MULTIVARIABLE ROBUST LTR-i CONTROLLER FOR A SHIP
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Abstract: This paper describes the application of a multivariable robust controller
based on LTR-i methodology for roll damping and course steering of a ship by rudder
and fins. The controller uses a non observer based control structure, and a partial
recovery procedure over the band of interest frequencies. Robustness characteristics
of the controller in the face of uncertainties are analyzed and the benefits are proved

by simulation with a non linear model.
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1 INTRODUCTION

Classical design methodologies proceeded by
“shaping” the open loop transfer function in the
frequency domain to modify the feedback proper-
ties of the closed loop single-input/single-output
system (SISO). This strategy is succesful because
the relations between open loop and closed loop
system porperties are well understood. Hence,
specifications imposed upon closed loop transfer
functions may be mapped into equivalent spec-
ifications upon the open loop transfer function.
In the last few years. this methodology has been
formalized and generalized to multi-input/multi-
output (MIMOQ) design problems. The whole de-
sign procedure of altering the shapes of magnitude
plots (or sigma-plots) is refered as "loop shaping”
(Freudenberg and Looze, 1988).

When an observer based control structure is used.
and the model of the plant is completely known.
the separation principle enables a designer to sep-
arate a design into two different tasks: 1) state
feedback control design and 2) observer design to
reconstruct the state knowing only the output.
However, in the presence of uncertainties in the
model, the controller design following the separa-
tion principle does not necessarily yield the same
performance achievable by a state feedback de-
sign. or in the worst case. the closed-loop system
could even be unstable. Thus. there is a definite
need to develop observer design schemes and non
observer-based control structures which recover
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Multivariable control. uncertainty. interconnection system, robust con-

the properties achievable by state feedback design
while assuring the closed loop stability. This is
the aim of the LTR design methodologies.

A ship is a system subject to a considerable degree
of uncertainty in its modelling, fundamentally due
to different factors such as: 1) load conditions,
2) cruising speed and 3) environmental disturban-
cies. Thus robustness properties of any automatic
control system must be taken into account if satis-
factory performance is desired under realistic con-
ditions. In this work we develop a multivariable
design methodology based on LTR procedure for
a ship, with two different control structures: 1)
an observer based controller and 2) a non observer
based controller. We analyze the robustness prop-
erties of the controllers. we compare their charac-
teristics and we develop adequate multivariable
controllers which are recommended in each case.
The design of the controllers is carried out with
a linearized model of a non-linear mathematical
model of a ship (Kallstrom and Ottosson, 1982).
and the control algorithms developed are proven
with the non-linear model for different conditions.

2 SYSTEM MODEL

A ship. which is considered as a rigid body. has
six degrees of freedom: the longitudinal motions
(heave, pitch and surge) and the transverse mo-
tions (roll. sway and yaw). The transverse mo-
tions are strongly coupled to one another. so that
the steering and roll regulation control systems
have multivariable properties. Generally, these
systems are interactive in that rudder angle and
stabiliser fin variations, respectively. induce both
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yaw and roll changes. Cargo, passenger and naval
vessels usually employ steering and stabilisation
systems in order to provide improved manoeuver-
ing characteristics and motion control. Roll is cer-
tainly the most severe angular motion experienced
by a ship. Large roll angles can make working on
the ship difficult and can lead to motion sickness.
The reasons for introducing active roll stabilisa-
tion systems in ships are basically: 1) security con-
ditions. 2) transport costs reduction. 3) passenger
comfort, 4) personnel efficiency; and additionally
in naval vessels: 3) stable weapon platform main-
tenance and 6) stable platform for helicopter land-
ing on the ship.

If only the motions of roll, sway. yaw and surge are
considered. the system is reduced to a problem of
four degrees of freedom. The ship model described
by Kallstrom and Ottosson (1982) has been used
in the simulations carried out in this work. This
model has demonstrated to be of great utility for
evaluating the control algorithms by simulation,
as a previous phase to sea trials (Kallstrom and
Ottosson. 1982; Messer and Grimble, 1992). The
ship model is a non-linear multivariable model,
and the motion equations are (Kallstrom and Ot-
tosson, 1982):
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Where "fot” indicates the total forces and torques
acting on the ship. due to the following effects: hy-
drodynamics. wind, waves and current. The state
variables are respectively: r, = Vj, (transversal
speed), z; = 6. 23 =, 24 = ¢ and z; = V.

Actuators dynamic are modelled as:

b=(6:=8)/tr, |8|S bmaz,|4|S bmes

&= (ac — G.’]/Tj 5 [d |$ Qmaz , IC! |S Qmazx

The control magnitudes are «(t) and &(t). the
angles of the fins and rudder respectively, and
the magnitudes to be controlled are ¢(t) and
u(t), the angles of roll and heading. To de-
sign the controller, a linearized model has been
chosen for nominal conditions of cruising speed
V' = 10.8m/s. Forces and torques expressions. hy-
drodynamic derivatives and coefficients are taken
from Kallstrom and Ottosson (1982).
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Fig. 1. Feedback control configuration

3 CONTROL
ALGORITHM

Consider the control system of fig. 1. It consists
of the plant (G). controller (K’). pre-compensator
P, reference signal (r), measurement noise (n).
and disturbancies (d;.d,). All signals are mul-
tivariable, and nominal mathematical models for
G.K.IP are LTI. The control objetives can be
expressed at different levels of demanding: 1)
Nominal stability (NS): bounded outputs for all
bounded disturbancies. and bounded reference in-
puts. 2) Nominal performance (NI): small errors
in the presence of disturbancies d;.d, and refer-
ence inputs r. 3) Robust stability (RS): consider
the feedback system in fig. 1. Suppose that the
plant is not precisely known, and is modelled as
belonging to a class of possible transfer matrices
G. A controller A satisfies the robust stability
condition if K stabilizes all G’ € G. 4) Robust
performance (RI?): this requirement is said to be
met if the performance specifications are satisfied
for all possible plants G’ € G.

The LTR (Loop Transfer Recovery) design
methodology seeks to define the MIMO compen-
sator Ki(s) so that the stability robustness and
performance specifications are met to the possible
greatest extent. This involves two basic steps: 1)
We generate a MIMO target loop transfer func-
tion (TLTF). 2) A special compensator K (s) is
used. so that performance of the feedback sys-
tem in fig. 1 approximates the performance of
the TLTF established in step one. The degree
of approximation (or recovery) depends on char-
acteristics of the plant. If the plant is minimum
phase. then the degree of recovery of the TLTF
can be arbitrarily good (Stein and Athans. 1987).
If the plant is nonminimum phase and the frequen-
cies of the unstable zeros are beyond the band-
width of the TLTF. the recovery will take place
in low frequencies. and for all practical purposes
the presence of far-away nonminimum phase zeros
does not degrade the low frequency characteristics
of the design.

Different approaches have been suggested in the
control literature. obtain the TLTF. One of these
is based on Kalman filter techniques (which gen-
erates the LTR-o procedure (Athans. 1986). An-



Fig. 2. TLTF synthesis

other oneis based on the hinear quadratic requlator
(LQR. or also known as LQSF: linear quadratic
state feedback) theory, and it generates the LTR-
i procedure (Zhang and Freudenberg. 1990; Ma-
ciejowski, 1989). In this work we have employed
the latter one: LTR-i.

Target Loop Transfer Function Synthesis

Consider the plant model (which includes the scal-
ing of the variables and augmentation dynamics
that the designer has appended to meet specifica-
tions):

Ax(t) + Bu(t)
Cux(t)

(1)

y =

I

The transfer function matrix of the plant is:
G(s) = C®(s)B. where ®(s) = (sI-A)~!. and we
assume that [A, B] is stabilizable and that [A. C]
is detectable. The structure of the TLTF' is shown
mn fig. 2. It is simply defined by the parameters
B and ®(s) of the plant model. and by a constant
matrix K. (optimal state feedback matrix). If we
break the loop at the input of the plant we obtain
the TLTF:

H.(s)= K.®(s)B

For stability robustness to hold, in the face of mul-
tiplicative uncertainties at the input of the plant
(G'=(I+FE)G.5(E) < e(w). the interconnection
system (Morari and Zafiriou, 1989) is in this case
M(s) = T.(s)). the following inequality must be
true for all w (small gain theorem):

TlTe(3w)] < 1/e(w)

or p[Te(jw)] < 1/e(w) in the case of structured
uncertainties (diagonal structure); where @ is the
maximum singular value and p represents the
structured singular value [MoZa89).

Control demand. command-following and
disturbance-rejection can be evaluated from fig.
2 for the matrix K. obtained. Frequency-domain

analysis is made and the temporal responses of
the system are obtained by simulating the TLTF
in fig. 2. in order to prove if design specifications
are satisfied.

To obtain matrix K. we solve the LQR problem,
which consists of meeting the control signal which
will minimize the cost:

P [ (eTMTQMz + uT Reu)dt
0

withz: @ =0% >0.R. = B »0:0= MTQM.

The solution is v = — K.z, and K is given by:
K.=R;'BTP,

where P. = PT > 0 satisfies the algebraic Riccati
equation:

ATP. 4+ P.A-P.BR;'BP.4+Q.=0

Some remarkable characteristics of the TLTF ob-
tained in this way are: 1) optimal control law, 2)
7(T:) < 2. 3) 7(S.) < 1. 4) at least 60° of phase
margin in each input channel, and infinite gain
margin; if the loop is conditionally stable it has
a margin of at least 6dB against gain reductions
(Stein and Athans, 1987; Maciejowski, 1989).

LTR procedures

Once the TLTF has been obtained. we can ask
ourselves if would be possible to construct a com-
pensator K'(s) in fig. 1 with the property that
the feedback system of fig. 1 approximates the
behaviour of the TLTF in fig. 2. This would
happen if the following equality were true (where
K (s5)G(s) 1s the loop transfer function LTF):
K (s)G(s) = H.(s). However. for the purposes
of design it is not necessary for us to have exact
equality. Indeed. if we are interested in finding
K (s) so that the approximate relation

K(j»)G(jw) = He(jw)

over the band of interest frequencies is satisfied.
This is the point of view of the LTR-i method
presented in this work.

We now examine two procedures to obtain the
LTR controller A'(s). one observer based. and the
other non observer based. The respective struc-
tures are shown in fig. 3 and fig. 4. As we can
see fig. 3 shows the conventional LQG observer
based controllers structure (OBC), and fig. 4 il-
lustrates the compensator structure developed by
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Fig. 4. LTR-i (NOBC) structure

Chen et al. (1991) (NOBC). The difference be-
tween them is that the NOBC removes the link
from the control signal u to the observer via the
control distribution matrix B. which is outside the
realm of observer theory and hence the separation
principle is no longer valid. In this case to guar-
antee the closed-loop stability K, must be such
that A — K,C has all its eigenvalues in the left
complex half plan. The respective controllers are:

OBC: K(s)= K.(sI - A+ BK.+ K,C)"'K,

NOBC: K(s)= K.(sI— A+ K,C)™'RK,

The procedure to obtain the matrix K, is the same
in both cases. One way is that proposed by Doyle
and Stein (1981). and is based on the Kalman fil-
ter problem (KBF). For this the following alge-
braic Riccati equation is solved:

P,AT + AP, - P,CTR;'CPs+ Qo =0
where:
Po=PT >0.R,>0.Q, =TWIT.W >0

and the Kalman filter gain matrix is obtained
from:

K,=I,c*R;!

If we obtain K,(¢) by choosing the covariance ma-
trix Q, as:

Qo=Q+9¢2. Z=2"720. Q) =TWIT

it can be proved [DoSt81] for the minimum phase
plant that

lim K(s)G(s)= H.(s)
g—o%

Therefore: LTF =5 TLTF

The NOBC characteristics for ¢ > ¢o (the value of
go must be calculated in each case) are that (Chen
et al., 1991. 1992): 1) The compensator is open-
loop stable. 2) closed-loop stability is guaranteed
and above all c¢) much smaller values of gain re-
covery gawn ¢ are required than the conventional
OBC for the same degree of recovery. This fact
implies that the compensator band-width is much
smaller than that of the conventional controller
and thus we have the advantage of avoiding. in
some circumstancies. the saturation of the actua-
tors as well as an improvement in the insensitivity
to noise or other high-frequency disturbances.

The approach followed in this work is based on
the following points: 1) We are only interested in
a partial recovery in the interest frequency range
(low and medium frequencies). 2) At high fre-
quencies the singular values of H,(jw) roll-off at -
20 dB/dec. while those of K'(jw)G/(jw) roll-off at -
40 dB/dec. Thus, LTR loops offer some additional
robustness to high frequency unmodelled dynam-
ics as compared to the TLTF. 3) The command-
following and disturbance rejection performance
in the low frequency region between the TLTF and
the LTF with LTR will be essentially the same.

4 SIMULATION STUDIES

First we design a LTR-i controller to achieve ad-
equate respounses to changes in the reference sig-
nal. For this we use the linearized nominal model
of the ship for V' = 7.72 /s and we employ the
following design parameters:

R“=[061 ?] Q.= CTQC
ROZI?.‘: Qc;:BBT
Qz[loo (1)] ¢ =108



In figure 5 the temporary responses and control
signals for different values of the cruising speed
of the ship (V] = 5.14 m/s. V3 = 10.8 m/s. and

V = 7.72 m/s) are shown. As can be seen the
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Fig. 5. Time responses for different conditions

controller is characterized for a good properties
of robustness. because its behaviour is adequate
for extreme working conditions in the plant. The
improvement of this LTR-1 MIMO controller com-
pared to a good tuning SISO controller is the re-
duction of coupling roll angle. The responses of
the system for both controllers. for a change in
the reference vector r = [0° 180°]7. are shown in
figs. 6 and 7. We can see that the roll angle due
to coupling is reduced to more than 30%. The
robustness characteristics of the controller to the
non-linear behaviour of the plant is tested in fig.
6. where the control signals take high values dur-
ing relatively long periods of time and produce a
considerable loss of the speed and therefore im-
portant changes in the plant dynamics.
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Fig. 6. SISO controller time responses

In fig. 8 the tolerance to uncertainties (iMi: in-
put multiplicative uncertainty. iMo: output mul-
tiplicative uncertainty) is shown. This figure rep-
resents 1/@(AM). where M(s) is the interconnec-
tion system for each particular type of uncer-
tainty. and @(M) is its maximum singular value.
In the face of unstructured uncertainties, fig. 8
shows that iMi E;(s) (where G' = G(I + E;))
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Fig. 7. MIMO controller time responses
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Fig. 8. Tolerances to uncertainties and disturbancy

rejection characteristics

do not cause inestability. provided ||E;||e < 0.69
(or I;; = 69% relative uncertainty allowed at
the input); and that the system remains stable,
provided any output multiplicative uncertainties
E,(s) (such that G' = (I + E,)G) satisfy the
condition ||E;||ec < 0.61 (or I;;, = 61% relative
uncertainty allowed at the output of the plant).
In the case of structured uncertainties (diagonal
structure). I;2; = 79% and I3, = 72% are ob-
tained respectively. which supposes a less conser-
vative estimation of the tolerance to uncertainties.
In case of multiple input-output multiplicative un-
certainties (G' = (I + E,)G(I+ E;)) a relative un-
certainty allowed of I, = 44% is obtained (this
involves the system remains stable provided that:
max { || E;||oc: || Eollec } < 0.44). The respective ro-
bustness indicators Iy;. I}, are obtained by:

min 1/{M (j»)] x 100%
and Iy2;.I|9,.1 s are obtained by:
nﬂn 1/p[M(jw)] x 100%

where M (s) is calculated in each case.

Control system behaviour in presence of distur-
bances (at the output d, and input d; of the plant)
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OBC NOBC A
INP (%) [| INP (%) q db
[ 5.4 99.83 104 36
[ 455 99.98 10° 46
[ 89.5 99.99 10° 56
[ 99.0 100 [ 10™ 96
TABLE 1 INP for OCB and NOBC for different g.

in steering condition are given by:
e=—=S,d, — S.Gd;

As we can see in fig. 8 vectorial perturbations
acting in some directions can exist which the con-
troller can not reject adequately, since in the low
frequency range 7(.S,) and 7(5,G) are not small
enough for all directions. In order to have ade-
quate disturbances rejection we propose incorpo-
rate integral action in the controller. We use the
linearized nominal model of the plant with speed
of 10.8m/s and the following design parameters:

Rc=a[{1] 2] Qe = MIQM,

_[100 0] ,, _[.01 0
Q‘[ 0 1] ‘”"‘[C 0 0.1]
R, =1, Q.-_,:l_rT

_| B .
ru[ozxz]: ¢=10

In this case we have chosen the LTR-1i NOBC
structure. If we define the indicator of nominal
performance (IND) as:

NP = min | FALG=e)  glL(iw,)]
= {E[Lf(jwan’ olL:(50)] }

for w, = 107° rad/seg we obtain the following val-
ues given in the table 1, for OBC and NOBC. As
can be seen, it is necessary to increase the gain
recovery “¢" from 10° to 10'° to achieve a similar
INT with both controllers. However this produces
an increase of the size in the K, matrix (|| K| r =
trace /K,KT). and therefore an unnecessary in-
crement of the controller band-width as well as
sensitivity to noise or other high-frequency dis-
turbances. In fig. 9 the extreme singular values
of So(jw) and S,(jw)G(jw) are shown. As we

can see 7|S,(Jw)G(jw)] < 1 (—4.96db) for all w.
and 7[S,(jw)G(jw)] and 7(S,(j«)] are both suf-
ficient small in the low frequency range, as is de-
sirable. With this controller we obtained the fol-
lowing robustness indicators: Ij;; = 62%.1,5; =
700./1':._ I“o = 61%1, Ilzo = 63"%7 Ils - 38[%1

3 3
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Fig. 9. Tolerances to uncertainties and disturbancies
rejection characteristics for MIMO controller
with integral action
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Fig. 10. Behaviour in ship steering condition
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Fig. 11. Behaviour for non-nominal conditions with
MIMO controller

Figure 10 shows the temporary responses of the
system with the LTR-i (NOBC) controller design.
and for a SISO controller that does not take into
account the multivariable nature of the plant. A



significant wave height of 4m with 45° relative to
ship reference course is chosen in the simulations.
We can see that there is a remarkable improve-
ment in roll damping with the LTR-i MIMO con-
troller. Figure 11 shows heading and roll for non-
nominal speed conditions (9.57n/s and 8m/s); we
can see that the behaviour is adequate. which is
another proof of the controller robustness. In or-
der to improve performance characteristics a gain
scheduling controller can be used with the speed
of the ship as the auxiliary variable. Due to plant
and regulators dynamics, we can implement the
controller directly in a digital computer with a
sample time of 0.1 seconds. without explicitly tak-
ing into account the sample-data character of the
system. All the algorithm implementations used
in the simulations with the non-linear model of
the ship are realized in this way.

3 CONCLUDING
REMARKS

Multivariable controllers based on LTR-i (Loop
Transfer Recovery at the input of the plant) have
been developed: a) for course changing, with con-
siderable decrease in the coupling roll angle and
b) for ship steering and roll regulation. with a con-
siderable decrease in roll angle due to waves. The
controller uses a non observer based control struc-
ture. and a partial recovery procedure over the
band of interest frequencies. Robustness charac-
teristics of the controller in the face of uncertain-
ties are analyzed. and the benefits of the controller
are proved by simulation with a multivariable non-
linear model of a ship.
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