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Raúl M. Falcón
School of Building Engineering, University of Seville, Spain.

rafalgan@us.es

Daniel Kotlar
Department of Computer Science, Tel-Hai College, Upper Galilee, Israel.

dannykotlar@gmail.com

Trent G. Marbach
College of Computer Science, Nankai University, Tianjin, China.

trent.marbach@outlook.com

October 23, 2019

Abstract

Computing the autotopism group of a partial Latin rectangle can be performed in a variety
of ways. This pilot study has two aims: (a) to compare these methods experimentally, and (b) to
identify the design goals one should have in mind for developing practical software. To this end,
we compare six families of algorithms (two backtracking methods and four graph automorphism
methods), with and without the use of entry invariants, on two test suites. We consider two
entry invariants: one determined by the frequencies of row, column, and symbol representatives,
and one determined by 2× 2 submatrices. We find: (a) with very few entries, many symmetries
often exist, and these should be identified mathematically rather than computationally, (b) with
an intermediate number of entries, a quick-to-compute entry invariant was effective at reducing
the need for computation, (c) with an almost-full partial Latin rectangle, more sophisticated
entry invariants are needed, and (d) the performance for (full) Latin squares is significantly
poorer than other partial Latin rectangles of comparable size, obstructed by the existence of
Latin squares with large (possibly transitive) autotopism groups.

Keywords: Autotopism, Latin square, partial Latin rectangle.

1 Introduction

Let [n] = {1, 2, . . . , n}. An r × s partial Latin rectangle is an r × s array containing symbols from
[n] ∪ {·}, where each symbol in [n] appears at most once within each row and each column. If
r = s = n, then this is a partial Latin square of order n.
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Let PLR(r, s, n) denote the set of r × s partial Latin rectangles. Every L ∈ PLR(r, s, n) is
uniquely determined by its entry set

Ent(L) := {(i, j, L[i, j]) : i ∈ [r], j ∈ [s], L[i, j] ∈ [n]}.

Any triple (i, j, L[i, j]) ∈ Ent(L) is an entry of L, while any pair (i, j) ∈ [r]×[s] is a cell. The latter is
considered empty if it contains the symbol ·, in which case, L[i, j] is undefined. If L ∈ PLR(r, s, n)
does not have empty cells, then it is a Latin rectangle (or a Latin square, if r = s = n). This
constitutes a generalization of the standard definition of a Latin rectangle [1], which requires that
s = n.

Let Sm denote the symmetric group on [m]. A triple of permutations θ := (α, β, γ) ∈ Sr×Ss×Sn
acts on PLR(r, s, n), with θ acting on L ∈ PLR(r, s, n) by permuting its rows, columns, and symbols
by α, β, and γ, respectively. The triple θ is called an isotopism and both L and the resulting partial
Latin rectangle Lθ ∈ PLR(r, s, n) are isotopic. Moreover,

Ent(Lθ) =
{(
α(i), β(j), γ(L[i, j])

)
:
(
i, j, L[i, j]

)
∈ Ent(L)

}
,

where, from here on, we use (i, j, L[i, j])θ to denote (α(i), β(j), γ(L[i, j])). If L = Lθ, then θ is
said to be an autotopism of L. The set Atop(L) of autotopisms of L forms a group, called the
autotopism group of L.

Autotopisms of (partial) Latin squares have arisen in a range of topics and are also studied
in their own right [2–19]. In particular, they are beginning to find applications in cryptography
[20–22], erasure codes [23,24] (relating to Blackburn partial Latin squares [25]), and graph colouring
games [26, 27]. However, autotopisms of (partial) Latin rectangles, have only briefly been studied
in recent papers [28–30].

The standard way of computing autotopism groups of Latin squares was given by McKay,
Meynert, and Myrvold [31], who describe a graph whose automorphism group is isomorphic to the
autotopism group of the corresponding Latin square. A generalization of this method has already
been used for studying partial Latin squares with trivial symmetry groups [32]. For autotopisms of
Latin squares, Kotlar [33] gave a method which enumerates cycles belonging to entries, which can
be thought of as a special case of, what we call in this paper, row invariants.

Almost all Latin squares have trivial autotopism groups [34,35], so, in almost all cases, comput-
ing such a group boils down to eliminating the possible existence of a non-trivial autotopism. This
procedure cannot be, however, straightforwardly generalized to (partial) Latin rectangles, because:
(a) two empty rows (or two empty columns) in a partial Latin rectangle can be swapped, giving
rise to a large family of partial Latin rectangles with a non-trivial autotopism; (b) 2 × n Latin
rectangles always have non-trivial symmetries; and (c) partial Latin squares with very few entries
must have non-trivial symmetries [32].

In this paper, six families of algorithms for computing this group are implemented and exper-
imentally compared. Some of them have been used in prior research on partial Latin rectangles,
while others are introduced here.

2 Autotopisms of partial Latin rectangles

2.1 Introduction

We start with a characterization of the existence of an autotopism of a partial Latin rectangle with
specified row and column permutations, but with an unspecified symbol permutation. We defer
proofs to a subsequent paper.
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Lemma 2.1. Let L ∈ PLR(r, s, n). If α ∈ Sr and β ∈ Ss, then there exists γ ∈ Sn for which
θ = (α, β, γ) ∈ Atop(L) if and only if

1. L[α(i), β(j)] is defined for all (i, j, L[i, j]) ∈ Ent(L), and

2. L[α(i), β(j)] = L[α(i′), β(j′)], whenever L[i, j] = L[i′, j′] ∈ [n].

The permutations γ for which θ ∈ Atop(L) are those satisfying γ(L[i, j]) = L[α(i), β(j)], for all
(i, j, L[i, j]) ∈ Ent(L).

Lemma 2.1 suggests an algorithm for simultaneously determining whether or not a row per-
mutation α and a column permutation β participate in an autotopism of a partial Latin rectangle
L ∈ PLR(r, s, n), and identifying which symbol permutations γ are possible. We proceed entry
by entry, setting γ(L[i, j]) = L[α(i), β(j)] for every entry (i, j, L[i, j]) ∈ Ent(L). Three clashes
can arise: (a) L[α(i), β(j)] is undefined; (b) γ(L[i, j]) was previously set to something else; or (c)
γ−1(L[α(i), β(j)]) was previously set to something else. If no clashes arise, then the triple (α, β, γ)
is an autotopism for all completions of γ to a permutation in Sn.

Lemma 2.1 also enables one to compute the autotopism group while ignoring empty rows, empty
columns, and unused symbols. Specifically, suppose L has r′ ≤ r non-empty rows, s′ ≤ s non-empty
columns and n′ ≤ n used symbols. Let L ∈ PLR(r′, s′, n′) denote the partial Latin rectangle that
results after eliminating the empty rows and columns of L and relabeling the used symbols of L to
[n′]. Thus, the following result holds.

Lemma 2.2. |Atop(L)| = (r − r′)! (s− s′)! (n− n′)! |Atop(L)|.

2.2 Entry invariants

An entry invariant P is any property of the entries of partial Latin rectangles which is preserved
under autotopisms. That is, if L is a partial Latin rectangle, then P(e) = P(eθ), for all e ∈ Ent(L)
and θ ∈ Atop(L). We also define a row invariant, column invariant, and symbol invariant of L to
be respectively any property of its rows, columns, or symbols which is preserved under autotopisms.
Given an entry invariant P, a useful row invariant is the multiset of entry invariants of the entries
in that row, denoted PR, and likewise for columns, denoted PC . The symbol invariant PS is the
multiset of entry invariants of the entries containing the particular symbol in the third component.

Lemma 2.3. Let L ∈ PLR(r, s, n) have entry invariant P. Then, L has a trivial autotopism group
if one of the following conditions holds.

a) P(e) 6= P(e′), for every pair of distinct entries e, e′ ∈ Ent(L).

b) There exist distinct X,Y ∈ {R,C, S} such that PX(i) 6= PX(i′) whenever i 6= i′, and PY (j) 6=
PY (j′) whenever j 6= j′, where i, i′, j and j′ are taken from the appropriate sets of rows, columns,
or symbols.

Every entry invariant P of L determines a partition of its set Ent(L) whereby we replace all the
entries on L by the index of their entry invariant (we subsequently give examples in (1) and (2)).
Let cPj (L) denote the j-th column of the resulting new array, for all j ∈ [s]. Let cj(L) ⊆ [r] denote
the set of row indices i for which the cell (i, j) is non-empty.

Lemma 2.4. Let L ∈ PLR(r, s, n) and θ = (α, β, γ) ∈ Atop(L). If P is invariant under symbol
permutations, then

3



a) cPj (L(α,id,id))[i] = cPβ(j)(L)[i], for all i ∈ [r] and j ∈ [s].

b) cj(L) = cβ(j)(L), for all j ∈ [s].

In this paper, all entry invariants are invariant under symbol permutations.

2.2.1 Strong entry invariants

The strong entry invariant [30] of an entry (i, j, L[i, j]) is the triple (a, b, c) formed by the number
a of entries in row i, the number b of entries in column j, and the number c of times the symbol
L[i, j] appears in L. For example:

1 · 2 · · · 3 · ·
2 · · 4 1 5 6 · 7

· 1 5 3 · 4 · · ·
· 2 · 5 · 3 · 4 ·
4 3 · · 5 · 1 · 2

· · · · 2 · · 1 3

strong entry invariants
relabeled 1, 2, . . .−−−−−−−−−−−−−−→

1 · 2 · · · 1 · ·
3 · · 4 3 4 5 · 5

· 6 7 6 · 8 · · ·
· 6 · 8 · 6 · 7 ·
9 10 · · 9 · 10 · 10

· · · · 1 · · 2 1

(1)

The multisets of strong entry invariants in each row and column imply that in any autotopism
(α, β, γ) of this partial Latin rectangle, α and β fix the partitions {{1, 6}, {2}, {3, 4}, {5}} and
{{1, 5}, {2}, {3, 8}, {4, 6}, {7, 9}} set-wise, respectively. It turns out there is a single non-trivial
autotopism with row permutation (16)(34), column permutation (15)(38)(46)(79) and symbol per-
mutation (12)(45)(67). Thus, no finer partitions of the sets [6] and [9] can be achieved using row
and column invariants, respectively.

2.2.2 Square invariants

Given a partial Latin rectangle L ∈ PLR(r, s, n), any entry (i, j, k) belongs to exactly (r−1)(s−1)
distinct 2× 2 submatrices of L, a general one having the following form:

j j′

i k x
i′ y z

which may have some of the following five properties: (a) x is undefined, (b) y is undefined, (c)
z is undefined, (d) k = z, and (e) x = y. This gives a maximum of 25 = 32 possibilities, whose
enumeration gives a length-32 vector that sums to (r − 1)(s− 1). This vector constitutes an entry
invariant, which we call the square invariant. Unlike strong entry invariants, the square invariants
for Latin squares are not necessarily equal. For example:

2 1 3 4 5

1 4 2 5 3

4 3 5 1 2

5 2 1 3 4

3 5 4 2 1

2× 2 entry invariants
relabeled 1, 2, . . .−−−−−−−−−−−−−→

1 2 1 1 2

2 1 1 1 2

1 1 1 2 2

1 1 2 1 2

2 2 2 2 3

(2)
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3 Computing the autotopism group

Here, we introduce the methods we consider for computing the autotopism group.

3.1 Backtracking methods

3.1.1 Alpha-beta backtracking

We start with the outputs of α, β, and γ as undefined, and use backtracking to determine the
possible row permutations α. At each level of the search tree we designate

i
α7−→ a

for some i, a ∈ [r] provided α−1(a) is not already defined as something other than i. Once α has
been decided, we again use backtracking to establish the possible column permutations β. At each
level, we designate

j
β7−→ b

for some j, b ∈ [s] provided β−1(b) is not already defined as something other than j. Finally, for
each pair (α, β), Lemma 2.1 describes how to determine whether an autotopism (α, β, γ) exists,
and how to find the possible symbol permutations γ.

In practice, both alpha- and beta-search trees can benefit from invariants, e.g., if we decide
α(i) = a, then rows i and a must have the same value for the invariants described in 2.2.1 and
2.2.2. In this regard, we can use Lemma 2.4 to prune the backtracking method described above.
We refer to this improvement of the backtracking method as the CV method (Column Vector).

3.1.2 Entrywise backtracking

We start with the outputs of α, β, and γ as undefined, and at each level of the search tree, we
designate

(i, j, L[i, j])
θ7−→ (a, b, L[a, b])

or equivalently, we simultaneously designate

i
α7−→ a, j

β7−→ b, and L[i, j]
γ7−→ L[a, b],

provided none of the next six clashes arises: (a) α(i) is already defined as something other than a;
(b) β(j) is already defined as something other than b; (c) γ(L[i, j]) is already defined as something
other than L[a, b]; (d) α−1(a) is already defined as something other than i; (e) β−1(b) is already
defined as something other than j; or (f) γ−1(L[a, b]) is already defined as something other than
L[i, j]. In addition, i and α(i) and j and β(j) respectively require the same row and column
invariants implied by the invariants (as in Sections 2.2.1 and 2.2.2).

3.2 Graph theoretic methods

A vertex invariant is a property of the vertices of graphs which is preserved under automorphisms.
In this way, a vertex invariant partitions the vertices such that no automorphism of the graph
permutes vertices from one part to another. In addition to being able to list the automorphisms of
the graph, Nauty [36] (available from http://pallini.di.uniroma1.it/) also outputs a function
called orbits, which gives the finest possible vertex invariant partition.
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In the graphs we study, the vertex set is or contains Ent(L) for some partial Latin rectangle
L ∈ PLR(r, s, n). Entry invariants can be used to color these vertices. In general, this coloring
does not correspond to a vertex invariant, as it might not be preserved under all automorphisms
of the graph, but the automorphisms which have been eliminated by coloring the vertices do not
correspond to autotopisms of L.

3.2.1 Adapted McKay, Meynert, and Myrvold method

We define the vertex-colored graph GL by

V (GL) := Ent(L) ∪ {Ri : i ∈ [r] and row i of L is non-empty}
∪ {Sj : j ∈ [s] and column j of L is non-empty}
∪ {Nk : k ∈ [n] and symbol k occurs in L}

where each of the four subsets, Ent(L), {Ri}, {Sj}, and {Nk}, are assigned a distinct vertex color,
and edge set

E(GL) := {eRi, eSj , eNL[i,j] : e := (i, j, L[i, j]) ∈ Ent(L)}.

By restricting Aut(GL) to Ent(L), we determine Atop(L) up to permutations of empty rows and
columns, and unused symbols.

3.2.2 Bipartite graph method

Pairs of permutations (α, β) ∈ Sr × Ss act on the set of r × s (0, 1)-matrices by permuting the
rows by α and the columns by β; we define an autotopism as a stabilizer under this group action.
Corresponding to L ∈ PLR(r, s, n), we define a (0, 1)-matrix M = M [i, j]r×s with M [i, j] = 1 if and
only if L[i, j] is defined. The group Atop(L) is thus isomorphic to a subgroup of the autotopism
group of M . Moreover, the matrix M can be interpreted as the biadjacency matrix of a bipartite
graph BM . This gives rise to two ways of computing Aut(L):

1. Use Nauty to compute the automorphism group of BM . This determines the autotopism
group of M , from which we check each (α, β) in the autotopism group of M to see if it defines
an autotopism of L through Lemma 2.1.

2. Use Nauty to compute the orbits of BM . This determines the finest possible partitions
of [r] and [s] for use as row and column invariants, respectively. We then apply one of the
backtracking methods of Section 3.1 with the added condition that orbits are preserved.

3.2.3 Partial Latin rectangle graph method

We define the edge-colored graph ΓL with vertex set V (ΓL) := Ent(L) and:

• green edges between two distinct entries if they share a row,

• orange edges between two distinct entries if they share a column, and

• purple edges between two distinct entries if they share a symbol.

It is known [30] that any automorphism of ΓL is equivalent to an autotopism of L. The vertex
set of ΓL is Ent(L), which implies the automorphisms of ΓL act on the entry set of L, so they are
determined directly from Nauty’s output.
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However, Nauty does not allow its input graphs to have edge colors; we consider two ways to
overcome this. The first one is to simply ignore the edge colors, then check each automorphism of
ΓL returned by Nauty to see if it corresponds to an autotopism of L. The second method is to
define a new non-edge-colored graph ΓL, whose automorphisms correspond to the automorphisms
of the edge-colored ΓL. It has vertex set

V (ΓL) := Ent(L) ∪ {Re : e ∈ Ent(L)} ∪ {Se : e ∈ Ent(L)} ∪ {Ne : e ∈ Ent(L)},

where the unions above indicate distinct vertex colors, and edge set

E(ΓL) := {eRe, eSe, eNe : e ∈ Ent(L)}
∪ {Re1Re2 : distinct entries e1 and e2 belong to the same row}
∪ {Se1Se2 : distinct entries e1 and e2 belong to the same column}
∪ {Ne1Ne2 : distinct entries e1 and e2 share the same symbol}.

The graph ΓL has more vertices than ΓL, so Nauty takes longer, but the automorphism group of
ΓL, when restricted to Ent(L) gives the autotopism group of L directly. Entry invariants can be
used to color the vertices in Ent(L) in both ΓL and ΓL.

3.2.4 Rook’s graph method

We define the edge-colored graph ΞL from the partial Latin rectangle graph ΓL by deleting the
purple edges, thereby forming an induced subgraph of the rook’s graph Kr×Ks. Any autotopism of
L is equivalent to an automorphism of ΞL. The converse does not necessarily hold, so after Nauty
has been called, we check each automorphism of ΞL to see if it corresponds to an autotopism of L.
Differing from partial Latin rectangle graphs, we define ΞL with

V (ΞL) := Ent(L) ∪ {Re : e ∈ Ent(L)} ∪ {Se : e ∈ Ent(L)} ∪ {k ∈ [n] : symbol k appears in L},

where the unions above indicate distinct vertex colors, and edge set

E(ΞL) := {eRe, eSe : e ∈ Ent(L)}
∪ {Re1Re2 : distinct entries e1 and e2 belong to the same row}
∪ {Se1Se2 : distinct entries e1 and e2 belong to the same column}
∪ {Rek : e ∈ Ent(L) and e has symbol k}
∪ {Sek : e ∈ Ent(L) and e has symbol k}.

It is also possible to use entry invariants to color the vertices in E(L) in both ΞL and ΞL.

4 Experimental results

We compare run times of all the methods for computing autotopism groups introduced in Section
3. The experimental platform has an Intel Core i7-4700MQ, 2.40GHz processor (4 physical cores)
with 7895MiB RAM running Ubuntu 16.04 LTS (64-bit). In each experiment, we calculate the
average run time over 10000 random PLR(r, s, n)s on the following two randomly generated sets,
for some fixed parameters r, s, and n:
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• In PLR set A, we begin with an empty PLR(r, s, n) and attempt x times to add an entry
chosen uniformly at random from [r] × [s] × [n]. If a clash arises (that is, if the cell is full,
or adding the entry would introduce a repeated symbol in a row or column), we do nothing.
A random partial Latin rectangle generated in this way could have anywhere from 1 to rs
entries, with the expected number of entries growing as the number of attempts x increases.

• In PLR set B, we generate a random Latin square of order n ≥ max{r, s} by using the
Jacobson and Matthews method [37], then delete the last n−r rows and last n−s columns to
obtain an (rs)-entry PLR(r, s, n), that is, a Latin rectangle. We then delete random entries
until we obtain a PLR(r, s, n) with x entries.

Figure 1 in the Appendix plots the experimental run times for random partial Latin rectangles in
PLR(5, 5, 5). We observe how backtracking methods perform significantly better when invariants
are used. Thus, for instance, the run time for entrywise backtracking without the use of entry
invariants seems to increase exponentially as the number of entries increases. This fact is not so
clear for graph theoretic methods, which show unpredictable performance depending on the input.

Results for higher orders are shown in Figure 2, where, for PLR Set A, we see fluctuating
run times for the alpha-beta backtracking method and bipartite graph method using strong entry
invariants. It indicates a high sensitivity to the number of entries. Therefore, if we compute
autotopism groups for partial Latin rectangles where entries are added randomly [32], we should
be aware of the problem that partial Latin rectangles with many entries may drastically reduce the
software’s performance.

When using entry invariants, sometimes we can deduce that the autotopism group is trivial (up
to the autotopisms counted in Lemma 2.2). In these cases, further computation is not required.
Figure 3 plots the proportion of the time that further computation is required for three example
parameter vectors (r, s, n). We find that entry invariants are ineffective when a partial Latin
rectangle has very few entries (likely because it has non-trivial autotopisms). Further, while strong
entry invariants are more efficient to compute than square invariants, Figure 3 shows that square
invariants are more useful at reducing subsequent computation when there are many entries.

Table 1 lists the average run times for the McKay, Meynert, and Myrvold (MMM) method,
the bipartite graph method, and the partial Latin rectangle (PLR) graph method when computing
autotopism groups for partial Latin rectangles with at most two empty cells. We see that the PLR
graph method outperforms the other methods in every case. Also clear from Table 1 is the extreme
difference between the case r = s = n (that is, Latin squares) and the other cases. Without entry
invariants, the (17, 18, 19) data set was processed much faster than the (7, 7, 7); these matrices
have 306 cells vs. 49 cells, respectively. In the case of Latin squares, the use of a well-chosen
entry invariant is essential to both the MMM and PLR graph methods. Further experimental
run times for Latin squares are given in Figure 4, where we see that the PLR graph method
consistently outperforms the other methods, and that the bipartite graph method performance is
unstable. Figure 5 includes run times for Latin squares after we delete one or two entries, where
the instability is no longer present.

Table 1 shows significantly worse performance when (r, s, n) = (17, 18, 19) using the MMM or
the PLR graph methods with strong entry invariants. In this setting there is a “trap”: while there
are many entries, there are few distinct strong entry invariants, so coloring the vertices for input
into Nauty involves sorting a long repetitive list.
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run time (µs)
(r, s, n) (17, 18, 19) (7, 7, 7)

no. entries rs− 0 rs− 1 rs− 2 rs− 0 rs− 1 rs− 2

MMM (Nauty) 446.0 203.1 190.3 11087.8 266.4 34.1
MMM (Nauty, SEI) 1714.0 262.1 293.5 11092.8 227.5 38.7
MMM (Nauty, sq.) 586.2 301.3 294.9 55.2 32.1 26.5

MMM (Nauty, SEI, sq.) 577.6 302.8 296.9 56.6 34.9 27.4

Bipartite graph (Nauty, sq., RC) 777.6 295.0 292.8 5312.0 160.0 23.0
Bipartite graph (Nauty, sq., RC) e/w 839.8 305.7 298.4 128.0 38.2 29.0
Bipartite graph (Nauty, sq., RC) α-β 657.7 300.3 296.6 2230.7 87.8 25.6

PLR graph (Nauty) 243.4 170.5 171.3 5476.1 154.3 17.0
PLR graph (Nauty, SEI) 885.4 192.3 183.7 5482.3 37.6 20.1
PLR graph (Nauty, sq.) 438.1 299.6 296.4 52.0 28.8 24.4

PLR graph (Nauty, SEI, sq.) 440.7 302.2 299.0 52.8 29.2 25.9

Table 1: Average run times of the MMM, bipartite graph, and PLR graph methods for partial
Latin rectangles with few empty cells (PLR set B). The best run times are in bold.

5 Conclusions and further work

From this work, we identify the design goals we should have in mind for software for computing
autotopism groups of partial Latin rectangles (PLRs):

1. Several methods showed unpredictable performance depending on its input; we should choose
a method which has stable performance.

2. We should mathematically account for PLRs with very few entries, which can have many
autotopisms.

3. A cheap-to-compute entry invariant (such as the strong entry invariant) is useful for PLRs
with an intermediate number of entries.

4. We should use sophisticated entry invariants for PLRs with a large number of entries.

5. It might be possible to identify PLRs with large (or even transitive) autotopism groups, where
we could e.g. offload these problematic cases onto e.g. a graphics processing unit (GPU) for
separate computation.

The PLR graph method offers reasonable and stable performance under most conditions. It
could be improved by

a) finding mathematical conditions on when automorphisms of non-edge-colored partial Latin
rectangle graphs are autotopisms of the corresponding partial Latin rectangle,

b) developing software for edge-colored graph automorphism (Bliss [38], available from http:

//www.tcs.hut.fi/Software/bliss/, also does not incorporate edge colors), or

c) developing purpose-built software which adapts the individualization/refinement approach of
Nauty and Bliss to the problem of computing autotopisms of partial Latin rectangles.

Further work on the development of efficient algorithms for the computational processes that
have been proposed throughout the paper, along with a study of the reasons that give rise to better
or worse experimental results, is also required.
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Figure 1: The average run time of various methods used to compute the autotopism group, with
or without the use of strong entry invariants (SEI) and/or square invariants (sq.); parameters
(r, s, n) = (5, 5, 5). Other acronyms: RC = “row and column invariants”; e/w = “entrywise”; EC
= “edge colors”; CV = “column vectors”. Some experimental results are omitted for space reasons.
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Figure 2: The average run time of the remaining methods. For PLR set B, the 63- and 64-entry
data points for (r, s, n) = (8, 8, 8) and the 72-entry data points for (r, s, n) = (8, 9, 10) are omitted
as they took too long to compute.
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Figure 3: The proportion of time (over 10000 samples) computation is required to compute the
autotopism group despite using strong entry invariants (SEI) and/or square invariants (sq.).
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