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yayv and roll changes. Cargo, passenger and naval 
vessels usually employ steering and stabilisation 
systems in order to provide improved manoeuver­
ing characteristics and motion control. Roll is cer­
tainly the most severe angular motion experienced 
by a ship. Large roll angles can make working on 
the ship difficult and can lead to motion sickness. 
The reasons for introducing active roll stabilisa­
tion systems in ships are basically: 1) security con­
ditions, 2) transport costs reduction, 3) passenger 
comfort, 4) personnel efficiency; and additionally 
in naval vessels: 5) stable weapon platform main­
tenance and 6) stable platform for helicopter land­
ing on the ship. 

If only the motions of roll. sway, yaw and surge are 
considered, the system is reduced to a problem of 
four degrees of freedom. The ship model described 
by Kallstrom and Ottosson (1982) has been used 
in the simulations carried out in this work. This 
model has demonstrated to be of great utility for 
evaluating the control algorithms by simulation, 
as a previous phase to sea trials (Kallstrom and 
Ottosson, 1982; Messer and Grimble, 1992). The 
ship model is a non-linear multivariable model, 
and the motion equations are (Kallstrom and Ot­
tosson, 1982): 
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'Where "tot" indicates the total forces and torques 
acting on the ship, due to the following effects: hy­
drodynamics, wind, waves and current. The state 
variables are respectively: .El = ~~ (transversal 

speed), .E2 =~, .E3 = -0, .E4 = </J and .E;, = 1l:. 

Actuators dynamic are modelled as: 

b = (be - b)/TH , 

et = (Qc - Q)/Tl- , I et I~ etma% , I Q I~ Qmu 

The control magnitudes are aCt) and bet), the 
angles of the fins and rudder respectively, and 
the magnitudes to be controlled are </J(t) and 
1l!( t), the angles of roll and heading. To de­
sign the controller, a linearized model has been 
chosen for nominal conditions of cruising speed 
F = lO.8m/ s. Forces and torques expressions, hy­
drodynamic derivatives and coefficients are taken 
from Kallstrom and Ottosson (1982). 

Fig , L Feedback control configuration 

3 CONTROL 
ALGORITHM 

Consider the control system of fig. 1. It consists 
of the plant (C), controller (K), pre-compensator 
P, reference signal (T), measurement noise (It), 
and disturbancies (d;, do). All signals are mul­
tivariable, and nominal mathematical models for 
C, 1(, P are LT!. The control objetives can be 
expressed at different levels of demanding: 1) 
Nominal stability (NS): bounded outputs for all 
bounded disturbancies, and bounded reference in­
puts. 2) Nominal performance (NP): small errors 
in the presence of disturbancies d;, do and refer­
ence inputs T. 3) Robust stability (RS): consider 
the feedback system in fig . 1. Suppose that the 
plant is not precisely known, and is modelled as 
belonging to a class of possible transfer matrices 
9. A controller /\,- satisfies the robust stability 
condition if K stabilizes all C' E 9. 4) Robust 
performance (RP): this requirement is said to be 
met if the performance specifications are satisfied 
for all possible plants C' E 9. 

The LTR (Loop Transfer Recovery) design 
methodology seeks to define the MnvIO compen­
sator K( s) so that the stability robustness and 
performance specifications are met to the possible 
greatest extent. This involves two basic steps: 1) 
vVe generate a MIMO target loop transfer func­
tion (TLTF) . 2) A special compensator K( s) is 
used, so that performance of the feedback sys­
tem in fig. 1 approximates the performance of 
the TLTF established in step one. The degree 
of approximation (or recovery) depends on char­
acteristics of the plant. If the plant is minimum 
phase, then the degree of recovery of the TLTF 
can be arbitrarily good (Stein and Athans, 1987) . 
If the plant is nonminimum phase and the frequen­
cies of the unstable zeros are beyond the band­
width of the TLTF, the recovery will take place 
in low frequencies, and for all practical purposes 
the presence of far-away non minimum phase zeros 
does not degrade the low frequency characteristics 
of the design. 

Different approaches have been suggested in the 
control literature. obtain the TLTF. One of these 
is based on K alman filter techniques (which gen­
erates the LTR-o procedure (Athans, 1986). An-



Fig. 2. TLTF synthesis 

other one is based on the l·inear qu(tdrat-I.c regulator 
(LQa, or also known as LQSF: linear quadratic 
state feedback) theory, and it generates the LTR­
i procedure (Zhang and Freudenberg, 1990; Ma­
ciejowski, 1989) . In this work we have employed 
the latter one: LTR-i . 

Target Loop Transfer Function Synthesis 

Consider the plant model (which includes the scal­
ing of the variables and augmentation dynamics 
that the designer has appended to meet specifica­
tions): 

.i;(t) Ax(t) + Bu(t) 

y = Cx(t) 

The transfer function matrix of the plant is: 
G(s) = Cif>(s)B, where if>(s) = (sI -A)-I, and we 
assume that [A, B] is stabilizable and that [A, C] 
is detectable. The structure of the TLTF is shown 
in fig. 2. It is simply defined by the parameters 
Band if> (s) of the plant model , and by a constant 
matrix Kc (optimal state feedback matrix). If we 
break the loop at the input of the plant we obtain 
the TLTF: 

For stability robustness to hold, in the face of mul­
tiplicative uncertainties at the input of the plant 
(G' = (I + E)G, 0'( E) < e( u:) , the interconnection 
system (Morari and Zafiriou, 1989) is in this case 
M (s) = Tc (s)) , the following inequality must be 
true for all J.-. (small gain theorem): 

or /1.[Tc (j:..:)] < 1je(J.-·) in the case of structured 
uncertainties (diagonal structure); where 0' is the 
maximum singular value and /1. represents the 
structured singular value [MoZa89]. 

Control demand , command-following and 
disturbance-rejection can be evaluated from fig. 
2 for the matrix Kc obtained. Frequency-domain 

analysis is made and the temporal responses of 
the system are obtained by simulating the TLTF 
in fig. 2, in order to prove if design specifications 
are sa tisfied. 

To obtain matrix Kc we solve the LQR problem, 
which consists of meeting the control signal 'which 
will minimize the cost: 

with: Q = QT ~ O,Rc = R~ > O, Qc = MTQM . 
The solution is u = -Kcx, and Kc is given by: 

where Pc = PI' ~ 0 satisfies the algebraic Riccati 
equation: 

Some remarkable characteristics of the TLTF ob­
tained in this way are: 1) optimal control law, 2) 
O'(Tc) :S 2, 3) O'(Sc) :S 1, 4) at least 60° of phase 
margin in each input channel, and infinite gain 
margin ; if the loop is conditionally stable it has 
a margin of at least 6dB against gain reductions 
(Stein and Athans, 1987; Maciejowski, 1989). 

LTR procedures 

Once the TLTF has been obtained, we can ask 
ourselves if ""ould be possible to construct a com­
pensator K(s) in fig. 1 with the property that 
the feedback system of fig . 1 approximates the 
behaviour of the TLTF in fig. 2. This would 
happen if the following equality were true (where 
K(s)G(s) is the loop transfer function LTF): 
K(s)G(s) = Hc{s) . However, for the purposes 
of design it is not necessary for us to have exact 
equality. Indeed, if we are interested in finding 
K(s) so that the approximate relation 

over the band of interest frequencies is satisfied. 
This is the point of view of the LTR-i method 
presented in this work. 

'Ve now examine two procedures to obtain the 
LTR controller K(s) , one observer based, and the 
other non observer based. The respective struc­
tures are shown in fig. 3 and fig. 4. As we can 
see fig . 3 shows the conventional LQG observer 
based controllers structure (OBC), and fig. 4 il­
lustrates the compensator structure developed by 
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Fig . .3 . LTR-i (OBe) structure 

Fig. 4. LTR-i (NOBC) structure 

Chen et al. (1991) (NOBC). The difference be­
tween them is that the NOBC removes the link 
from the control signal 11 to the observer via the 
control dis tribution matrix B , which is outside the 
realm of observer theory and hence the separation 
principle is no longer valid . In this case to guar­
antee the closed-loop stability J(o must be such 
that A - J(0C' has all its eigenvalues in the left 
complex half plan. The respective controllers are: 

The procedure to obtain the matrix I{o is the same 
in both cases. One way is that proposed by Doyle 
and Stein (1981), and is based on the Kalman fil­
ter problem (KBF). For this the following alge­
braic Riccati equation is solved: 

where: 

and the Kalman filter gain matrix is obtained 
from: 

If we obtain J(o( q) by choosing the covariance ma­
trix Qo as: 

it can be proved [DoSt81] for the minimum phase 
plant that 

lim J((s)G(s) = Hc(s) 
q- oc· 

Therefore: LTF q~, TLTF 

The NO BC characteristics for q ~ qo (the value of 
qo must be calculated in each case) are that (Chen 
et aI., 1991, 1992): 1) The compensator is open­
loop stable, 2) closed-loop stability is guaranteed 
and above all c) much smaller values of gain re­
covery gain q are required than the conventional 
OBC for the same degree of recovery. This fact 
implies that the compensator band-width is much 
smaller than that of the conventional controller 
and thus we have the advantage of avoiding, in 
some circumstancies, the saturation of the actua­
tors as well as an improvement in the insensitivity 
to noise or other high-frequency disturbances. 

The approach followed in this work is based on 
the following points: 1) 'We are only interested in 
a partial recovery in the interest frequency range 
(low and medium frequencies). 2) At high fre­
quencies the singular values of Hc(j:..:) roll-off at-
20 dB/dec, ,vhile those of J((j:..:)G(j:.,;) roll-off at-
40 dB/dec. Thus, LTR loops offer some additional 
robustness to high frequency unmodelled dynam­
ics as compared to the TLTF. 3) The command­
following and disturbance rejection performance 
in the low frequency region between the TLTF and 
the LTF with LTR will be essentially the same. 

4 Sn"IULATION STUDIES 

First we design a LTR-i controller to achieve ad­
equate responses to changes in the reference sig­
nal. For this we use the linearized nominal model 
of the ship for Y = 7.72 m/sand we employ the 
following design parameters: 







significant wave height of 4m with 40° relative to 
ship reference course is chosen in the simulations. 
\-Ve can see that there is a remarkable improve­
ment in roll damping with the LTR-i MIMO con­
troller . Figure 11 shows heading and roll for non­
nominal speed conditions (9 .0m/s and 8m/s) ; we 
can see that the behaviour is adequate, which is 
another proof of the controller robustness. In or­
der to improve performance characteristics a gain 
scheduling controller can be used ,vith the speed 
of the ship as the auxiliary variable. Due to plant 
and regulators dynamics, we can implement the 
controller directly in a digital computer with a 
sample time of 0.1 seconds, withou t explicitly tak­
ing into account the sample-data character of the 
system. All the algorithm implementations used 
in the simulations with the non-linear model of 
the ship are realized in this way. 

,) CONCLUDING 
RElvlARKS 

Multivariable controllers based on LTR-i (Loop 
Transfer Recovery at the input of the plant) have 
been developed: a) for course changing, with con­
siderable decrease in the coupling roll angle and 
b) for ship steering and roll regulation, with a con­
siderable decrease in roll angle due to waves. The 
controller uses a non observer based control struc­
ture , and a partial recovery procedure over the 
band of interest frequencies. Robustness charac­
teristics of the controller in the face of uncertain­
ties are analyzed, and the benefits of the controller 
are proved by simulation with a multivariable non­
linear model of a ship. 
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