
0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3039913, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X 2020 1

Methodology for Distributed-ROM-based
Implementation of Finite State Machines

Raouf Senhadji-Navarro and Ignacio Garcia-Vargas

Abstract—This brief explores the optimization of distributed-
ROM-based Finite State Machine (FSM) implementations as an
alternative to conventional implementations based on Look-Up
Tables (LUTs). In distributed-ROM implementations, LUTs with
constant output value (called constant LUTs) and LUTs with
the same content (called equivalent LUTs) can be saved. We
propose a methodology to implement FSMs using distributed
ROM that includes: (1) a greedy state encoding algorithm, (2)
an algorithm to find the way of interconnecting the address
signals to the ROM that maximize the number of constant or
equivalent LUTs, and (3) a set of architectures to implement the
columns of the ROM. The results obtained have been compared
with conventional LUT-based implementations using standard
benchmarks. The proposed technique reduces the number of
LUTs in a 91% of cases and increases the speed in all cases.

Index Terms—distributed ROM, ROM-based implementation,
finite state machine, FSM, FPGA.

I. I NTRODUCTION

A Finite State Machine (FSM) is probably the most widely
used component of digital systems because it allows to

model any sequential circuit, and control units in particular.
Optimizing FSM implementations in terms of area, speed or
power consumption is essential to meet the design constraints
demanded by applications. The implementation process of
FSMs in FPGAs can be divided into two main stages: the
search for an optimal state encoding that allows an efficient
implementation of the output and state transition functions,
and the mapping of the resulting logic functions into FPGA
resources. The problem of FSM state encoding has been
receiving attention of researchers, designers and EDA tool
developers for decades [1]. Regarding the logic function map-
ping, the conventional logic synthesis methods consist in the
decomposition of logic functions into subfunctions ofq-inputs
that are mapped intoq-input Look-Up Tables (LUTs) [2],
[3]. Conventional techniques to implement FSMs in FPGAs
map the output and state transition into LUTs by applying
conventional logic synthesis methods from a behavioural HDL
description of the FSM (i.e., these functions are treated as
general functions without using a specific architecture).

As an alternative to conventional techniques, ROM memory
can be used to implement any logic functions or, particularly,
the output and state transition functions of an FSM. In FPGAs,
there exist two different kind of ROM memory: block ROM
(built from embedded memory blocks) and distributed ROM

Raouf Senhadji-Navarro and Ignacio Garcia-Vargas are with the Department
of Computer Architecture and Technology, University of Seville, Spain, e-
mail: raouf@us.es

Manuscript received March 11, 2020; revised March 11, 2020.

(built from LUTs configured as ROM) [4]. Distributed ROM
is used to store small amount of data whereas block ROM is
used to implement larger memories. In the literature, different
approaches that implement FSMs using block ROM have been
reported [5]. However, to the best knowledge of the authors,
the problem of optimizing FSM implementations based on
distributed ROM has not been addressed yet. In this brief,
we propose a novel methodology to implement FSMs using
distributed ROM instead of block ROM; thus, as distributed
ROM is built from LUTs, the proposed technique can also
be seen as an alternative method to map logic functions into
LUTs (in this work, we focus on the output and state transition
functions of FSMs).

Each column of a distributed-ROM is built from LUTs con-
figured as ROM whose outputs are connected to multiplexers.
Current FPGA devices include dedicated multiplexers in order
to combine the output of the LUTs. Dedicated multiplexers can
improve the performance and density of general functions,
but they are especially suitable for efficient implementation
of small distributed ROMs. In comparison with conventional
techniques, an advantage of the implementation of logic func-
tions as distributed ROM is that it can greatly benefit from em-
bedded multiplexers [4]. In distributed ROM implementations,
LUTs with a constant output value (called constant LUTs) can
be replaced by fixed logic values. In addition, all LUTs with
the same content (called equivalent LUTs) can be substituted
by a unique LUT. The number of constant or equivalent LUTs
(called redundant LUTs) depends on the state encoding and on
the way of connecting the address signals to the ROM (called
address assignment); therefore, an optimization process can be
applied to save LUTs. Don’t care inputs and outputs, usually
present in real FSMs, can be exploited by the optimization
process to increase the number of redundant LUTs.

The proposed methodology can be divided into the follow-
ing three steps: (1) a greedy algorithm finds a state encoding
that increases the potential number of redundant LUTs, (2)
an algorithm finds the address assignment that maximizes the
number of redundant LUTs, and (3), for each column of the
distributed ROM, different architectures are evaluated and the
best one (taking into account the optimization goal) is selected
to be part of the final implementation.

As distributed ROM is built from LUTs, both the con-
ventional techniques and the proposed one use the same
kind of FPGA resources. However, since the architectures
included in the proposed methodology are based on distributed
ROM, the implementations can greatly benefit from embedded
multiplexers. In addition, these architectures restrict the search
space of solutions with respect to conventional techniques. The

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 23,2021 at 12:39:07 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3039913, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X 2020 2

state
input

output

m p

ROM

2 x (p+m)
p+n

clk
p

n

R
E
G

present

state
next

(a) (b)

Fig. 1. ROM-based FSM implementation: (a) architecture and (b) two
different address assignments for a distributed ROM based on 2-input LUTs.

proposed optimization process, which is specific for distributed
ROM, benefits from the restricted search space, making easier
the finding good solutions.

II. D ISTRIBUTED-ROM-BASED FSM IMPLEMENTATION

Fig. 1a shows a ROM-based FSM implementation. Each
ROM word contains a transition of the FSM (i.e., the FSM
output and the next state encoding bits of the transition). The
address is composed of the input signal and the present state
encoding bits. The next state is stored in the register and is
fed back to the address signal as the present state [6].

In a FPGA based onq-input LUTs, a distributed ROM of
2u × v is composed byv columns, each of which contains
2u−q LUTs configured as ROM (we will refer to them as data
LUTs when necessary to avoid ambiguity) and a multiplexer
of 2u−q inputs. The input of all LUTs are connected to the
q least significant bits of the address. For each column, the
outputs of the LUTs are connected to a multiplexer controlled
by theu− q most significant bits of the address [6].

Dedicated multiplexers improve the performance and den-
sity of general functions. However, the implementation of
multiplexers takes advantages of these resources in a particular
way. For example, in a Spartan-7 FPGA, the three dedicated
multiplexers of one slice allow the implementation of generic
functions with up to 8 inputs whereas they can be used to
implement up to 16-input multiplexers (which are 20-input
logic functions) [4]. Thus, ROMs whose size is not too big
are efficiently implemented as distributed ROM.

Mapping logic functions to distributed ROMs restricts the
set of possible implementations that can be inferred; for
example, all data LUTs must be connected to the same subset
of inputs. As a consequence, the search space of solutions
is smaller than that of conventional techniques. The proposed
optimization process benefits from this restricted search space,
making easier the finding good solutions.

III. O PTIMIZATION OF DISTRIBUTED-ROM-BASED FSM
IMPLEMENTATIONS

The number of data LUTs can be reduced by finding an
adequate address assignment. For example, Fig. 1b shows
the effect of two different address assignments on a dis-
tributed ROM based on 2-input LUTs (we will refer to

these assignments as initial and final assignments). The final
assignment (in which the address signalsx1 andx2 have been
interchanged) allows to increase the number of constant LUTs
from 1 (see LUT #2A) to 2 (see LUTs #1B and #2B) and the
number of equivalent LUTs from 0 to 2 (see LUTs #0B and
#3B); so, the total number of LUTs is reduced from 3 to 1.

In distributed-ROM-based FSM implementations, don’t care
inputs and outputs have a positive influence on the number
of redundant LUTs. Don’t care outputs can be set to 0 or
to 1 as needed to obtain redundant LUTs. Don’t care inputs
have the effect of replicating ROM words. In general terms,
this effect can be exploited to increase either the number of
constant LUTs (by assigning don’t cares to the address signals
connected to data LUTs) or the number of equivalent LUTs
(by assigning don’t cares to the address signals not connected
to data LUTs). For example, let us suppose that 2-input LUTs
are used to implement a distributed-ROM-based FSM with 4
states coded as(s1, s0) and 4 inputs (x3, x2, x1, and x0),
in which the state coded as(0, 0) is not sensitive tox2

and x3. If the assignment is(s1, s0, x1, x0, x3, x2), the first
four addresses (determined by0000x3x2) contain the same
value; therefore, the first LUT is constant. Similarly, the next
three LUTs (related to the addresses0001x3x2, 0010x3x2

and0011x3x2) are also constant. However, if the assignment
is (s1, s0, x3, x2, x1, x0), the four addresses determined by
00x3x200 (which address the first word of each LUT) contain
the same value. Since it is also true for the 2nd, 3rd and 4th
word, the first four LUTs are equivalent.

Let us suppose an FSM withn inputs andp state encoding
bits that is implemented in a FPGA based onq-input LUTs.
The number of bits of the ROM address isn + p, where the
q least significant bits correspond to the signals connected
to LUTs. Permutations of theq least significant bits can
only rearrange the content of each LUT, but cannot transform
non-redundant LUTs into redundant. This can be done only
by means of permutations that interchange one or more bits
between theq least significant bits and the rest. Hence, the
number of address assignments that must be evaluated is
given by

(

n+p
q

)

. In a distributed ROM, the columns can
have different input assignments because the implementation
of each column has its own multiplexer and its own set of
LUTs. To take advantage of this property, the procedure of
searching the best address assignment (i.e., the assignment
that maximizes the number of redundant LUTs) is applied
independently to each column. Thus, the set of the best address
assignments of each column forms the best address assignment
for the ROM (hereinafter simply referred to as best address
assignment).

In order to find the the best address assignment, the pro-
posed methodology iteratively applies a brute-force algorithm
to each column of the ROM. A quick analysis of the time com-
plexity of the algorithm shows that the number of performed
operations increases with the number of different assignments
and the number of ROM words; thus, the time complexity is
O((n+ p)q2n+p), whereq is 6 in current FPGAs. Regarding
space complexity, the amount of memory required increases
with the number of ROM words; thus, the space complexity
is O(2n+p). Although the time and space complexity are non-

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 23,2021 at 12:39:07 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3039913, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X 2020 3

polynomial, almost all test cases used in the experiments are
tractable. Anyway, the algorithm can be easily accelerated
using parallel architectures such as multicore processors, com-
puter clusters or GPUs. Since columns are independently to
each other, each one of them can be processed by a different
task (i.e., thread or process). In a computer cluster, each node
could process a different column of the ROM by executing the
brute-force algorithm; in this way, the total computation time
would be reduced to that corresponding of a single column.
In addition, the inherent parallelism of the algorithm can be
exploited to achieve further performance improvements. Each
task can process a different subset of address assignments,
which allow to reduce the time of processing of each column.
In addition, each column can be partitioned into blocks that
are processed by different tasks (i.e., each task generates the
rearranged content of its block and counts the number of
redundant LUTs); this allow to reduce the time of processing
of each possible address assignment. As a conclusion, since
the tasks can be performed independently of each other, we can
say that the algorithm is embarrassingly parallel, and therefore
it can greatly benefit from parallelization.

Before searching the best address assignment, the ROM
content must be generated from the FSM using an appropriate
state encoding. We propose an heuristic to find a state encoding
that increases the number of constant LUTs. Whenever the
state encoding bits are connected to the most significant bits
of the ROM address, the transitions of any state, and therefore
the encoding bits of its next states, are stored in contiguous
words. If these next states are encoded using consecutive
binary values, the probability that their most significant bits
have the same values increases, and so does the probability
of contiguous identical values in the corresponding columns.
Hence, such state encoding can help the subsequent optimiza-
tion process to find better address assignments for the columns
that store the most significant encoding bits; however, the rest
of columns are not benefited.

The proposed greedy algorithm (see Algorithm 1) processes
all states with more than one next state in increasing order of
the number of next states. All ROM words related to a state
with a unique next state contain always the same next state
code, hence the encoding used is irrelevant for the purpose of
the algorithm. For each state, the algorithm assigns consecutive
binary codes to all its next states except to those that have
been previously codified. So, the encoding of the next states
imposes constraints for the states that have not been processed
yet. The number of constraints increases with the number of
codified next states; for this reason, the states that have a less
number of different next states are firstly processed. After all
states with more than one next state have been processed (see
lines from 5 to 8), the algorithm assigns binary codes to those
states which remain uncoded (see lines from 9 to 11). The
reset state is coded with zero because the FPGA registers can
be reset to zero without using additional logic.

IV. D ISTRIBUTED-ROM ARCHITECTURES

This section presents different architectures for implement-
ing a single column of a distributed ROM. All of them

Algorithm 1 State encoding
Input: Set of statesS = {s0, s1, . . . , st−1} where s0 is the initial state, state

transition functionf : S ×X → S whereX is the set of inputs
Output: Set of state codes{c0, c1, . . . , ct−1} whereci represents the code ofsi

1: k ← 1; c0 ← 0; ci ← −1 for i = 1, 2, . . . , t− 1
2: Di ← {f(si, x)|x ∈ X} for i = 0, 1, 2, . . . , t− 1
3: for each Di in increasing order of|Di| do
4: for each sj ∈ Di such thatcj < 0 and |Di| > 1 do
5: cj ← k; k ← k + 1
6: for each sj ∈ S such thatcj < 0 do
7: cj ← k; k ← k + 1

(a) (b)

(c) (d)

Fig. 2. Example of implementations of a distributed ROM512 × 1 in
a Spartan-7: (a) complete architecture, (b) architecture based on a unique
multiplexer, (c) architecture with partially-mapped address signals, and (d) ar-
chitecture with fully-mapped address signals.

benefit from the existence of redundant LUTs, or only constant
LUTs in a particular architecture. The optimization process
described in Section III is a high-level process that determines
and rearranges the content of each column of the ROM to
increase the number of redundant LUTs (or constant LUTs in
the particular architecture) independently of the architecture.
After the optimization process is applied to the FSM, the next
stage of the proposed methodology consists in the selection
of the best architecture for each column of the corresponding
distributed ROM. To achieve this, all architectures are evalu-
ated for each column by synthesizing and implementing each
architecture separately. The result of this stage is a VHDL
description of the distributed ROM in which each column is
implemented with the best architecture. As we have described
in Section II, a distributed ROM is implemented using a set
of data LUTs and a multiplexer. For example, Fig. 2a shows
the implementation of a ROM512× 1 in a Spartan-7 FPGA.
In this device, each logic cell includes three dedicated 2:1
multiplexers: two called F7 and one called F8 [4]. Each F7
combines the output of two LUTs whereas F8 combines the
output of two F7s. In the example, the 8:1 multiplexer is
implemented using four F7s and one LUT that implements
a 4:1 multiplexer (in this case, F8 is not used because it does
not allow to remove the LUT). Let us suppose that the ROM
of Fig. 2a includes 2 constant LUTs (shown with dotted line
and shaded background) and 2 equivalent LUTs (shown with
shaded background). In this architecture, no LUT can be saved
because each embedded multiplexer is physically connected
to a specific pair of LUTs. In general terms, this architecture
does not take advantage of the existence of redundant LUTs;

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 23,2021 at 12:39:07 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3039913, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X 2020 4

therefore, it does not benefit from the proposed optimization
technique and so it is not included in the set of evaluated
architectures. The remaining of this section describes the
included architectures.

The architecture shown in Fig. 2b uses a unique multiplexer
that can be viewed as a particular selection function of 8
inputs (i.e., 5 data inputs and 3 control inputs). The number of
data LUTs is reduced from 8 to 4 respect to the architecture
shown in Fig. 2a. The synthesis tool can simplify the function;
however, the implementation does not benefit from dedicated
multiplexers in the same way as a regular multiplexer.

We propose an alternative architecture that removes the
constant LUTs from the architecture shown in Fig. 2a and
that uses embedded multiplexers only for non-constant LUTs
(see Fig. 2c). A combinational circuit (called mapper) maps
the most significant bits of the address signal to the control bits
of the multiplexer. The mapper allows to reduce the number of
inputs of the multiplexer, and therefore its complexity, because
all constant inputs are reduced to only two. This architecture is
useful when the number of LUTs saved by the simplification
of the multiplexer pays off the extra logic required by the
mapper. However, since embedded multiplexers are controlled
directly by address signals, only blocks of 128 bits that start
at addresses multiple of 128 can be mapped to two LUTs
connected by one F7 (similarly, blocks of 256 bits must start
at addresses multiple of 256). In addition, equivalent LUTs
can not be removed when they belong to different blocks.

To overcome these problems, the mapper can also generate
the control bits of the embedded multiplexers (see Fig. 2d),
and therefore any block of 64 bits can be mapped to any LUT.
This architecture has two advantages: (1) equivalent LUTs can
be removed and (2) it allows to reduce the number of inputs
of the multiplexer (in the example, from 4 to 3). However, the
disadvantage is that the number of outputs of the mapper can
increase (in the example, from 3 to 4).

Finally, the synthesis tools inference distributed ROMs and
apply their own optimization techniques when ROMs are
described using the proper VHDL instantiation template. As
the implementation results depend largely on the ROM data,
the methodology also includes the implementations generated
from these descriptions in the set of evaluated architectures.

V. EXPERIMENTAL RESULTS

MCNC benchmark FSMs [7] have been used to evaluate
the proposed technique. The test cases whose number of
words is not greater than 128 (i.e., each column requires at
most 2 LUTs) have been discarded because no optimization
can be attained. The FSMs used in all experiments have
been previously minimized: the number of states have been
minimized by STAMINA [8], and the resulting logic have been
simplified by ESPRESSO [9]. Once FSMs are minimized,
states are codified using Algorithm 1 and then the best
address assignment is determined by the search procedure.
Two different assignments are selected: one that maximizes
only the number of constant LUTs for the architecture with
partially mapped address signals (see Fig. 2d), and one that
maximizes the number of redundant LUTs for the rest of

TABLE I
BEST-ADDRESS-ASSIGNMENT SEARCH PROCEDURE: EXPERIMENTAL DATA

Mean Std. Dev. Min Q1 Q2 Q3 Max
ApC 1476.3 1812.7 28 273 693 1716 8008

TpC (s) 52.7 213.3 0.0 0.3 1.9 8.3 1006.5
Time (s) 776.2 2983.9 0.1 2.4 19.4 157.2 14091.1
Max/Min 7.3 7.2 2.0 3.2 4.8 7.6 29.0

Depth 8634.2 13980.7 256 1280 3072 8192 65536

architectures. The results obtained by the search procedure
for each FSM are summarized in Table I, which shows the
some statistical measures of the number of different possible
address assignments per column (ApC), the execution time
per column (TpC), the total execution time (Time), the ratio
between the maximum and minimum theoretical number of
required data LUTs (Max/Min), and the number of words of
the ROM (Depth).

The search procedure has been carried out using a brute-
force algorithm implemented in Python and executed on an
Intel i7-8700K at 3.70 GHz with 16 GB of RAM using only
a single processor. The original purpose of the brute-force
algorithm was to study the influence of the address assignment
on the number of LUTs that can be saved in order to justify
a future development of an efficient algorithm. However, the
resulting execution times show that the algorithm can be
used in most practical applications, in which the number of
assignments to evaluate is tractable (see ApC and TpC in
Table I). In fact, only four test cases have been excluded
because they require too much computation time. For the
studied cases, the total execution time is negligible in most
of them and it is greater than 13 minutes in only one case.

Regarding the theoretical number of data LUTs required
by each address assignment, the maximum is always at least
double the minimum. The maximum value is in average 7.3
times the minimum value; so, the theoretical average number
of LUTs that could be saved using the best assignment is 86%.
Therefore, finding a good address assignment is critical to
obtain efficient distributed ROM-based FSM implementations.

In order to evaluate the impact of Algorithm 1, the process
of searching the best address assignment has been applied
to ROMs generated from the FSMs using a random state
encoding, and the results have been compared with those
obtained by Algorithm 1. In 55% of the cases, the number
of LUTs obtained with the encoding of Algorithm 1 is less
than that obtained with the random encoding. In addition, the
opposite is only true in a 32% of the cases.

FSMs have been synthesized and implemented using Vivado
Design Suite 2019.2 in a Spartan-7 FPGA (xc7s6cpga196-2);
therefore, the presented results include the routing overhead.
Different Vivado preconfigured strategies for synthesis and im-
plementation have been used, and, for each FSM, the strategy
that achieves the best result according to the optimization
goal (i.e., the least number of LUTs for area optimization
and the highest frequency for speed optimization) have been
selected. Each column of the optimized distributed-ROM-
based FSM has been implemented using the architectures
described in Section IV. For each column, the architecture
that has obtained the best result is selected to form part of

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 23,2021 at 12:39:07 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3039913, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X 2020 5

TABLE II
EXPERIMENTAL RESULTS

Area optimation Speed optimation
FSM DIST-ROM VIV-LUT Red. FSM DIST-ROM VIV-LUT Inc.

LUT MHz LUT MHz (%) LUT MHz LUT MHz (%)
ex4 11 668 27 457 59.3 ex4 15 720 27 45757.7
cse 37 505 74 38550.0 pma 56 480 112 32946.1

opus 16 566 28 50342.9 bbsse 27 608 43 45334.4
ex6 22 629 38 502 42.1 opus 19 644 42 50727.1
pma 46 398 78 28841.0 styr 113 414 151 32925.7
s298 112 353 184 32939.1 sse 30 557 34 44724.5
keyb 39 424 58 298 32.8 bbrtsa 11 658 15 532 23.6
styr 105 346 151 32930.5 ex6 22 629 42 51023.2

mark1 14 669 20 56930.0 keyb 39 424 69 35120.8
sand 117 376 162 34427.8 cse 37 505 75 43017.4

bbrtsa 11 658 15 532 26.7 planet 103 440 174 37616.9
planet 98 421 133 33126.3 s1 85 427 72 37214.9

sse 26 544 34 44723.5 ex1 71 456 98 40412.8
bbsse 27 608 35 45122.9 mark1 14 669 25 59612.2
s208 11 629 14 56621.4 s208 11 629 14 56611.0
s386 30 514 38 44621.1 s1494 126 416 131 3809.5
ex1 68 443 86 397 20.9 sand 125 376 194 3517.2
tbk 47 401 55 384 14.5 s1488 121 415 128 3945.3

s1488 121 415 128 3945.5 s298 129 360 196 3434.9
s1494 124 412 131 3805.3 s420 15 552 16 5314.0
s420 15 552 14 498 -7.1 s386 30 514 41 5042.1
s1 75 386 64 345 -17.2 tbk 55 429 59 4270.5
abbara bbtas FSM

the final implementation (called DIST-ROM). To evaluate the
effectiveness of the proposed technique, conventional LUT-
based FSM implementations have been generated according
to Vivado instantiation template (called VIV-LUT).

Table II shows the maximum clock frequency (in MHz) and
the number of LUTs for both area and speed optimization. The
columns “Red.” and “Inc.” show the area reduction and the
speed increase, respectively, obtained by DIST-ROM respect
to VIV-LUT; thus, a positive value represents that DIST-ROM
is better than VIV-LUT (these values are shown in bold).
Regarding area optimization, in 91% of the cases, DIST-ROM
reduces the number of LUTs with an average reduction of
29%. Note that this reduction is not achieved at expense of
decreasing the speed; in fact, it increases in all cases. The
average speed increment is 20% for the cases in which the area
is reduced. Regarding speed optimization, DIST-ROM is faster
in all cases (with an average speed increment of 18%). In all
cases except ins1, the number of LUTs is also reduced. As a
conclusion, DIST-ROM can be considered as a real alternative
to VIV-LUT for speed and area optimization.

Finally, in order to study the influence of the proposed opti-
mization technique regardless of the effect of the architectures,
the implementation results of DIST-ROM have been compared
with those obtained by the proposed architectures but using
a random state encoding and the worst address assignment
(called NOPT-ROM). In area optimization, DIST-ROM uses
less number of LUTs than NOPT-ROM in 68% of the cases
and increases the speed in the same proportion. On average,
the proposed optimization technique reduces the number of
LUTs from 63 to 53 and increases the speed from 470 to
496 MHz. In speed optimization, DIST-ROM is faster than
NOPT-ROM in 95% of the cases and reduces the number
of LUTs in all cases. On average, the proposed optimization
technique increases the speed from 447 to 515 MHz and

reduces the number of LUTs from 85 to 55. Therefore,
the implementations benefit from the proposed optimization.
However, the results could be improved if the best-address-
assignment search procedure also took into account the num-
ber of LUTs of the multiplexer and the mapper, or the low-
level optimizations done by Vivado (e.g., this tool exploits
don’t cares to reduce the number of inputs of the data LUTs
and to join pairs of 5-input LUTs into 6-input LUTs).

VI. CONCLUSION AND FUTURE WORKS

This brief explores the optimization of ROM-based FSM
implementations as an alternative to conventional LUT-based
implementations. The presented study shows that the theoret-
ical number of LUTs that can be saved if the best assignment
is used instead of the worst one is 86% on average. Compared
with conventional LUT-based implementation, both in area and
speed optimization, the proposed technique increases the speed
in all cases; in addition, the number of LUTs is reduced in 91%
of the cases in area optimization, and in 95% of the cases in
speed optimization. These results lead the authors to conclude
that the proposed distributed-ROM-based FSM implementa-
tions can be considered as a feasible alternative to conventional
LUT-based implementations in practical applications.

As future work, we plan to study new methods to find
a better approximation to the optimal address assignment.
The current approximation can be improved by including the
cost of the multiplexer and the mapper in the estimation of
the number of LUTs and by taking into account low-level
optimizations performed by the synthesis tool. Moreover, with
the purpose of simplifying the mapper, the optimal assignment
from address signals to multiplexer inputs will be studied. In
order to apply the methodology to larger FSMs, we will try
to develop algorithms to obtain the best address assignment
without using brute force. Finally, we plan to study the
characteristics of an FSM that make that its implementation
is more efficient using one or another architecture.

REFERENCES

[1] L. Jozwiak, A. Slusarczyk, and A. Chojnacki, “Fast and compact se-
quential circuits for the FPGA-based reconfigurable systems,”Journal of
Systems Architecture, vol. 49, pp. 227–246, 09 2003.

[2] R. Rudell, “Tutorial: design of a logic synthesis system,” in33rd Design
Automation Conference Proceedings, 1996, 1996, pp. 191–196.

[3] J. Cong and Y. Ding, “Combinational logic synthesis for lut based field
programmable gate arrays,”ACM Trans. Des. Autom. Electron. Syst.,
vol. 1, no. 2, p. 145204, Apr. 1996.

[4] Xilinx, “7 series FPGAs configurable logic block: User guide,” 2016.
[5] A. Barkalov, L. Titarenko, M. Kolopienczyk, K. Mielcarek, and

G. Bazydlo,Design of EMB-Based Mealy FSMs. Springer International
Publishing, 2016, pp. 193–237.

[6] R. Senhadji-Navarro, I. Garcia-Vargas, and J. Guisado, “Performance
evaluation of RAM-based implementation of finite state machines in
FPGAs,” in IEEE International Conference on Electronics, Circuits and
Systems, 2012, pp. 225–228.

[7] S. Yang, “Logic synthesis and optimization benchmarks user guide.
version 3.0,” 1991.

[8] J.-K. Rho, G. D. Hachtel, F. Somenzi, and R. M. Jacoby, “Exact and
heuristic algorithms for the minimization of incompletely specified state
machines,”IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, no. 2, pp. 167–177, Feb 1994.

[9] M. Theobald, S. M. Nowick, and T. Wu, “Espresso-hf: a heuristic
hazard-free minimizer for two-level logic,” in33rd Design Automation
Conference Proceedings, 1996, June 1996, pp. 71–76.

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 23,2021 at 12:39:07 UTC from IEEE Xplore. Restrictions apply.

