical configuration (C2). For
the sake of clarity, only the voxels of foreground or background points are shown

B0
r (c) = {x ∈ Rn | d(x, c) < r}, and the closed ball in Rn of radius r and center

c is the set Br(c) = {x ∈ Rn | d(x, c) ≤ r}. The boundary of A, denoted ∂A,
consists of all points x ∈ Rn with the property that if B is any open set of Rn

such that x ∈ B, then B ∩A 6= ∅ and B ∩Ac 6= ∅.
An open ball B0

r (c) is tangent to ∂A at a point x ∈ ∂A if ∂A∩∂B0
r (c) = {x}.

An open ball B0
r (c) is an osculating open ball of radius r to ∂A at point x ∈ ∂A

if B0
r (c) is tangent to ∂A at x and either B0

r (c) ⊆ A0 or B0
r (c) ⊆ (Ac)0, where

A0 is a maximal open subset of A, i.e., A without its boundary.

Definition 1 A set A ⊂ Rn is called r-regular if, for each point x ∈ ∂A, there
exist two osculating open balls of radius r to ∂A at x such that one lies entirely
in A and the other lies entirely in Ac. Examples illustrating 2D and 3D cases
are shown in 3.

Note that the boundary of a 3D r-regular set is a 2D manifold surface. Any
set S which is a translated and rotated version of the set 2·r′√

3
Z3 is called a cubic

r′-grid and its elements are called sampling points. Note that the distance
d(x, p) from each point x ∈ R3 to the nearest sampling point s ∈ S is at
most r′. The voxel VS(s) of a sampling point s ∈ S is its Voronoi region R3:
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VS(s) = {x ∈ R3 | d(x, s) ≤ d(x, q), ∀q ∈ S}, i.e., VS(s) is the set of all points
of R3 which are at least as close to s as to any other point in S. In particular,
note that VS(s) is a cube whose vertices lie on a sphere of radius r′ and center
s.

Definition 2 Let S be a cubic r′-grid, and let A be any subset of R3. The
union of all voxels with sampling points lying in A is the digital reconstruction
of A with respect to S, Â =

⋃
s∈(S∩A) VS(s).

This method for reconstructing the object from the set of included sampling
points is the 3D generalization of the 2D Gauss digitization (see [21]) which has
been used by Gauss to compute the area of discs and which has also been used
by Pavlidis [1] in his sampling theorem.

For any two points p and q of S, VS(p)∩VS(q) is either empty or a common
vertex, edge or face of both. If VS(p) ∩ VS(q) is a common face, edge, or ver-
tex, then VS(p) and VS(q) are face-adjacent, edge-adjacent, or vertex-adjacent,
respectively. Two voxels VS(p) and VS(q) of Â are connected in Â if there exists
a sequence VS(s1), . . . , VS(sk), with k ∈ Z and k > 1, such that s1 = p, sk = q,
and si ∈ A (or equivalently, VS(si) ⊂ Â), for each i ∈ {1, . . . , k}, and VS(sj)
and VS(sj+1) are face-adjacent, for each j ∈ {1, . . . , k − 1}. A (connected)

component of Â is a maximal set of connected voxels in Â.

Definition 3 Let S be a cubic r′-grid, and let T be any subset of S. Then⋃
t∈T VS(t) is well-composed if ∂(

⋃
t∈T VS(t)) is a surface in R3, or equivalently,

if for every point x ∈ ∂(
⋃

t∈T VS(t)), there exists a positive number r such that
the intersection of ∂(

⋃
t∈T VS(t)) and B0

r (x) is homeomorphic to the open unit
disk in R2, D = {(x, y) ∈ R2 | x2 + y2 < 1}.

Well-composed digital reconstructions can be characterized by two local condi-
tions depending only on voxels of points of S. Let s1, . . . , s4 be any four points
of S such that

⋂4
i=1 VS(si) is a common edge of VS(s1), . . . , VS(s4). The set

{VS(s1), . . . , VS(s4)} is an instance of the critical configuration (C1) with re-
spect to

⋃
t∈T VS(t) if two of these voxels are in

⋃
t∈T VS(t) and the other two

are in (
⋃

t∈T VS(t))c, and the two voxels in
⋃

t∈T VS(t) (resp. (
⋃

t∈T VS(t))c) are
edge-adjacent, as shown in Figure 4a. Now, let s1, . . . , s8 be any eight points
of S such that

⋂8
i=1 VS(si) is a common vertex of VS(s1), . . . , VS(s8). The set

{VS(s1), . . . , VS(s4)} is an instance of the critical configuration (C2) with respect
to

⋃
t∈T VS(t) if two of these voxels are in

⋃
t∈T VS(t) (resp. (

⋃
t∈T VS(t))c) and

the other six are in (
⋃

t∈T VS(t))c (resp.
⋃

t∈T VS(t)), and the two voxels in⋃
t∈T VS(t) (resp. (

⋃
t∈T VS(t))c) are vertex-adjacent, as shown in Figure 4b.

The following theorem from [15] establishes an important equivalence between
well-composedness and the (non)existence of critical configurations (C1) and
(C2).

Theorem 1 ([15]) Let S be a cubic r′-grid and let T be any subset of S. Then,⋃
t∈T VS(t) is well-composed iff the set of voxels {V (s) | s ∈ S} does not contain

any instance of the critical configuration (C1) nor any instance of the critical
configuration (C2) with respect to

⋃
t∈T VS(t).
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Figure 5: The surface of an object only needs to have an arbitrarily small, but
nonzero curvature in order to make occurrences of the critical configuration (C1)
possible in the digital reconstruction

A simple consequence of the 2D digitization theorem by Pavlidis [1] is that
the reconstruction of an r′-regular set is well-composed. The main difficulty of
3D digitization as compared to 2D lies in the fact that digital reconstruction
Â of A with respect to S is not guaranteed to be well-composed. An example
is provided in 5. Therefore, it is necessary to repair Â in order to ensure the
topological equivalence between A and repaired Â. The first topology preserving
repairing method has been proposed in [8], where also the following theorem is
proven. It is an interesting observation that it took 25 years to obtain this 3D
theorem.

Theorem 2 ([8]) If A is an r-regular object and S is a cubic r′-grid with 2r′ <
r, then the result of the topology preserving repairing of the reconstruction Â is
r-homeomorphic to A.

4 Application

A complete understanding of the loss of information due to the digitization
process is fundamental for the justification of any computer vision application.
If the relevant information is not contained in the digital image, there is no way
to reconstruct it without using context knowledge. Thus, whenever one needs
to have guarantees for the correct behavior of some computer vision algorithm
one has to be aware of what happens during digitization. This article gives an
exemplary insight to the topic, the related problems and the way to solve them.
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5 Open Problems

The analysis of the effect of digitization to the information being extractable
from an image is a challenging research area. Newest results approximate real
acquisition processes and thus give direct implications for many computer vision
algorithms which rely on precise information of the structures being approxi-
mated by the digital image. However, in reality the digitization process is still
more complicated than the models which are used for topological or geometric
sampling theorems. The goal is to derive guarantees for digitization models
approximating real digitization processes.

For the case n ≥ 3, the equivalences between the different definitions of
well-composedness (EWC, DWC, AWC, EWC, AGWC) is an open problem
together with a general method for repairing non-well-composed digital sets in
Zn. Besides, the study of which properties well-composed images own in Zn

that reflect the continuous world is a promising line of research, such as, the
link between critical points and Morse theory [23] or topological persistence [24]
and tree of shapes. A more exhaustive list can be consulted in [19, Section 10].
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