
ScienceDirect
IFAC-PapersOnLine 48-9 (2015) 073–078

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2015.08.062

Raúl M. Criado et al. / IFAC-PapersOnLine 48-9 (2015) 073–078

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Autonomous path tracking control design
for a comercial quadcopter �

Raúl M. Criado ∗ Francisco R. Rubio ∗

∗ Escuela Superior de Ingenieŕıa, Universidad de Sevilla Avd. Camino
de los Descubrimientos, s/n. 41092 Sevilla, Spain (e-mail:

r.martinezcriado@gmail.com; rubio@us.es)

Abstract: This paper describes the methodology followed to design a functional autopilot for
the quadcopter AR.Drone developed by Parrot. The main goal is to design a control strategy
for autonomous path tracking in the XY plane, comparing two different control techniques.
Three phases are carried out to achieve this objective: model identification, control design
and evaluation, and implementation. At the identification phase two Hammerstein models are
obtained, they are characterized by having a static non-linearity preceding a linear transfer
function. The control design phase is based on the use of a cascade control to regulate the
position with an inner speed control loop. Furthermore, two different techniques to reduce the
path tracking error are compared.

Keywords: cascade control, path tracking, quadcopter control, multi-rotor, UAV.

1. INTRODUCTION

From many years now, Unmanned Aerial Vehicles (UAVs)
have been developed for several military purposes, such as
offensive weapons or surveillance systems. Although the
civil area was almost alien to this technology, the scientific
research related to UAVs non-military applications have
grown significantly along the past 15 years, due to the
reduction in the production costs and the large increase of
the computing power related to the size of the technology
involved.

The quadcopter is a VTOL (Vertical Take-Off and Land-
ing) platform, that belongs to the helicopter-type within
the UAVs family. It is provided with four brushless rotors
that generate the lift force and allow the quadcopter to
increase its payload capability. While having one single
rotor compels to include complex mechanisms on the rotor
and the blades for steering and manoeuvring, quadcopters
are controlled by modifying the angular velocity of each
single rotor to accomplish any desired motion. This feature
increments the agility of the helicopter and turns it into a
feasible option when rapid and precise paths are required.

This type of aircraft requires an uninterrupted real-time
control action to stabilize itself, on account of the fact
that it is an unstable system. Thus, this case of study is a
challenge within the Control Engineering field.

The AR.Drone from Parrot was initially developed as
a toy, yet some features present on the device, such as
on-board stabilization and Wi-Fi connectivity, make it a
complete platform to shift the research focus from basic

� This work was partially supported by the Spanish Ministry of Ed-
ucation (MECD) under national research projects DPI2012-37580-
C02 and DPI2013-44135-R. Corresponding authors are with the
Department of Systems Engineering and Automation. University of
Seville, Spain. (e-mail: rubio@us.es)

control of the model towards complex applications such as
mixing control techniques with computer vision.

In order to communicate with the AR.Drone, the soft-
ware used is TrackDrone Lite, Garćıa-Nieto Rodŕıguez
et al. (2012). Developed by the Universitat Politècnica de
València, TrackDrone Lite includes tool to implement dif-
ferent control laws using C# code. Furthermore it enables
the communication with the drone and streams some of
the flight data in real-time.

2. MODELLING AND IDENTIFICATION

The analysis of the physics behind a quadcopter is com-
plex. To simplify it, we can assume that it behaves as a
rigid solid wherein one lift force and torque per rotor are
applied in addition to the weight.

As mentioned before, the AR.Drone is a self-stabilized
platform and the goal of this research is to substitute an
hypothetical human pilot by an autopilot. The movement
over the XY plane is obtained by the modification of the
pitch and roll angles. When an angle set-point is sent to the
drone, it tries to follow the reference using its pre-installed
inner control loops.

These control loops are implemented on the operating
system running on-board and will not be modified. Thanks
to them, the response to set-point changes of pitch and roll
angles are decoupled and the AR.Drone no longer has a
highly non-linear behaviour.

2.1 Methodology

The system is identified as a black-box model, choosing
the angles pitch and roll as inputs of the system and the
coordinates X, Y, and the components of the speed vx, vy
as the outputs. The speed evolution was registered at the

Proceedings of the 2015 IFAC Workshop on Advanced Control
and Navigation for Autonomous Aerospace Vehicles
June 10-12, 2015. Seville, Spain

Copyright © 2015 IFAC 73

Autonomous path tracking control design
for a comercial quadcopter �

Raúl M. Criado ∗ Francisco R. Rubio ∗

∗ Escuela Superior de Ingenieŕıa, Universidad de Sevilla Avd. Camino
de los Descubrimientos, s/n. 41092 Sevilla, Spain (e-mail:

r.martinezcriado@gmail.com; rubio@us.es)

Abstract: This paper describes the methodology followed to design a functional autopilot for
the quadcopter AR.Drone developed by Parrot. The main goal is to design a control strategy
for autonomous path tracking in the XY plane, comparing two different control techniques.
Three phases are carried out to achieve this objective: model identification, control design
and evaluation, and implementation. At the identification phase two Hammerstein models are
obtained, they are characterized by having a static non-linearity preceding a linear transfer
function. The control design phase is based on the use of a cascade control to regulate the
position with an inner speed control loop. Furthermore, two different techniques to reduce the
path tracking error are compared.

Keywords: cascade control, path tracking, quadcopter control, multi-rotor, UAV.

1. INTRODUCTION

From many years now, Unmanned Aerial Vehicles (UAVs)
have been developed for several military purposes, such as
offensive weapons or surveillance systems. Although the
civil area was almost alien to this technology, the scientific
research related to UAVs non-military applications have
grown significantly along the past 15 years, due to the
reduction in the production costs and the large increase of
the computing power related to the size of the technology
involved.

The quadcopter is a VTOL (Vertical Take-Off and Land-
ing) platform, that belongs to the helicopter-type within
the UAVs family. It is provided with four brushless rotors
that generate the lift force and allow the quadcopter to
increase its payload capability. While having one single
rotor compels to include complex mechanisms on the rotor
and the blades for steering and manoeuvring, quadcopters
are controlled by modifying the angular velocity of each
single rotor to accomplish any desired motion. This feature
increments the agility of the helicopter and turns it into a
feasible option when rapid and precise paths are required.

This type of aircraft requires an uninterrupted real-time
control action to stabilize itself, on account of the fact
that it is an unstable system. Thus, this case of study is a
challenge within the Control Engineering field.

The AR.Drone from Parrot was initially developed as
a toy, yet some features present on the device, such as
on-board stabilization and Wi-Fi connectivity, make it a
complete platform to shift the research focus from basic

� This work was partially supported by the Spanish Ministry of Ed-
ucation (MECD) under national research projects DPI2012-37580-
C02 and DPI2013-44135-R. Corresponding authors are with the
Department of Systems Engineering and Automation. University of
Seville, Spain. (e-mail: rubio@us.es)

control of the model towards complex applications such as
mixing control techniques with computer vision.

In order to communicate with the AR.Drone, the soft-
ware used is TrackDrone Lite, Garćıa-Nieto Rodŕıguez
et al. (2012). Developed by the Universitat Politècnica de
València, TrackDrone Lite includes tool to implement dif-
ferent control laws using C# code. Furthermore it enables
the communication with the drone and streams some of
the flight data in real-time.

2. MODELLING AND IDENTIFICATION

The analysis of the physics behind a quadcopter is com-
plex. To simplify it, we can assume that it behaves as a
rigid solid wherein one lift force and torque per rotor are
applied in addition to the weight.

As mentioned before, the AR.Drone is a self-stabilized
platform and the goal of this research is to substitute an
hypothetical human pilot by an autopilot. The movement
over the XY plane is obtained by the modification of the
pitch and roll angles. When an angle set-point is sent to the
drone, it tries to follow the reference using its pre-installed
inner control loops.

These control loops are implemented on the operating
system running on-board and will not be modified. Thanks
to them, the response to set-point changes of pitch and roll
angles are decoupled and the AR.Drone no longer has a
highly non-linear behaviour.

2.1 Methodology

The system is identified as a black-box model, choosing
the angles pitch and roll as inputs of the system and the
coordinates X, Y, and the components of the speed vx, vy
as the outputs. The speed evolution was registered at the

Proceedings of the 2015 IFAC Workshop on Advanced Control
and Navigation for Autonomous Aerospace Vehicles
June 10-12, 2015. Seville, Spain

Copyright © 2015 IFAC 73

Autonomous path tracking control design
for a comercial quadcopter �

Raúl M. Criado ∗ Francisco R. Rubio ∗

∗ Escuela Superior de Ingenieŕıa, Universidad de Sevilla Avd. Camino
de los Descubrimientos, s/n. 41092 Sevilla, Spain (e-mail:

r.martinezcriado@gmail.com; rubio@us.es)

Abstract: This paper describes the methodology followed to design a functional autopilot for
the quadcopter AR.Drone developed by Parrot. The main goal is to design a control strategy
for autonomous path tracking in the XY plane, comparing two different control techniques.
Three phases are carried out to achieve this objective: model identification, control design
and evaluation, and implementation. At the identification phase two Hammerstein models are
obtained, they are characterized by having a static non-linearity preceding a linear transfer
function. The control design phase is based on the use of a cascade control to regulate the
position with an inner speed control loop. Furthermore, two different techniques to reduce the
path tracking error are compared.

Keywords: cascade control, path tracking, quadcopter control, multi-rotor, UAV.

1. INTRODUCTION

From many years now, Unmanned Aerial Vehicles (UAVs)
have been developed for several military purposes, such as
offensive weapons or surveillance systems. Although the
civil area was almost alien to this technology, the scientific
research related to UAVs non-military applications have
grown significantly along the past 15 years, due to the
reduction in the production costs and the large increase of
the computing power related to the size of the technology
involved.

The quadcopter is a VTOL (Vertical Take-Off and Land-
ing) platform, that belongs to the helicopter-type within
the UAVs family. It is provided with four brushless rotors
that generate the lift force and allow the quadcopter to
increase its payload capability. While having one single
rotor compels to include complex mechanisms on the rotor
and the blades for steering and manoeuvring, quadcopters
are controlled by modifying the angular velocity of each
single rotor to accomplish any desired motion. This feature
increments the agility of the helicopter and turns it into a
feasible option when rapid and precise paths are required.

This type of aircraft requires an uninterrupted real-time
control action to stabilize itself, on account of the fact
that it is an unstable system. Thus, this case of study is a
challenge within the Control Engineering field.

The AR.Drone from Parrot was initially developed as
a toy, yet some features present on the device, such as
on-board stabilization and Wi-Fi connectivity, make it a
complete platform to shift the research focus from basic

� This work was partially supported by the Spanish Ministry of Ed-
ucation (MECD) under national research projects DPI2012-37580-
C02 and DPI2013-44135-R. Corresponding authors are with the
Department of Systems Engineering and Automation. University of
Seville, Spain. (e-mail: rubio@us.es)

control of the model towards complex applications such as
mixing control techniques with computer vision.

In order to communicate with the AR.Drone, the soft-
ware used is TrackDrone Lite, Garćıa-Nieto Rodŕıguez
et al. (2012). Developed by the Universitat Politècnica de
València, TrackDrone Lite includes tool to implement dif-
ferent control laws using C# code. Furthermore it enables
the communication with the drone and streams some of
the flight data in real-time.

2. MODELLING AND IDENTIFICATION

The analysis of the physics behind a quadcopter is com-
plex. To simplify it, we can assume that it behaves as a
rigid solid wherein one lift force and torque per rotor are
applied in addition to the weight.

As mentioned before, the AR.Drone is a self-stabilized
platform and the goal of this research is to substitute an
hypothetical human pilot by an autopilot. The movement
over the XY plane is obtained by the modification of the
pitch and roll angles. When an angle set-point is sent to the
drone, it tries to follow the reference using its pre-installed
inner control loops.

These control loops are implemented on the operating
system running on-board and will not be modified. Thanks
to them, the response to set-point changes of pitch and roll
angles are decoupled and the AR.Drone no longer has a
highly non-linear behaviour.

2.1 Methodology

The system is identified as a black-box model, choosing
the angles pitch and roll as inputs of the system and the
coordinates X, Y, and the components of the speed vx, vy
as the outputs. The speed evolution was registered at the

Proceedings of the 2015 IFAC Workshop on Advanced Control
and Navigation for Autonomous Aerospace Vehicles
June 10-12, 2015. Seville, Spain

Copyright © 2015 IFAC 73

Autonomous path tracking control design
for a comercial quadcopter �

Raúl M. Criado ∗ Francisco R. Rubio ∗

∗ Escuela Superior de Ingenieŕıa, Universidad de Sevilla Avd. Camino
de los Descubrimientos, s/n. 41092 Sevilla, Spain (e-mail:

r.martinezcriado@gmail.com; rubio@us.es)

Abstract: This paper describes the methodology followed to design a functional autopilot for
the quadcopter AR.Drone developed by Parrot. The main goal is to design a control strategy
for autonomous path tracking in the XY plane, comparing two different control techniques.
Three phases are carried out to achieve this objective: model identification, control design
and evaluation, and implementation. At the identification phase two Hammerstein models are
obtained, they are characterized by having a static non-linearity preceding a linear transfer
function. The control design phase is based on the use of a cascade control to regulate the
position with an inner speed control loop. Furthermore, two different techniques to reduce the
path tracking error are compared.

Keywords: cascade control, path tracking, quadcopter control, multi-rotor, UAV.

1. INTRODUCTION

From many years now, Unmanned Aerial Vehicles (UAVs)
have been developed for several military purposes, such as
offensive weapons or surveillance systems. Although the
civil area was almost alien to this technology, the scientific
research related to UAVs non-military applications have
grown significantly along the past 15 years, due to the
reduction in the production costs and the large increase of
the computing power related to the size of the technology
involved.

The quadcopter is a VTOL (Vertical Take-Off and Land-
ing) platform, that belongs to the helicopter-type within
the UAVs family. It is provided with four brushless rotors
that generate the lift force and allow the quadcopter to
increase its payload capability. While having one single
rotor compels to include complex mechanisms on the rotor
and the blades for steering and manoeuvring, quadcopters
are controlled by modifying the angular velocity of each
single rotor to accomplish any desired motion. This feature
increments the agility of the helicopter and turns it into a
feasible option when rapid and precise paths are required.

This type of aircraft requires an uninterrupted real-time
control action to stabilize itself, on account of the fact
that it is an unstable system. Thus, this case of study is a
challenge within the Control Engineering field.

The AR.Drone from Parrot was initially developed as
a toy, yet some features present on the device, such as
on-board stabilization and Wi-Fi connectivity, make it a
complete platform to shift the research focus from basic

� This work was partially supported by the Spanish Ministry of Ed-
ucation (MECD) under national research projects DPI2012-37580-
C02 and DPI2013-44135-R. Corresponding authors are with the
Department of Systems Engineering and Automation. University of
Seville, Spain. (e-mail: rubio@us.es)

control of the model towards complex applications such as
mixing control techniques with computer vision.

In order to communicate with the AR.Drone, the soft-
ware used is TrackDrone Lite, Garćıa-Nieto Rodŕıguez
et al. (2012). Developed by the Universitat Politècnica de
València, TrackDrone Lite includes tool to implement dif-
ferent control laws using C# code. Furthermore it enables
the communication with the drone and streams some of
the flight data in real-time.

2. MODELLING AND IDENTIFICATION

The analysis of the physics behind a quadcopter is com-
plex. To simplify it, we can assume that it behaves as a
rigid solid wherein one lift force and torque per rotor are
applied in addition to the weight.

As mentioned before, the AR.Drone is a self-stabilized
platform and the goal of this research is to substitute an
hypothetical human pilot by an autopilot. The movement
over the XY plane is obtained by the modification of the
pitch and roll angles. When an angle set-point is sent to the
drone, it tries to follow the reference using its pre-installed
inner control loops.

These control loops are implemented on the operating
system running on-board and will not be modified. Thanks
to them, the response to set-point changes of pitch and roll
angles are decoupled and the AR.Drone no longer has a
highly non-linear behaviour.

2.1 Methodology

The system is identified as a black-box model, choosing
the angles pitch and roll as inputs of the system and the
coordinates X, Y, and the components of the speed vx, vy
as the outputs. The speed evolution was registered at the

Proceedings of the 2015 IFAC Workshop on Advanced Control
and Navigation for Autonomous Aerospace Vehicles
June 10-12, 2015. Seville, Spain

Copyright © 2015 IFAC 73

74 Raúl M. Criado et al. / IFAC-PapersOnLine 48-9 (2015) 073–078

open-loop experiments as the output, sending the angles
pitch and roll as input step signals. Three main aspects
must be considered to obtain the maximum information
from the real system during the open-loop experiments:

• Step-time input signals with a duration of five seconds
are necessary to register both, the transient-state and
the steady-state.

• The inputs are dimensionless and can take values
within the range [-1,1]. To track the non-linearities,
it is important to set steps in the whole range.

• Registering enough data is necessary to carry out a
validation after the identification.

On Fig. 1 and Fig. 2 only a part of the data registered
during the open-loop experiments is represented, within
them was covered the whole range [-1, 1] for both angles
pitch and roll.

After the open-loop experiments, the data package was
processed using the System Identification Toolbox (SIT)
of MATLAB c©. This application enables the selection of
different options and identification models. The models
used were identified with the half of the data measured,
making use of the second half for validation. As recom-

Fig. 1. Input steps [-0.15, +0.15, -0.25, +0,25], Roll − Vy.

Fig. 2. Input steps [-0.15, +0.15, -0.25, +0,25], Roll − Vy.

mended in Åstrom and Hägglund (2006) for non-linear
system identification when linear controllers are used, and
already proven for Ar.Drone before on the study presented
in Hernández-Hernández et al. (2013), two Hammerstein

model were chosen to relate the pitch angle with vx and
the roll angle with vy, respectively. The non-linearity block
is a static gain map modelled as piecewise function (one
per model) and the linear transfer functions identified are
two SOTD (Second Order Time Delay) models on discrete-
time domain.

2.2 Results

On Fig. 3 the identified model of the AR.Drone is shown. It
is composed of two independent subsystems (X Subsystem,
Y Subsystem), within which the positions X and Y are
obtained by two integrators at the output signals (veloc-
ities vx, vy). There is a saturation in both angle signals

Fig. 3. Complete identified model.

around +0.35 and -0.35 respectively. This saturation is
imposed by the on-board stabilization loops to guarantee
that the critical angles, where the system is uncontrollable,
are not reached. These saturations correspond to a value
of maximum angles between 20◦-24◦.

The static non-linearities before the linear blocks are
characterized by the next vectors. The saturations of the
angles pitch and roll were fixed at ±0.35 when designing
the linear controllers:

Inputx = [−0.5, −0.4, −0.3, −0.2, −0.1, 0, 0.1, 0.2, 0.3,
0.4, 0.5]

OutputUx = [0.325, 0.325, 0.29, 0.19, 0.0855, 0, −0.089,
− 0.19, −0.29, −0.325, −0.325]

InputUy = [−0.8, −0.48, −0.37, −0.28, −0.08, 0, 0.15,
0.35, 0.71, 0.8]

OutputUy = [−0.367, −0.330, −0.384, −0.277, −0.085, 0
0.165, 0.357, 0.3407, 0.3670]

The comparison between the real system and the identified
model is plotted on Fig. 4, these data was used to validate
and choose the model using the SIT and to readjust
the static non-linearity on both Hammerstein models
(obtained directly from the SIT), reducing the mean and
maximum values of the difference between the velocity
components of the real system and the model:

• Mean evx = 0.18 m/s, Max evx = 1.11 m/s
• Mean evy = 0.13 m/s, Max evy = 1.28 m/s

3. CONTROL DESIGN

The goal is to develop a control strategy for path tracking
within XY plane. The track is loaded through a .txt file

IFAC ACNAAV 2015
June 10-12, 2015. Seville, Spain

74

 Raúl M. Criado et al. / IFAC-PapersOnLine 48-9 (2015) 073–078 75

open-loop experiments as the output, sending the angles
pitch and roll as input step signals. Three main aspects
must be considered to obtain the maximum information
from the real system during the open-loop experiments:

• Step-time input signals with a duration of five seconds
are necessary to register both, the transient-state and
the steady-state.

• The inputs are dimensionless and can take values
within the range [-1,1]. To track the non-linearities,
it is important to set steps in the whole range.

• Registering enough data is necessary to carry out a
validation after the identification.

On Fig. 1 and Fig. 2 only a part of the data registered
during the open-loop experiments is represented, within
them was covered the whole range [-1, 1] for both angles
pitch and roll.

After the open-loop experiments, the data package was
processed using the System Identification Toolbox (SIT)
of MATLAB c©. This application enables the selection of
different options and identification models. The models
used were identified with the half of the data measured,
making use of the second half for validation. As recom-

Fig. 1. Input steps [-0.15, +0.15, -0.25, +0,25], Roll − Vy.

Fig. 2. Input steps [-0.15, +0.15, -0.25, +0,25], Roll − Vy.

mended in Åstrom and Hägglund (2006) for non-linear
system identification when linear controllers are used, and
already proven for Ar.Drone before on the study presented
in Hernández-Hernández et al. (2013), two Hammerstein

model were chosen to relate the pitch angle with vx and
the roll angle with vy, respectively. The non-linearity block
is a static gain map modelled as piecewise function (one
per model) and the linear transfer functions identified are
two SOTD (Second Order Time Delay) models on discrete-
time domain.

2.2 Results

On Fig. 3 the identified model of the AR.Drone is shown. It
is composed of two independent subsystems (X Subsystem,
Y Subsystem), within which the positions X and Y are
obtained by two integrators at the output signals (veloc-
ities vx, vy). There is a saturation in both angle signals

Fig. 3. Complete identified model.

around +0.35 and -0.35 respectively. This saturation is
imposed by the on-board stabilization loops to guarantee
that the critical angles, where the system is uncontrollable,
are not reached. These saturations correspond to a value
of maximum angles between 20◦-24◦.

The static non-linearities before the linear blocks are
characterized by the next vectors. The saturations of the
angles pitch and roll were fixed at ±0.35 when designing
the linear controllers:

Inputx = [−0.5, −0.4, −0.3, −0.2, −0.1, 0, 0.1, 0.2, 0.3,
0.4, 0.5]

OutputUx = [0.325, 0.325, 0.29, 0.19, 0.0855, 0, −0.089,
− 0.19, −0.29, −0.325, −0.325]

InputUy = [−0.8, −0.48, −0.37, −0.28, −0.08, 0, 0.15,
0.35, 0.71, 0.8]

OutputUy = [−0.367, −0.330, −0.384, −0.277, −0.085, 0
0.165, 0.357, 0.3407, 0.3670]

The comparison between the real system and the identified
model is plotted on Fig. 4, these data was used to validate
and choose the model using the SIT and to readjust
the static non-linearity on both Hammerstein models
(obtained directly from the SIT), reducing the mean and
maximum values of the difference between the velocity
components of the real system and the model:

• Mean evx = 0.18 m/s, Max evx = 1.11 m/s
• Mean evy = 0.13 m/s, Max evy = 1.28 m/s

3. CONTROL DESIGN

The goal is to develop a control strategy for path tracking
within XY plane. The track is loaded through a .txt file

IFAC ACNAAV 2015
June 10-12, 2015. Seville, Spain

74

Fig. 4. Validation data.

containing a vector with the coordinates of a sequence of
waypoints to be reached by the drone. A control loop to
follow yaw angle inputs is already implemented by Parrot.
Hence, an orientation control is not discussed in this paper
and the initial orientation is maintained along the path.

3.1 Cascade control

The main architecture of the control technique developed
in this work is the so named cascade control. This strategy
is built by nesting two control loops as shown in Fig. 5.
The inner loop is called the secondary loop and contains
the slave controller; the outer is called the primary loop
and corresponds to the master controller.

Fig. 5. Cascade control structure.

Cascade control is useful in systems where the access to
several inner variables is possible. In the current project,
two cascade control strategies were applied, one per sub-
system. The main advantage provided by cascade control is
to use the inner variable measurements to a quicker distur-
bance rejection before it influences the primary variable.
Hence, it is important that the essential disturbances act
in the inner loop. Finally, the secondary loop must have a
dynamic at least four times faster than the primary loop.

As showed on Fig. 6, two cascade structures are used to
regulate the position coordinates X and Y where the speed
components vx, vy are chosen as the inner variables. This
is consistent with the fact that essential perturbations on a
flight are mainly air currents, which are detected by speed
measurements as air is the fluid in which the quadcopter
flies.

3.2 PID controller

In first place, the well-known Proportional Integral Deriva-
tive (PID) controller is employed for both, the primary and
secondary loops. To control a discrete transfer function at
the simulation phase, the Discrete PID Controller block is

Fig. 6. Two parallel cascade control architectures on our
system.

used inside MATLAB Simulinlk. As antiwindup method,
the conditional integration was chosen, as exposed on
Packard (2005):

• If u ≥ Umax > 0, and r− y < 0, continue integrating.
• If u ≥ Umax > 0, and r − y > 0, stop integrating.
• If u ≤ Umin < 0, and r− y > 0, continue integrating.
• If u ≤ Umin < 0, and r − y < 0, stop integrating.

With u as control signal, Umax and Umin as saturation
points, r as the set-point and y as the process variable.

As shown in (1), the forward approximation has been used,
where P , I, andD are the parameters corresponding to the
proportional, integral and derivative actions respectively.
N is the derivative high frequency filter implemented to
noise reduction and Ts is the sampling time, equal to 0.06
seconds.

Y = P + ITs
1

z − 1
+D

N

1 +NTs
1

z−1

(1)

The PID controller was used as the controller on primary
loops. On the secondary loops, a comparison between the
performance of PID controllers against GPC (Generalized
Predictive Control) controllers was made.

3.3 GPC controller

This paper does not explain the complete theory about
Generalized Predictive Control, it focuses only on how
it was implemented. To begin with, the model used to
obtain the output prediction is the transfer function of
each subsystem:

(1− 1.646z−1 + 0.6687z−2)vx(t) = 0.2z−4ux(t− 1) +
e(t)

∆

(1− 1.716z−1 + 0.73z−2)vy(t) = 0.1z−3uy(t− 1) +
e(t)

∆
Where e(t) is a white noise and ∆ = 1− z−1.

The applied control sequence minimizes a multi-stage cost
function of the form described in (2), where the deviation
from desired future behaviour and the increments of con-
trol actions are penalized.

J (N1, N2, Nu) =

N2∑
j=N1

δ(j) [ŷ (t+ j|t)− ω (t+ j)]
2

+

Nu∑
j=1

λ(j) [∆u (t+ j − 1)]
2

(2)

With N1 and N2 as the minimum and maximum costing
horizons, Nu as the control horizon, δ(j) and λ(j) as

IFAC ACNAAV 2015
June 10-12, 2015. Seville, Spain

75

76 Raúl M. Criado et al. / IFAC-PapersOnLine 48-9 (2015) 073–078

weighting sequences and ω(t + j) as the future reference
trajectory, which is usually a smooth approximation from
the current value of the output y(t) towards the known
reference.

As the future references on velocity are not known, it is
assumed that they are all equal to the actual reference
that comes out of the master controller each sample time,
missing the anticipation on set-point changes.

Even though some benefits of the Predictive Control
are lost, the GPC is employed here as a method to
obtain an optimally tuned controller equivalent to a classic
controller. One secondary goal of this paper is to settle
the bases for future applications of the GPC using the
AR.Drone platform, replacing the cascade structures by
two GPCs preceded by a trajectory generator (for position
and velocity trajectories).

We set δ(j) = 1 and λ(j) = k, ∀ j = 1..Nu with k as
the tuning parameter. As recommended in Camacho and
Bordons A (2004), the horizons were set as follows:

N1 = d+ 1 ; N2 = d+N ; Nu = N , with N = 50 (3)

N is the number of sampling times that is necessary to
cover the main transient state until the steady state is
reached, which is in this case 3 seconds and the sampling
time Ts = 0.06 s. The parameter d is the dead time on
each subsystem, which are dx = 4 and dy = 3 sampling
times.

As the model identified relates the angles pitch and roll
with de components of the speed vx, vy, the GPC con-
trollers were used on the inner loops instead of the outer.
Thus, as the GPC depends heavily on the accuracy of the
model, we assume that the speed values are more reliable
than the position ones (which accumulate the error due to
the action of the integrator).

The GPC controllers were implemented MATLAB Func-
tion blocks the same way of the examples exposed on Ca-
macho and Bordons A (2004). To implement this controller
on the real system, in order to avoid the inversion of a
50x50 matrix each sample time, the control law was pre-
calculated fixing the parameter λ for different values and
then implemented on C#.

3.4 Improvements to path tracking

After some simulations with MATLAB Simulink, it was
observed that the quadcopter behaviour, obtained employ-
ing the control architecture explained before, did not reach
the performance requirements (explained on 4.3).

Before applying these improvements, the trajectory gen-
eration consisted on changing the set-point of master con-
trollers into the next waypoint as soon as the quadcopter
reached the last waypoint (it is considered radius of 10 cm,
14 cm or 20 cm to reach them and is another parameter
to tune).

When the trajectory is composed of displacements on the
two coordinates, as the two cascade control strategies are
independent and decoupled of each other, the behaviour
of X subsystem is, in general, different from the behaviour
of the Y subsystem. Hence, a deviation from the straight

path connecting the last and the next waypoint appears,
Fig. 7.

Fig. 7. Deviation from the path.

To partially avoid this behaviour, two different strategies
were compared:

Intermediate points generator

A more complex trajectory generation was elaborated by
sending some intermediate points between each pair of
waypoints as reference. This strategy synchronizes the two
primary loops at intermediate positions. Thus, there are
three new parameters of tuning: the number of segments in
which the trajectory between two waypoint is divided, the
length of them and the approximation distance selected
to change the reference from an intermediate point to
the next one. Hence, the highest possible deviation from
the path is indirectly set with the approximation distance
while time speed performance is scarified.

Velocity limiter

Another strategy to avoid path deviation is the one pro-
posed on Hernández-Hernández et al., 2013. It consists on
rectifying the reference vector of velocity coming out of
the master controllers Vo. The components of the velocity
reference are decoupled (as seen before) and this technique
allows the synchronization of secondary loops on X Sub-
system and Y Subsystem respectively.

The strategy is based on making the reference velocity
vector to point at any time to the next waypoint. To
achieve this, the orthogonal projection Vr of the velocity
reference vector Vo onto the vector connecting the actual
position with the objective waypoint is calculated.

After that, the projection Vr is the new reference vector
and needs to be limited by a saturation imposed by the
physical maximum velocity or by the user (as less value

IFAC ACNAAV 2015
June 10-12, 2015. Seville, Spain

76

 Raúl M. Criado et al. / IFAC-PapersOnLine 48-9 (2015) 073–078 77

weighting sequences and ω(t + j) as the future reference
trajectory, which is usually a smooth approximation from
the current value of the output y(t) towards the known
reference.

As the future references on velocity are not known, it is
assumed that they are all equal to the actual reference
that comes out of the master controller each sample time,
missing the anticipation on set-point changes.

Even though some benefits of the Predictive Control
are lost, the GPC is employed here as a method to
obtain an optimally tuned controller equivalent to a classic
controller. One secondary goal of this paper is to settle
the bases for future applications of the GPC using the
AR.Drone platform, replacing the cascade structures by
two GPCs preceded by a trajectory generator (for position
and velocity trajectories).

We set δ(j) = 1 and λ(j) = k, ∀ j = 1..Nu with k as
the tuning parameter. As recommended in Camacho and
Bordons A (2004), the horizons were set as follows:

N1 = d+ 1 ; N2 = d+N ; Nu = N , with N = 50 (3)

N is the number of sampling times that is necessary to
cover the main transient state until the steady state is
reached, which is in this case 3 seconds and the sampling
time Ts = 0.06 s. The parameter d is the dead time on
each subsystem, which are dx = 4 and dy = 3 sampling
times.

As the model identified relates the angles pitch and roll
with de components of the speed vx, vy, the GPC con-
trollers were used on the inner loops instead of the outer.
Thus, as the GPC depends heavily on the accuracy of the
model, we assume that the speed values are more reliable
than the position ones (which accumulate the error due to
the action of the integrator).

The GPC controllers were implemented MATLAB Func-
tion blocks the same way of the examples exposed on Ca-
macho and Bordons A (2004). To implement this controller
on the real system, in order to avoid the inversion of a
50x50 matrix each sample time, the control law was pre-
calculated fixing the parameter λ for different values and
then implemented on C#.

3.4 Improvements to path tracking

After some simulations with MATLAB Simulink, it was
observed that the quadcopter behaviour, obtained employ-
ing the control architecture explained before, did not reach
the performance requirements (explained on 4.3).

Before applying these improvements, the trajectory gen-
eration consisted on changing the set-point of master con-
trollers into the next waypoint as soon as the quadcopter
reached the last waypoint (it is considered radius of 10 cm,
14 cm or 20 cm to reach them and is another parameter
to tune).

When the trajectory is composed of displacements on the
two coordinates, as the two cascade control strategies are
independent and decoupled of each other, the behaviour
of X subsystem is, in general, different from the behaviour
of the Y subsystem. Hence, a deviation from the straight

path connecting the last and the next waypoint appears,
Fig. 7.

Fig. 7. Deviation from the path.

To partially avoid this behaviour, two different strategies
were compared:

Intermediate points generator

A more complex trajectory generation was elaborated by
sending some intermediate points between each pair of
waypoints as reference. This strategy synchronizes the two
primary loops at intermediate positions. Thus, there are
three new parameters of tuning: the number of segments in
which the trajectory between two waypoint is divided, the
length of them and the approximation distance selected
to change the reference from an intermediate point to
the next one. Hence, the highest possible deviation from
the path is indirectly set with the approximation distance
while time speed performance is scarified.

Velocity limiter

Another strategy to avoid path deviation is the one pro-
posed on Hernández-Hernández et al., 2013. It consists on
rectifying the reference vector of velocity coming out of
the master controllers Vo. The components of the velocity
reference are decoupled (as seen before) and this technique
allows the synchronization of secondary loops on X Sub-
system and Y Subsystem respectively.

The strategy is based on making the reference velocity
vector to point at any time to the next waypoint. To
achieve this, the orthogonal projection Vr of the velocity
reference vector Vo onto the vector connecting the actual
position with the objective waypoint is calculated.

After that, the projection Vr is the new reference vector
and needs to be limited by a saturation imposed by the
physical maximum velocity or by the user (as less value

IFAC ACNAAV 2015
June 10-12, 2015. Seville, Spain

76

has the saturation, less deviation from the path has the
quadcopter). The result is Vlim (Fig. 9).

Fig. 8. Correction of velocity reference, by the orthogonal
projection over the the displacement vector

Fig. 9. Reference velocity saturation.

The Intermediate points generator is implemented on a
MATLAB Function block to be tested before its implemen-
tation with C# language. The block receives the output
signal of the master controllers and provides the set-point
signal of the slave controllers. Both strategies are compat-
ible with each other but here they are compared to obtain
different architectures of control.

4. SIMULATION RESULTS

4.1 PID tuning

The ITAE minimization criterion was chosen as PID
tuning method, due to the good performance indicated on
the literature. It is about setting the parameters P, I, D
according to the minimum value of the ITAE value along
a simulation.

ITAE =

∞∫

0

t|e(t)|dt (4)

The implementation is simple when the MATLAB Op-
timization Toolbox is used together with Simulink, as
explained in Martins (2005). Thus, a function that finds a
local minimum of the ITAE value is called, starting from a
initial tuning of the PID controller. Each iteration means
a simulation of the Simulink file with our controller with
a step function as set-point.

Depending on the step input, established inside the
Simulink file, the minimum ITAE criterion provides a more
aggressive tuning. The master controllers obtained with
this criteria are tuned as PD instead of PID. Having PIDs
as master controllers would manage worse the overshoot
of the subsystems (X, Y) and there is no need of the
integration part to be stable because both subsystems

already have one integrator each one. The parameter N
is set to 10 in all PID controller and is not a variable to
adjust.

4.2 GPC tuning

The ITAE minimization criterion does not have the same
efficacy with GPC tuning because the control signal fluctu-
ates abruptly. Starting from the tuning gave by the ITAE
criterion, we incremented λ until the control signal was
soft enough, losing response time.

4.3 Performance

Three different adjustments were tested, two PIDs–PIDs
strategies and one PIDs–GPCs. Each adjustment was
tested in three configurations: with the Velocity limiter
block, with the Intermediate point generator and without
them.

To evaluate the performance of each controller along
the simulations, we used the evaluation criteria of the
competition on Control Engineering 2012, Autonomous
trajectory control of a quadcopter vehicle, proposed on
Blasco et al. (2012).

It consists on a multi-objective evaluation, allowing us
to compare the time required to complete the circuit,
the maximum deviation and the average deviation with
a performance index.

The best performance according to this criteria was the
PIDs-GPCs strategy with the Velocity limiter block:

• PID–GPC X: ‖P : 0.951‖I : 0‖D : 0.293‖λ = 250‖
• PID–GPC Y : ‖P : 0.913‖I : 0‖D : 0.277‖λ = 150‖

5. EXPERIMENTAL RESULTS

The best tuned PIDs–PIDs and the PIDs–GPCs strategies
were implemented on the real system. It is observed that
the identified model has a slightly different static gain than
the real system and we had to adjust the controllers.

The GPCs controllers had an unstable behaviour and it
was necessary to tune them with a higher λ on both
slave controllers until λ = 1500, and to multiply their
output signal by a factor (0.8 on vx controller and 0.9
on vy controller). Furthermore, the GPC controllers still
had an unacceptable reaction to the noise on velocity
measurements and a low-pass filter on the measured signal
was implemented.

With all this modifications, the performance of the GPC
strategy got worse. Nevertheless, the PIDs-PIDs strategy,
which is more robust to differences between identified
model and real system, worked well with the AR.Drone
after a few modifications on the parameters. No low-
pass filter was needed because it already had one on the
derivative action.

The PID-PID speed limiter strategy had the best per-
formance with the real system followed by the PID-PID
with intermediate points generator. Despite the fact that
the last one had less average and maximum deviation
from path, the speed limiter block provides better time

IFAC ACNAAV 2015
June 10-12, 2015. Seville, Spain

77

78 Raúl M. Criado et al. / IFAC-PapersOnLine 48-9 (2015) 073–078

Fig. 10. Path tracking with real system. PID-PID speed limiter strategy.

Fig. 11. Velocity vx and X position on real system.

performance with an acceptable path deviation, as can be
observed in Fig. 10.

• PID master (X): ‖P : 1‖I : 0‖D : 0.4‖
• PID slave (vx): ‖P : 0.23‖I : 0.28‖D : 0.027‖
• PID master (Y): ‖P : 0.9‖I : 0‖D : 0.01‖
• PID slave (vy): ‖P : 0.6‖I : 0.05‖D : 0.07‖

6. CONCLUSION

According to the results obtained within this research, it
can be concluded that the PIDs-PIDs strategy is robuster
against differences between the identified model and the
real system, because the GPC controllers depend strongly
on the model.

Each strategy added to solve path deviation shows a good
performance depending on the requirements to be fulfilled.
The speed limiter strategy does not correct the path as well
as the point generator, but provides the quadcopter with
better time performance.

Introducing computer vision based strategies using the
frontal camera could make it possible to add more capa-
bilities to the autopilot. For example following objects in
motion or the navigation with external references.

ACKNOWLEDGEMENTS

Assistance provided by Prof. Manuel G. Ortega was
greatly appreciated.

REFERENCES

Åstrom, K.J. and Hägglund, T. (2006). Advanced PID
Control. ISA, Research Triangle Park, NC 27709.

Blasco, X., Garćıa-Nieto, S., and Reynoso-Meza, G.
(2012). Control autónomo del seguimiento de trayecto-
rias de un veh́ıculo cuatrirrotor. Simulación y evaluación
de propuestas. Revista Iberoamericana de Automática e
Informática Industrial, Elsevier, 9, 194–199.

Camacho, E.F. and Bordons A, C. (2004). Model Predic-
tive Control. Springer, Sevilla.

Garćıa-Nieto Rodŕıguez, S., Blasco Ferragud, F.X.,
Sanch́ıs Saez, J., Herrero Durá, J., Reynoso Meza, G.,
and Mart́ınez Iranzo, M.A. (2012). TrackDrone Lite 2.0.
URL http://hdl.handle.net/10251/16427.

Hernández-Hernández, L., Pestana, J., Casares-
Palomeque, D., Campoy, P., and Sánchez-López, J.L.
(2013). Identificación y control en cascada mediante
inversión de no linealidades del cuatrirrotor para el
Concurso de Ingenieŕıa de Control CEA IFAC 2012.
Revista Iberoamericana de Automática e Informática
Industrial, Elsevier, 10.

Martins, F.G. (2005). Tuning PID Controllers using the
ITAE Criterion. International Journal of Engineering
Education, 21, 867–873.

Packard, A. (2005). Feedback and Dynamic Systems,
course notes. Saturation and antiwindup strategies.
Beckerley, University of California.

IFAC ACNAAV 2015
June 10-12, 2015. Seville, Spain

78

