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Abstract – Most Semantic Web Services discovery ap-

proaches are based on Description Logics, allowing a

limited expressiveness when describing Quality-of-Service

preferences. Furthermore, DLs is not suited to perform se-

lection tasks, because these are modeled as optimization

problems. In this work, we present a hybrid discovery and

selection model for Semantic Web Services that takes care

of QOS preferences. Our approach splits the whole process

into two stages, using the most suited engine in each one,

depending on its search nature. In order to perform QOS-

aware discovery and selection, user preferences have to be

semantically described as the rest of the service description.

Our model provides an ontology for user preferences, so in-

stances can be transformed into optimization problems that

can be solved by using the most suited engine.

Keywords: Service Discovery, Quality-of-Service, Seman-

tic Web Services, Ontology Languages, QoS-Aware Selec-

tion.

1 Introduction

Most approaches on automatic discovery of Semantic

Web Services (SWS) use Description Logics (DLs) reason-

ers to perform the matching [8, 13, 16, 20, 27, 28]. These

approaches have limitations regarding with the expres-

siveness of searches, especially when there are Quality-

of-Service (QOS) conditions integrated within user pref-

erences. For instance, a condition like “find a serv-

ice which availability ≥ 0.9, where availability =
MTTF/ (MTTF + MTTR)”1 can not be expressed in

DLs. However, there are some proposals that extend DLs

with concrete domains [10], though they still have limita-

tions on expressing complex conditions [1, 15]. Further-

1MTTF stands for “Mean Time To Failure”, while MTTR stands

for “Mean Time To Repair”. Both of them are QOS parameters often used

to define service availability.

more, selection tasks lead to optimization problems, so DLs

are not suited in that stage of the whole discovery process.

Optimization problems can be handled by solvers based

on different techniques, like Linear Programming (LP),

Constraint Programming (CP), or Dynamic Programming

(DP), among others. Thus, it is possible to split discovery

and selection tasks in terms of functional and QOS prefer-

ences, so the former task can be performed by DLs reason-

ers, while the latter can be performed by solvers, taking a

hybrid approach.

Our proposal presents a hybrid architecture to discover

SWS. Thus, our solution splits that process into two stages:

(1) functional discovery, which is usually performed by DLs

reasoners using functional preferences; and (2) QOS-driven

selection, where a solver obtain the best service in terms of

QOS preferences that define an optimality criterion. Both

user preferences have to be semantically described at the

same level, so different, but possibly equivalent, service de-

scriptions can be matched.

This model does not restrict the concrete technique to

be used in any of its stages. Our proposal provides a user

preference ontology that can be linked to any current SWS

framework. Moreover, it uses a very expressive solution to

define these preferences, i.e. utility functions and weights.

Finally, our hybrid architecture is extensible, so it is pos-

sible to add more stages to the process, provided that the

descriptions needed by that stage are described at the same

semantic level than the rest of the service description.

The rest of the paper is structured as follows. In Sec. 2

we analyze current approaches on discovering and select-

ing SWS. Then, in Sec. 3 we present our hybrid discovery

and selection model, explaining the proposed architecture,

an ontology of user preferences using utility functions, and

how to use that ontology to perform QOS-aware semantic

selection. Finally, in Sec. 4 we sum up our contributions,

and discuss our conclusions.



2 Related work

In this Section, we discuss related work on discovery

and selection of SWS, describing the different approaches

and analyzing their suitability to handle QOS-aware user

preferences. Firstly, we review discovery-related propos-

als, which use DLs to match services with functional pref-

erences, and then we present different approaches on select-

ing services by means of QOS-aware user preferences.

Concerning these preferences, in the following, service

descriptions are considered as their provider preferences

(what a provider offers and possibly its requirements to the

user), and user requirements are referenced as user prefer-

ences. Nevertheless, each preference can be broken in two

main parts: (1) functional preferences, that refer to what a

service has to do; and (2) QOS preferences, that are used to

rank services in terms of one or more QOS parameters.

2.1 Discovering SWS

In the context of DAML-S (the precursor of OWL-S [17]),

Sycara et al. show how semantic information allows auto-

matic discovery, invocation and composition of Web Ser-

vices [28]. They provide an early integration of semantic

information in a UDDI registry, and propose a matchmaking

architecture. It is based on a previous work by Paolucci et

al., where they define the matching engine used [21]. This

engine matches a demand and an offer when this offer de-

scribes a service which is “sufficiently similar” to the de-

manded service, i.e. the offered service provides the func-

tionality demanded in some degree. The problem is how to

define that degree of similarity, and the concrete algorithm

to match both service descriptions. They update their work

to OWL-S in [29].

Furthermore, there are proposals that perform the match-

making of SWS using DLs [8, 13, 16]. Particularly,

González-Castillo et al. provide an actual matchmaking al-

gorithm using the subsumption operator between DLs con-

cepts describing demands and offers [8]. They use existing

DLs reasoners, as RACER [9] or FaCT [11], to perform the

matchmaking. On the other hand, Lutz and Sattler [16] do

not provide an algorithm, but give the foundations to imple-

ment it using subsumption, like Li and Horrocks [13], who

also give hints to implement a prototype using RACER.

These three works define different matching degrees as

in [28], from exactly equivalents to disjoint, so they perform

a selection. All of them perform this matching by compar-

ing inputs and outputs. However, Benatallah et al. propose

to use the degree of matching to select the best offer in [2],

but it results to be a NP-hard problem, as in any optimiza-

tion problem [4].

On the other hand, Benbernou and Hacid realise that

some kinds of constraints are necessary to discover SWS,

including QOS related ones, so they formally discuss the

convenience of incorporating constraints in SWS discov-

ery [3]. However, instead of using any existing SWS de-

scription framework, their proposal uses an ad-hoc Services

Description Language, in order to be able to define com-

plex constraints. In addition, the resolution algorithm uses

constraint propagation and rewriting, but performed by a

subsumption algorithm, instead of a CSP solver.

2.2 Selecting SWS

An early approach on modeling QOS in the context of

SWS discovery are found in [23]. In this work, Ran presents

a UDDI extension and a catalog of QOS parameters that can

be included in UDDI descriptions. Discovery is performed

using queries with functional requirements, as well as con-

ditions on QOS. However, the actual discovery algorithm is

not defined, and queries that use QOS parameters are not

shown, so their expressiveness is unknown. Additionally,

UDDI only supports a keyword based search, so no form of

inference or flexible match can be performed [28]. Apart

from that, the resultant services are not ranked, so the user

have to perform different, successive queries, filtering the

result set in order to find the best suited service.

Although their proposal is not semantically defined, Liu

et al. present a QOS computation model including a selec-

tion algorithm [14], which is adopted in other approaches

[22, 30]. They propose an extensible QOS model that com-

prises both generic and domain specific criteria. Selection

is performed using an algorithm based on matrices normal-

ization, where services are ranked in terms of their QOS

matrix description and a vector of relative weights between

QOS parameters, which express user preferences.

Pathak et al. also model mappings between ontologies

in [22]. They propose to use domain specific ontologies

to define QOS preferences among users and providers. In

their work, selection is done using matching degrees at a

first stage. Then, QOS parameters values are collected in a

quality matrix, which is used to calculate a fixed, weighted

utility function for each offer. Finally, offers whose utility

function is above a given threshold, are ranked by one QOS

parameter to obtain the optimal offer.

Wang et al. provide an extension to WSMO ontology [24]

to handle QOS parameters [30]. They define a QOS selec-

tion model and an algorithm based on a quality matrix that

contains values of QOS parameters. The user preferences

are described in terms of tendencies, i.e. a demand may

prefer parameters to be as small as possible, as large as pos-

sible, or around a given value. Thus, in conjunction with

weights, they rank services to select the best one within a

given set.

Maximilien and Singh present a framework and a QOS

ontology for dynamic selection in [19]. They use an agent-

based approach where QOS are modeled via a three-layer

ontology: an upper ontology which defines basic concepts



associated with a quality parameter, a middle ontology

which defines the most frequent QOS parameters and met-

rics, and a user-defined lower ontology that depends on

the domain of the service. Although it constitutes a well-

defined framework to semantically describe QOS and it is

referenced by many authors [6, 12, 22], it is not aimed at

semantically describing user preferences.

An extension to DAML-S to include QOS profiles is pro-

posed in [32] by Zhou et al. This proposal only allows order

conditions between QOS parameters, so it performs discov-

ery and selection using DLs. The QOS ontology is sim-

ple and can be easily linked to the DAML-S service profile.

However, its selection algorithm uses matching degrees to

rank the resulting set of services, so user preferences can

only be expressed as ordering relations, which are inherent

to that selection algorithm.

Another DAML-based proposal is also presented in [26],

where S. Bilgin and Singh provide a DAML-based query lan-

guage, instead of just extending OWL-S. Using this Seman-

tic Web Services Query and Manipulation Language, they

advertise QOS attributes and perform the selection. The

main drawbacks of this approach are the same as in [23],

with limitations on the expressiveness of queries, due to the

use of DAML as its foundation. Thus, user preferences can

not be expressed in those queries, and are inherent to their

selection algorithm, as in [32].

Dobson et al. presents QoSOnt in [6], which is an on-

tology that extends OWL-S to describe QOS attributes and

metrics. However, they do not explicitly explain how to per-

form selection, and their proposal suffers from OWL limita-

tions, so they have to use an ad-hoc XML language to allow

custom data ranges. User preferences are modeled using

the preferred tendency of metric values (e.g. the higher the

best).

On the other hand, Zeng et al. show a basic QOS model

to Web services composition in [31], although it can be ap-

plied to discovery and selection. They propose an algorithm

based on utility functions, which are already defined for all

the contemplated QOS parameters. The optimization is im-

plemented using Integer Programming, providing weights

to the different QOS parameters involved. The main draw-

backs of this proposal are that it do not take semantics into

account and that the utility functions are fixed, so the user

can define its preferences only by means of weights.

Ruiz-Cortés et al. describe a QOS-aware discovery us-

ing Constraint Programming, where optimization is mod-

eled as a Constraint Satisfaction Optimization Problem

that minimize a weighted composition of utility functions,

which are defined by the client using QOS parameters from

a catalog [25]. As in [31], this proposal does not provide

semantics, but user preferences, described by utility func-

tions, can be defined by the user with high expressiveness.

An extension to [18] is presented in [12] by Kritikos

and Plexousakis. They propose an ontology similar to

the proposed by Maximilien and Singh [19], mixing of-

fers and demands within an OWL-S description. Moreover,

they present a matching algorithm to infer equivalences be-

tween different named QOS parameters that are semanti-

cally equivalent, although it is generally undecidable. Con-

cerning discovery and selection, they use CSPs to perform

the matchmaking of compatible offers, and then select the

best service by means of a weighted composition of util-

ity functions, which balance the worst and best scenarios to

compute the utility value. However, these user preferences

are not semantically defined in their QOS ontology.

2.3 Motivation

Several conclusions can be obtained from the analysis of

the related work. The main ones are the following, which

conform the motivation of this work.

1. Discovery proposals, all of them based on DLs, gen-

erally use matching degrees to select the best serv-

ice [8, 13, 16, 28]. However, they do not support QOS

preferences, so they can not perform any optimization

based on preferences.

2. There are a few proposals that uses utility functions

to express user preferences [12, 25, 31], although only

[25] allows the user to define complex utility functions.

These three proposals use optimization techniques, as

Integer Programming or Constraint Programming, to

select the best offers. Therefore, utility functions be-

come the natural choice to define highly expressive

user preferences.

3. There are many proposals that provide a semantic

framework to define QOS [6, 12, 19, 22, 26, 30, 32],

although [19] do not handle user preferences in their

ontology and [26, 32] have a fixed definition of user

preferences, inherent to their selection algorithm. [12]

is the most expressive when defining user preferences,

followed by [6, 22, 30], that limit their preferences to

weights and parameter tendencies. According to all

those proposals, it is clear that QOS have to be defined

semantically.

4. None of the analyzed proposals semantically define

user preferences, although in [6, 30] the authors in-

clude in their ontology extension the tendency of QOS

parameters. What is more, most of the proposals that

perform selection tasks in terms of user preferences de-

scribe them using ad-hoc, non-semantic descriptions

completely decoupled with the ones used to describe

service functionality, causing a semantic gap between

functional descriptions and user preferences.



These conclusions motivate this paper, because it is nec-

essary to tackle the previous problems. Most recent pro-

posals use utility functions to express user preferences, al-

though they are not semantically defined, and there are

many QOS ontologies which any solution should be able to

linked with. Our discovery and selection model takes into

account all these problems, providing a hybrid and QOS-

aware solution.

3 A QoS-aware, hybrid model

The addition of QOS preferences to SWS descriptions,

turns most approaches on selecting SWS insufficient, be-

cause they mainly use DLs, which are usually limited to log-

ical and relational expressions when describing QOS condi-

tions. Discovery and selection have to become independent,

so the former can be performed by DLs reasoners, but the

latter has to use an optimization technique, although func-

tional and QOS-aware preferences have to be described at

the same level. Thus, a hybrid solution arise as the most ad-

equate option. In the following, this solution is presented,

along with an ontology of user preferences that allows to

describe both discovery and selection at the same semantic

level. Although in [7] we present a generic n-stages hy-

brid discovery, in this paper we specify that early approach

by using two concrete stages, as well as providing an user

preference ontology that is used in the selection process.

Our selection proposal comes from mixing the expres-

siveness of utility functions and weights proposed by Ruiz-

Cortés et al. [25], the semantic definition of QOS from

Maximilien and Singh [19] or Kritikos and Plexousakis

[12], and an extension to give semantics to utility functions.

Furthermore, this QOS preferences ontology can be linked

with functional preferences, so the whole discovery and se-

lection process are performed within a hybrid architecture,

where DLs is used to discover services as in the proposals

from Sec. 2.1, and selection is treated as an optimization

problem.

3.1 Hybrid semantic discovery

Fig. 1 shows the activity diagram of a hybrid discovery

process performed by two different engines. This process

begins with the discovery stage, where a set of SWS de-

scriptions are matched with the user functional preferences.

Thus, at this point, only compatible services, in terms of

functionality, are returned to the next stage. That matching

can be performed using available DLs reasoners that can

take SWS descriptions and return those SWS which match

with the functional preferences, that can be expressed as a

service profile in OWL-S or as service capabilities in WSMO,

for instance.

Then, the discovered SWS are further processed, rank-

ing them in order to select the best service. In this

Discovery

Functional 
preferences

SWS

Selection

Discovered 
SWS

Ranked 

SWS

Process 
Results

Selected 

SWS

QoS 
preferences

Figure 1: Activity diagram of the hybrid process.

case, selection process uses QOS-aware user preferences to

rank services. These preferences are also semantically de-

scribed, and linked with functional preferences to conform

the whole user preference. However, QOS preferences are

not semantically described in current proposals (cf. Sec.

2.2), so it is necessary to provide a conceptualization of

QOS-related user preferences. Furthermore, in order to per-

form the selection stage, an optimization technique has to

be used. Thus, discovered SWS descriptions and QOS pref-

erences are transformed into an optimization problem that

can be performed by different techniques, such as CP, LP or

DP solvers. This stage is further explained in Sec. 3.2.

Finally, the list of ranked SWS are processed at the sec-

ond stage, where the best service in terms of user prefer-

ences are returned, so it can be invoked or composed with

others. This service is referenced as selected SWS in Fig. 1.

This hybrid discovery architecture has many advantages.

It is loosely coupled, due to the possibility to use any dis-

covery and selection engines. Also, user preferences ex-

pressiveness are not constrained to a specific selection tech-

nique, provided that a transformation from our conceptu-

alization is available. Moreover, our proposed architecture

can be applied to any existing SWS framework and corre-

sponding repositories, taking benefit of the wide range of

tools already implemented.

3.2 QoS-aware semantic selection

In order to decouple QOS-aware preferences descrip-

tions with the concrete selection algorithm used, we pro-

pose to model these preferences as an upper ontology.

This conceptualization allows the user to describe the

whole service, including functional descriptions from a

SWS framework, at the same semantic level. Furthermore,

it provides semantic interoperability between user prefer-

ences based on differently named QOS parameters, because

equivalences between those QOS parameters can be in-
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Figure 2: Proposed ontology to model user preferences.

ferred.

Our proposed model is shown in Fig. 2. The main

concept (or class) is UserPreference, which references

a Quality concept via the hasReference object property.

This Quality concept is analogous to the defined in [19],

and represents the QOS parameter which is used in the def-

inition of the corresponding user preference. Furthermore,

the UserPreference concept has a key datatype property,

hasDefinition, which links the more generic preference

concept with the utility function that defines it. Note that

Quality class is the link to QOS parameters used in the se-

mantic definition of QOS. This definition can be performed

using the ontology from Kritikos and Plexousakis [12] or

from Maximilien and Singh [19], for instance.

The utility function is initially modeled as a property that

contains an XML expression that describe the definition of

each function in terms of OpenMath standard [5], as used

in [12], allowing the evaluation of the function with a proper

compiler or a mathematical tool, such as Mathematica.

Finally, our main concept UserPreference has two

datatype properties: hasName and hasWeight . The for-

mer is used as an identifier of a given instance. The latter

is a real number which corresponds to the relative weight

associated with the corresponding QOS parameter, used to

compute the global utility function of an offer.

Fig. 3 shows two instances of our proposed ontology,

in the case of a composed user preference about MTTF ,

with an associated weight of 0.7 (Fig. 3c), and MTTR
with its corresponding weight of 0.3 (Fig. 3d). On the one

hand, the instance PreferredMTTF references an instance

UserMTTF of MTTF class, that is a subclass of Quality
class from [19]. On the other hand, PreferredMTTR refer-

ences an instance UserMTTR of MTTR class. Moreover,

concrete utility functions are specified as OpenMath objects

that represent the showed in Fig. 3a and Fig 3b, respec-

tively, using XML.

Selection process has to take all the instances from the

proposed ontology to compose a global user preference.

Thus, in the example from Fig. 3, the concrete optimiza-

tion technique used has to take both user preferences into

account to perform the actual selection, according to the rel-

ative weights associated with each QOS preference.

4 Conclusions

In this work, we show that using a unique engine to dis-

cover SWS is not appropriate, due to each engine is usually

designed for a concrete kind of search. For instance, DLs

reasoners are well suited when discovering SWS in terms

of concepts and relations, but they can not handle complex

numerical QOS preferences. Although there are extensions

to allow concrete domains in DLs, reasoners have to imple-

ment them, and they may bring undecidability results.

We present a hybrid solution that consists in a two-stages

discovery process, where each stage is performed using the

most appropriate technique. Furthermore, we provide a se-

mantic framework to define user preferences on semanti-

cally defined QOS parameters, provided that it is used in

conjunction with another proposal that semantically defines

those QOS parameters, like [12, 19]. Thus, all facets of

SWS description (functional, non-functional, and user pref-

erences) are described at the same semantic level, so discov-

ery and selection tasks are completely done within a single

semantic framework, allowing interoperability between dif-

ferent service definitions.

In addition, our proposed architecture is extensible and

loosely coupled, allowing to define complex QOS condi-

tions, and to use utility functions based on QOS parameters

to obtain the best service. This architecture does not im-

pose any restriction on the SWS framework and repository

to use, allowing its materialization as a discovery compo-

nent for current SWS implementations. Moreover, it is in-

dependent on the concrete optimization technique used in

the selection stage.
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