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ABSTRACT

Linking individuals in one dataset to other same individuals in 
existing datasets is a major problem known as link discovery. Ex-
isting automated link discovery techniques make users responsible 
for selecting suitable properties, distances and transformations, 
a.k.a. configurations, which is challenging for both researchers and 
practitioners. Furthermore, failing to provide suitable configura-
tions dramatically increases the complexity of link discovery since 
many configurations need to be evaluated. Current approaches to 
help users select proper configurations assume datasets are not 
heterogeneous or require the existence of a schema or ontology, 
making them less appealing in the context of Linked Data. In this 
paper, we present an approach to help users select suitable con-
figurations solely based on data, i.e., no schema or ontology is 
required. We rely on the concepts of universality and uniqueness, 
i.e., properties that are present in many individuals of the datasets 
to link (universality) and do not have repeated objects (uniqueness). 
We use the concept of singularity to focus on configurations in 
which only a few individuals are very similar while the rest are 
very dissimilar. We evaluate our approach using eight commonly-
used scenarios, in which, on average, we only suggest 5% of all 
the possible configurations. Additionally, selected configurations 
consistently generate links achieving high precision and recall with 
respect to a ground truth. Finally, we provide a number of guidelines 
to apply our approach in additional scenarios.
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1 INTRODUCTION
Link discovery aims to identify and link individuals belonging to 
two datasets that are the same, e.g., the same restaurant is referred

to as “Art’s Delicatessen” in a dataset and as “Art’s Deli” in another
dataset [1, 23]. Link discovery is crucial when publishing Linked
Data to connect to other existing individuals [5, 14, 29]. Link discov-
ery is very related to the problem of entity resolution that consists
of detecting duplicate individuals in datasets [7, 21].

Current techniques to automatically perform link discovery usu-
ally rely on rules that are applied over the source and target datasets
to be linked [21], e.g., a pair of restaurants is linked when the sim-
ilarity between their names is below 0.35 using the cosine string
distance. Genetic algorithms are appealing to compute these link
discovery rules [10, 17, 18, 24, 27]. Furthermore, there are other
techniques not based on rules to discover links that rely on ma-
chine learning [31]. The main difference between both types is that
rules can be interpreted, refined and combined [8], while classifiers
learned using machine learning are generally black boxes.

The search space that automated link discovery techniques need
to traverse includes the following:
• A variety of properties present in the source and target
datasets to be linked.
• Distances to compare the objects of these properties.
• Transformations to be applied over these objects.
• Thresholds to whether or not consider a certain object com-
parison as similar.
• Aggregate functions that allow to combine multiple of these
constructs.

In the context of RDF datasets, distances and transformations are
usually mandatory since the datasets tend to be heterogeneous [5].
In addition, the quality of the links output by these techniques
largely depends on suitable combinations of properties, distances
and transformations, thresholds, and aggregate functions.

Many automated link discovery techniques make users respon-
sible for selecting suitable sets of source and target properties, and
which pairs of source and target properties are appealing to be com-
pared [10, 17, 18, 24, 27, 31]. Users also need to provide a number of
distances and transformations to achieve such comparisons. This
is a valid approach when users are very familiar with the source
and target datasets to be linked and, therefore, can usually pro-
vide useful information to the techniques. However, for datasets
that have not been previously analyzed, users are forced to either
provide a wide range of options, which makes the problem of find-
ing links computationally expensive or even unfeasible, or to take
wild guesses in a trial-and-error manner until discovering plau-
sible configurations. A configuration consists of a pair of source
and target properties along with a distance, a pair of source and
target transformations, and a threshold. Note that these techniques
are thus responsible for finding proper single or aggregations of
configurations as well as thresholds to discover links.

Several approaches to help select suitable configurations assume
the same objects are present in the source and target datasets and,
therefore, do not consider distances and/or transformations [3, 25].
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Other approaches require to evaluate every pair of source and target
individuals to discern whether they form a link [11], which may not
be feasible for large datasets, or require the existence of a schema
or ontology [2, 4, 13, 20, 26–28, 33], which is a strong requirement
in the context of Linked Data since data models usually contain
very few or no constraints at all [16].

In this paper, we present an approach to help users select suitable
configurations for link discovery that solely uses the datasets in-
volved without requiring the existence of any ontology or schema.
These configurations can then be used by any automated link dis-
covery technique to refine thresholds and/or be aggregated to ef-
fectively generate links. We rely on the concepts of universality,
uniqueness and singularity. For a given dataset, universality of a
property measures the percentage of individuals in the dataset that
are related to any objects by means of such a property. A large uni-
versality score suggests a property is pervasive among individuals
of a given dataset, e.g., all individuals have a name. Uniqueness
measures the percentage of unique objects in the dataset that are
related to individuals by means of such a property. A large unique-
ness score entails a property is always related to unique objects, e.g.,
the address of a restaurant. Having a source and a target datasets,
singularity measures the information gain of the individuals related
to a given pair of source and target properties that are present in
the links using a distance, a pair of transformations and a threshold.
A large singularity score implies that individuals are very similar
in a very few number of cases and very dissimilar in the rest. For
instance, the names of restaurants “Art’s Delicatessen” and “Art’s
Deli” are very similar (few) but very dissimilar to other (many)
names, such as “Montrachet,” “Spago,” or “Tolouse.”

Similar concepts related to universality and uniqueness have
been proposed [4, 15, 25]; however, they either require the mate-
rialization of links to recommend promising source and/or target
properties [4, 15], or they are combined using the harmonic mean
that does not prioritize uniqueness with respect to universality [25],
which is generally desired in the context of link discovery. To the
best of our knowledge, none of the existing approaches suggest
promising configurations to discover links. We evaluate our ap-
proach in eight scenarios that have been previously used in the
literature [21, 23], in which we show that our approach recom-
mends a set of configurations that achieve high precision and recall
with respect to all possible configurations. Furthermore, we are
able to reduce the search space of automated link discovery tech-
niques in 95% on average. We also provide a number of guidelines
to help users exploit universality, uniqueness and singularity scores
in third-party scenarios. Finally, we make our implementation and
experimental results publicly available to ensure reproducibility1.

This paper is organized as follows: Section 2 deals with prelim-
inaries; Section 3 discusses our approach; Section 4 reports our
experimental results; Section 5 presents the related work; and Sec-
tion 6 recaps our conclusions.

2 PRELIMINARIES
A triple (i, p, o) relates an individual i to an object o by means
of property p: i can be an IRI or a blank node, p can only be an
IRI, and o can be either an IRI, a blank node or a literal [9]. A

1https://github.com/crrivero/CHALD

(id1, name, ‘toulouse’)
(id1, category, ‘French cuisine’)
(id2, name, ‘hotel bel−air’)
(id3, name, ‘Art ′s Delicatessen’)
(id3, category, ‘French cuisine’)
(id4, name, ‘le montrachet’)
(id4, name, ‘montrachet’)

(a) Source (RS )

(idA, fullname, ‘Toulouse’)
(idA, type, ‘French’)
(idB, fullname, ‘Spago’)
(idB, type, ‘French’)
(idC , fullname, ‘Art ′s Deli’)
(idD , fullname, ‘Montrachet’)
(idD , type, ‘French’)

(b) Target (RT )

Figure 1: Sample datasets representing restaurants

RDF dataset D is formed by a set of triples. We denote the set of
individuals in D as I (D) = {i |(i, p, o) ∈ D} and the set of properties
as P (D) = {p|(i, p, o) ∈ D}. Note that we do not consider individuals
that appear only as objects, which entails that these individuals
are not related to any objects by means of datatype properties,
i.e., similar to attributes in relational databases. In practice, our
approach can deal with these individuals if the inverse of existing
object properties are also considered.

Example 2.1. Figure 1a presents a dataset RS containing restau-
rantswhere I (RS ) = {id1, id2, id3, id4} and P (RS ) = {name, category}.
Note that, for the sake of simplicity, we present string literals like
‘toulouse’ and we assume that the rest are IRIs like id1 or name.

Let DS and DT be two datasets, a link is a pair of individuals
(is, it ) where is ∈ I (DS ) and it ∈ I (DT ). A configuration is a tuple
(ps, pt ,ψ ,δs,δt ,θ ) where ps ∈ P (DS ) and pt ∈ P (DT ), ψ is a dis-
tance, δs and δt are transformations, and θ ∈ [0, 1] is a threshold.
A configuration may be used to generate a link (is, it ) as follows:
Assuming (is, ps, os ) ∈ DS and (it , pt , ot ) ∈ DT , (is, it ) is created if
ψ (δs (os ),δt (ot )) ≤ θ . Note that we assume distances are normal-
ized and produce a value between 0 and 1; the former implies both
objects are considered identical. In practice, a single configuration
is usually not enough for discovering links, so automated link dis-
covery techniques focus on finding and aggregating configurations
to generate proper links between datasets.

Example 2.2. Assuming that Lev represents the Levenshtein
string distance and Void denotes no transformation, a configuration
like (name, fullname, Lev,Void,Void, 0.35) produces links (id1, idA)
and (id4, idD ) in Figure 1 since the threshold is met as follows:

• Lev (Void (‘toulouse’),Void (‘Toulouse’)) = 0.13
• Lev (Void (‘le montrachet’),Void (‘Montrachet’)) = 0.31

Since Lev (Void (‘Art ′s Delicatessen’),Void (‘Art ′s Deli’)) = 0.44,
(id3, idC ) is not output by the previous configuration when used to
generate links between RS and RT .

3 OUR APPROACH
In this section, we introduce the concepts of universality and unique-
ness that are applied over a single dataset to select promising indi-
vidual properties (Section 3.1). We present the concept of singularity
that is applied over pairs of source and target properties to select
promising distances, transformations, and thresholds (Section 3.2).
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3.1 Selecting individual properties
We aim to help users select promising properties in a given dataset
D, either the source or the target, based on universality and unique-
ness. The universality score u(p,D) of a property p is defined as:

u(p,D) =
|E(p,D) |
|I (D) |

where E(p,D) = {i | (i, p, o) ∈ D} is a set of unique individuals for
property p. Note that u(p,D) = 1 entails that all individuals in D
have at least an object for property p. Intuitively, a universality score
u(p,D) ≈ 1 implies that p is very prevalent among all individuals
that are present in a given dataset.

Example 3.1. In Figure 1a, u(name,RS ) = 4/4 = 1 since all
individuals have a triple for property name; u(category, RS ) = 2/4 =
0.5 since individuals id2 and id4 do not have any triples containing
the category property.

The uniqueness score q(p,D) of a property p is defined as:

q(p,D) =
|V (p,D) |
|R(p,D) |

where V (p,D) = {o | (i, p, o) ∈ D} is a set of unique objects for
property p, and R(p,D) = {(i, o) | (i, p, o) ∈ D} is the unique
pairs individual–object for a given property p. Similarly as before,
q(p) = 1 entails that all values related to individuals in D by means
of property p are unique. Intuitively, a uniqueness score q(p,D) ≈ 1
implies that the objects related by property p are mostly unique in
a given dataset. Note that if E(p,D) were used instead of R(p,D),
we could have q(p,D) > 1 in datasets where the same individual is
related to different objects by the same property.

Example 3.2. In Figure 1a, q(category,RS ) = 1/2 = 0.5 since
the dataset only contains value ‘French cuisine’ for such property,
and there are two individual–object pairs that have the category
property. Furthermore, q(name,RS ) = 5/5 = 1 since there are five
different names and there are five individual–object pairs related
to such property. In Figure 1b, q(type,RT ) = 1/3 = 0.33 since the
dataset only contains object ‘French’, and three individual–object
pairs have triples using property type.

In general, we are interested in properties whose uniqueness
scores are high since the objects they relate are more likely to
produce quality links. Assuming that the uniqueness score for a
given property is high, the universality score indicates how likely
it is to generate all links using a few or more linking rules.

For users to provide a single threshold, existing approaches have
proposed to combine scores using the harmonic mean [4, 25]. We
argue that the harmonic mean is only useful when both scores are
equally high or low; otherwise, the harmonic mean does not allow
to discard undesirable cases. For instance, for the type property
in Figure 1b, we obtain u(type,RT ) = 0.75 and q(type,RT ) = 0.33
whose harmonic mean is equal to 0.46; link rules based on type are
not expected to produce quality links. Assume a property p1 in RT
such that u(p1,RT ) = 0.30 and q(p1,RT ) = 0.95 whose harmonic
mean is also equal to 0.46; however, link rules based on p1 are
expected to produce quality links because of its high uniqueness.

We prioritize uniqueness with respect to universality and com-
bine them using Fβ as follows:

Fβ (p,D) =
(1 + β2) u(p,D) q(p,D)
(β2 u(p,D)) + q(p,D)

where β ≥ 1 in order to promote the uniqueness score, i.e., if
β < 1, the universality score is promoted. In the previous example,
F2 (type,RT ) = 0.37 while F2 (p1,RT ) = 0.66, which allows us to
differentiate between both properties.

3.2 Selecting configurations
Given a source and a target datasets DS and DT , a set of distances,
and a set of transformations, we aim to find which combinations of
source and target properties are appealing to be checked during the
link discovery process, as well as proper distances, transformations
and thresholds. We rely on the concept of singularity in which only
a few and unique values are very similar, while the rest are very
dissimilar taking distances and transformations into account. As a
result, we find configurations, each of which is a tuple of the form
c = (ps, pt ,ψ ,δs,δt ,θ ), whose singularity scores are above certain
threshold. We compute singularity scores based on the links a given
configuration generates between DS and DT .

For a given pair of triples (is, ps, os ) and (it , pt , ot ) that belong to
DS and DT , respectively,ψ (δs (os ),δt (ot )) is the distance between is
and it for properties ps and pt . Having a threshold θ ∈ [0, 1], L(c)
is the set of links generated by configuration c as follows: L(c) =
{(is, it ) |(is, ps, os ) ∈ DS ∧ (it , pt , ot ) ∈ DT ∧ψ (δs (os ),δt (ot )) ≤ θ }.
When θ = 0, L(c) contains all individuals for which the objects
related by properties ps and pt are identical after applying δs and
δt , and according to ψ . When θ = 1, L(c) contains the Cartesian
product of all individuals that use properties ps and pt .

We focus on the number of unique source and target individ-
uals that are present in the links generated by a given configura-
tion. Thus, the singularity score g(c) of a configuration c such that
|L(c) | > 1 is defined as:

g(c) =
H (DS , L(c)) + H (DT , L(c))

2 log |L(c) |
whereH (D, L) represents the entropy of the individuals inD present
in L computed as follows:

H (D, L) = −
∑

i∈I (D)

|F (i, L) |
|L|

log
|F (i, L) |
|L|

where F (i, L) = {(is, it ) | (is, it ) ∈ L ∧ (i = is ∨ i = it )} is the set of
links in L that relate a given individual i.

The singularity score is computed based on the entropy of the
source and target individuals present in L(c). The intuition is that,
if a source or a target individual is just present a few times in the
links generated by configuration c, it constitutes a singularity, thus
we expect a higher singularity score. Furthermore, we consider
g(c) = 1 if |L(c) | = 1, and g(c) = 0 if |L(c) | = 0.

Example 3.3. In Figure 1, configuration c = (name, fullname, Lev,
Low, Low, 0.90), where Low represents the lowercase transforma-
tion, yields as links the Cartesian product of all the source and
target individuals except (id2, idB), resulting in g(c) = 0.53. If the
threshold in c is changed to 0.65, then L(c) = {(id1, idA), (id2, idD ),
(id3, idC ), (id4, idD )} and g(c) = 0.86. Finally, using 0.50 as thresh-
old, L(c) = {(id1, idA), (id3, idC ), (id4, idD )} and g(c) = 1.



As it can be noted in the previous example, configurations whose
generated links contain a large number of unique individuals yield
higher singularity scores than other configurations. In general, this
is desired when discovering links among RDF datasets; however,
users can exploit singularity thresholds to suggest other configu-
rations whose generated links do not contain a large number of
unique individuals, but still are promising for link discovery.

4 EVALUATION
We implemented our approach using Apache Jena2. In our exper-
iments, we treat all objects as string values, so we used a Java li-
brary3 implementing seven normalized string distances as follows:
common subsequence, cosine, Jaccard, Jaro-Winkler, Levenshtein,
longest n-grams, and Sorensen-Dice. Furthermore, we used five
string transformations as follows: lowercase, remove non-ASCII
characters, remove IRI prefix, uppercase, and void (no transforma-
tion). We ensure the reproducibility of our results by making our
implementation and results publicly available4.

The rest of this section describes the scenarios we used in our
experiments (Section 4.1), comparison with respect to the state of
the art and experimental setup (Section 4.2), results and discussion
on selecting source and target properties (Section 4.3), and results
and discussion on selecting configurations (Section 4.4).

4.1 Scenarios
We evaluated several scenarios from different domains that have
been consistently used to evaluate link discovery and entity recog-
nition [23]. Scenarios s1–s3 correspond to the Abt-Buy, Amazon-
GoogleProducts and DBLP-ACM scenarios from the data matching
benchmark5 devised by Köpcke et al. [22]. Scenario s4 corresponds
to the author recognition task described in the OAEI instancematch-
ing challenge of 20156, while scenarios s5–s7 correspond to the
Restaurants, Persons1 and Persons2 scenarios from the OAEI in-
stance matching challenge of 20107. Finally, scenario s8 corresponds
to the sandbox of the SPIMBENCH task from the OAEI instance
matching challenge of 20188. Scenarios s1 and s2 deal with products,
brands, prices and device names; s3 and s4 contain papers with their
titles, authors and venues; s5 and s6 represent people and addresses;
s7 contains restaurants, addresses and cuisine types; and s8 deals
with news items, blog posts and television shows.

Table 1 presents the total number of triples in the source and tar-
get datasets (|D |), the total number of individuals (|I |), and the total
number of unique properties that such individuals can be related
to (|P |). We also present the ground truth provided in terms of total
number of individuals (|I (DS ) | and |I (DT ) |, respectively), and total
number of links (|L|). Note that, for all scenarios, ground truths
provided do not link all the individuals in the source and/or target
datasets. Furthermore, some scenarios contain a larger number of
individuals than links.

2https://jena.apache.org/
3https://github.com/tdebatty/java-string-similarity
4https://github.com/crrivero/CHALD
5https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_
datasets_for_entity_resolution
6http://oaei.ontologymatching.org/2015/im/index.html
7http://oaei.ontologymatching.org/2010/im/index.html
8http://oaei.ontologymatching.org/2018/spimbench.html

Table 1: Summary of the scenarios used in our experiments

Source Target Ground truth
Id |D | |I | |P | |D | |I | |P | |I (DS ) | |I (DT ) | |L|
s1 2,162 1,081 2 2,829 1,092 3 1,081 1,092 1,097
s2 3,974 1,363 3 6,493 3,226 3 1,113 1,291 1,300
s3 7,848 2,616 3 6,868 2,294 3 2,224 2,224 2,224
s4 114,425 15,571 8 10,249 1,723 9 854 854 854
s5 9,000 2,000 14 7,000 1,000 13 500 500 500
s6 10,800 2,400 14 5,600 800 13 95 400 400
s7 1,130 339 7 7,520 2,256 7 112 112 112
s8 9,443 1,126 47 9,411 1,130 67 299 299 299

4.2 Comparison and setup
We compare our approach, which we referred to as CHALD (Con-
figuration Helper for Automated Link Discovery), with respect to
SLINT+ [25]. SLINT+ proposes two scores, coverage (cov) and dis-
criminability (dis), for selecting source and target properties that
are combined using the harmonic mean. SLINT+ also proposes to
use a number of thresholds to only consider certain source and
target properties; however, to compare both approaches, we rank
source and target properties based on the combinations of scores
proposed by CHALD and SLINT+, and select the top 50% of these
properties. In the case of CHALD, we set β = 2, i.e., we use F2 to
combine universality and uniqueness scores.

Instead of a singularity score that allows to measure promising
configurations, SLINT+ proposes a confidence score (conf ) to only
select promising pairs of source and target properties (no distances,
transformations or thresholds). A function R is defined over the
objects of a given property p that transforms these objects using a
number of preestablished rules based on the types of the objects
involved, e.g., for IRIs, their domain is omitted and the resulting
string is tokenized by separator ‘/’. The confidence score of a source
and a target properties ps and pt is computed as follows:

conf (ps, pt ) =
2 |R(OS ) ∩ R(OT ) |

|R(OS ) | + |R(OT ) |

where OS (OT ) are all the objects in the source (target) dataset
related by property ps (pt ). For the source and target properties
selected in the previous ranking by CHALD and SLINT+, we rank
their pairs based on singularity and confidence scores, and select
the top 10% of the configurations.

In our experiments, we perform a sweep taking into account
all source and target properties in each scenario, transformations
(five in total), and distances (seven in total). For each combina-
tion of source property ps , target property pt , source transfor-
mation δs , target transformation δt and distance ψ , we compute
V = {v |(is, ps, os ) ∈ DS ∧ (it , pt , ot ) ∈ DT ∧ψ (δs (os ),δt (ot )) = v}
and use these values as thresholds, i.e., θ ∈ V . Using each configu-
ration, we compute precision and recall of the links generated by c
with respect to the links available as ground truth for each scenario.

4.3 Selection of source and target properties
We first discuss about the selection of source and target proper-
ties based on the combinations of scores proposed by CHALD and

https://jena.apache.org/
https://github.com/tdebatty/java-string-similarity
https://github.com/crrivero/CHALD
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Table 2: Rankings of the source properties produced by
CHALD and SLINT+ (* means selected)

(a) Scenario s4

CHALD SLINT+
Property F2 u q Property H cov dis

1st title* 0.98 0.94 0.98 author_of * 0.25 0.13 2.63
2nd venue* 0.47 0.85 0.42 title* 0.24 0.13 2.56
3rd author_of * 0.22 0.05 1.00 venue* 0.21 0.12 0.97
4th name* 0.22 0.05 0.81 publisher* 0.15 0.12 0.21
5th publisher 0.12 0.90 0.01 citations 0.08 0.10 0.07
6th citations 0.04 0.74 0.03 year 0.02 0.12 0.01
7th year 0.01 0.91 0.01 name 0.01 0.01 2.30
8th rdf :type 0.00 1.00 0.00 rdf :type 0.00 0.27 0.00

(b) Scenario s7

CHALD SLINT+
Property F2 u q Property H cov dis

1st has_address* 0.71 0.33 1.00 name* 0.36 0.2 1.65
2nd is_in_city* 0.71 0.33 1.00 has_address* 0.19 0.10 3.90
3rd street* 0.71 0.33 0.99 is_in_city* 0.19 0.10 3.90
4th phone* 0.71 0.33 0.99 street* 0.19 0.10 3.84
5th name 0.58 0.67 0.56 phone* 0.19 0.10 3.84
6th category 0.19 0.33 0.17 year 0.16 0.10 0.41
7th rdf :type 0.01 1.00 0.01 rdf :type 0.03 0.30 0.02

SLINT+, i.e., universality and uniqueness, and coverage and dis-
criminability. There are no differences in the rankings computed
by CHALD and SLINT+ for scenarios s1–s3; note that all these sce-
narios are translations of CSV into RDF files and, therefore, they
are very uniform, e.g., all instances are related to all properties.
Table 2a presents the rankings obtained by CHALD and SLINT+ for
the source dataset in s4. Both approaches select the same first three
properties but in different order, i.e., author_of , title, and venue.
(For the sake of presentation, we have simplified the IRIs of the
properties.) However, CHALD ranks name in the fourth position
while SLINT+ ranks publisher in that position instead of name. Even
though the universality score of name is low, its uniqueness is high
and, therefore, our approach prioritizes it with respect to others
(note that the name property is the penultimate in the ranking out-
put by SLINT+). Configurations that use the name property achieve
a maximum precision and recall of 0.60 and 1.00, respectively; while
configurations that use the publisher property achieve a precision
and recall of 0 since none of the instances present in the ground
truth are related to any objects by the publisher property. The selec-
tion of publisher in favor of name by SLINT+ is due to applying the
harmonic mean to the coverage and discriminability scores: name
has a higher discriminability score than publisher (2.30 and 0.21,
respectively); however, since the coverage score of name is lower
than the score of publisher (0.01 and 0.12, respectively), publisher is
ranked higher than name.

We observe a similar behavior in s5 and s6 where SLINT+ ranks
first the name property while CHALD ranks the same property 10th
out of 14 properties and, therefore, it is not selected. Similarly as

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

category has_address is_in_city name phone rdf:type street

Figure 2: Universality (left bar) and uniqueness (right bar)
scores by source property in s7

before, none of the instances present in the ground truth are related
to any objects by name, which is used to provide names to streets
and states but not persons since, for the latter, the given_name and
surname properties are used. In s7 (see Table 2b), CHALD does not
select the name property while SLINT+ selects it in first place; all
configurations in this scenario using properties has_address, name
and phone achieve precision of 1.00 and recall of 0.79, so the source
properties selected by CHALD are also promising. In s8, we do not
observe significant differences between the rankings produced by
CHALD and SLINT+.

These results confirm that, in general, uniqueness is preferred
with respect to universality since link rules are more likely to pro-
duce quality links. Universality and uniqueness scores are relative
to the properties available in each dataset at hand; furthermore, an-
other important factor is that the universality score depends on the
total number of individuals in a specific dataset, which implies that
we also need to take into account the possibility of additional indi-
viduals which we are not interested in linking. In addition to rank
properties combining universality and uniqueness scores based on
F2, we suggest using plots to help users decide additional properties
not selected by the ranking. Figure 2 presents an example of such a
plot in which the X axis contains the properties of the datasets, and
the Y axis both universality (left bar) and uniqueness (right bar)
scores for those properties, respectively. The category and rdf :type
properties are candidates to be discarded since their uniqueness
scores are low even though the universality score of rdf :type is high.
The name property can be a promising candidate since its unique-
ness score suggests that more than 50% of the individuals have a
unique object for this property, which can be helpful when disam-
biguating certain individuals, i.e., several properties and a certain
aggregation function would result in accuracy improvements.

4.4 Selection of configurations
Singularity scores in our approach are defined for both a source and
a target datasets of interest. In general, a proper selection would be
scores closer to one, which implies that links generated by a given
configuration include very few repetitions of the same source and
target individuals. Figure 3 shows precision and recall obtained for
the configurations kept with respect to all possible configurations
using universality, uniqueness and singularity rankings in CHALD,
and coverage, discriminability and confidence rankings in SLINT+.
High precision and recall values are obtained in all scenarios for
CHALD, while SLINT+ fails to obtain these values in s3, s4, s6 and
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Figure 3: Precision (Y axis) vs. recall (X axis) of links generated by all configurations (blue circles), and links restricted by
CHALD (left, red squares) and SLINT+ (right, black triangles) in each scenario

s7. We also observe that CHALD reduces the number of output
configurations with respect to SLINT+: on average, the reduction
ratio for CHALD is 95% while for SLINT+ is 85%.

We note that, in general, CHALD prioritizes precision with re-
spect to recall, which is generally desired in the context of auto-
mated link discovery. Link rules that are very specific tend to have

high precision but low recall since, in the extreme case, they only
compute a single link. The results of these link rules can then be
merged to compose the final set of links. We also note that in all
scenarios CHALD does not filter out several configurations with
very low precision and recall. Further inspection shows that these
configurations contain non-promising pairs of source and target



properties that generate a number of links that contain unique
individuals. For instance, in s5, phone and social security number
properties have high universality and uniqueness scores; some con-
figurations that compare phone and social security numbers yield
links that contain unique persons but represent only false positive
and false negative links, thus precision and recall are (close to) zero.

In certain scenarios, we may have one-to-many and/or many-
to-one links involving the same individuals several times. In these
cases, configurations may rank lower since their singularity scores
are lower than other configurations that only generate links involv-
ing unique individuals. When users are aware of these situations,
they may need to increase the number of configurations retrieved.

5 RELATED WORK
Link discovery is very related to the problem of entity resolution,
and schema and ontologymatching [12, 21]. Recent techniques have
mainly focused on generating link rules using genetic algorithms [6,
8, 10, 17, 19, 24, 30, 32], which are usually supervised, i.e., they
require examples of positive and negative links.

Adaptive link discovery aims to recommend a (partial) config-
uration for link discovery techniques by analyzing the datasets
provided as input [23]. Araújo et al. [3] require the selection of
source individuals that have at least a property and a value in com-
mon; target individuals are selected until finding a link among
them. This approach assumes direct matching in which values are
compared without using any distances and/or transformations.

In Freitas et al. [11], for each pair of values in the source and
target datasets, a number of distances and thresholds are used to
classify such a pair as a positive or a negative link; then, links are
further classified based on majority and, if there is no consensus,
the user needs to make the final decision. The main drawback of
this approach is that a majority of combinations classifying a link
as positive or negative does not necessarily entail such a link is
indeed positive or negative. Furthermore, all combinations must be
evaluated over links in order to classify them.

Nikolov et al. [26] present an approach to, given a source dataset,
find relevant target datasets to discover links as well as classes of
target individuals that are related to source individuals. As a result,
this approach requires the existence of an ontology that must also
include hierarchies using super- and sub-classes. The same authors
propose using genetic algorithms to find distances and thresholds
to be used for link discovery without using input examples, but
based on measuring the number of individuals linked [27].

Nguyen et al. [25] propose SLINT+ for link discovery without
providing any input examples. SLINT+ first aims to extract source
and target properties based on coverage and discriminability. On
one hand, coverage measures the number of triples that use a given
property with respect to all the triples in the dataset. On the other
hand, discriminability combines the entropy of unique values with
respect to their frequency over total triples. After property selec-
tion, SLINT+ aims to select pairs of promising properties relying
on custom transformations based on data types. SLINT+ does not
exploit any distances for comparing values. The coverage and dis-
criminability scores are related to our universality and uniqueness
scores, respectively. On one hand, our universality score is com-
puted by dividing the number of individuals that is related by a

given property by the total number of individuals in a given dataset,
while the coverage score takes all triples of the dataset into account.
Note that the number of triples may be larger than the number of
unique individuals in a dataset. On the other hand, the discriminabil-
ity score is divided into two terms that compute the percentage
of unique values with respect to the total number of triples, and
the entropy of the frequency of values. Similarly as before, using
the number of unique individuals instead of the total number of
triples yields a more accurate percentage. Finally, SLINT+ proposes
a confidence score to suggest promising pairs of source and target
properties that does not suggest promising configurations including
transformations and/or distances.

Hassanzadeh et al. [15] present a generic framework to detect
pairs of properties for which the individuals in such datasets are
linked. The framework consists of a full suite for link discovery
over JSON-like datasets that include a variety of similarity distances
and transformations, and additional functions to aggregate, filter
and rank discovered pairs of properties. Furthermore, the frame-
work also contains several algorithms to efficiently discover pairs
of properties. The authors propose strength and coverage scores
measured respectively as the percentage of unique individuals, and
total number of individuals for a given pair of source and target
properties. The main drawback of these scores is that they require
to materialize the links generated for a given configuration, while
our universality and uniqueness scores avoid such materialization
since they are applied directly over the source and target datasets.

Universality and uniqueness are related to the computation of
keys in RDF datasets. A key is a set of properties whose values
uniquely identify individuals in a given dataset. Approaches for
computing keys mainly focus on a single RDF dataset [1], with some
notable exceptions [2, 4, 13, 20, 28, 33]. These approaches mainly
consider datasets that follow the unique name assumption, i.e., an
individual in a dataset can be linked only to a single individual in
another dataset, which may restrict their applicability in practice.
Furthermore, they require ontology information since individuals
are only considered if they belong to certain classes, or properties
in different datasets need to be aligned beforehand since they only
consider a single dataset. None of the previous approaches consider
distances and transformations but only plain values.

The approach by Atencia et al. [4] evaluates keys based on cov-
erage and discriminability. On one hand, coverage measures the
number of individuals that are linked by a key based on the types
they belong to (ontology information). On the other hand, discrim-
inabilitymeasures how close links generated by a key are to “perfect”
one-to-one links, i.e., a source individual is only linked to a target
individual. Similarly as the approach by Hassanzadeh et al. [15],
links need to be materialized in order to select a suitable pair of
source and target properties, while our approach does not require
such materialization. Furthermore, discriminability is computed as
the minimum number of unique source or target individuals present
in a set of links, which does not provide a complete measure since
the maximum number of unique individuals are not considered.

6 CONCLUSIONS
This paper presents our approach to select suitable properties in
individual datasets to be linked, and then recommend suitable



configurations including a pair of properties, a distance, a pair
of transformations and a threshold to link a source and a target
datasets. For the individual datasets, we propose universality and
uniqueness scores measured as the ratio of individuals related to
a given property, and the ratio of unique values related to a given
property, respectively. Furthermore, the singularity score measures
the entropy of the individuals present in the links generated by a
given configuration. Our experiments show that, using universality,
uniqueness and singularity scores, we are able to reduce the search
space of configurations for link discovery while maintaining high
quality configurations based on precision and recall.

Relying on universality, uniqueness and singularity scores may
be challenging, so we provide the following guidelines to enable the
use of these scores in third-party scenarios: 1) We generally wish
properties with high universality scores; however, since this score
depends on the total number of individuals, we need to take it into
account in the context of other properties in the same dataset. 2) We
also wish to keep properties whose uniqueness scores are high
since their values are more likely to produce quality links; how-
ever, this score does not depend on other individuals present in the
dataset. 3) In some datasets, we may wish to keep properties whose
universality scores are low but uniqueness scores are high; this
is the case in which a property is only related to a small number
of individuals whose values are almost unique. We recommend
to combine both scores using Fβ , β > 1 to prioritize uniqueness
with respect to universality. 4) Selecting top-k positions in rankings
based on the combination of universality and uniqueness scores
may not retrieve all promising properties in certain cases. In ad-
dition to rank properties, we recommend to use plots to visualize
scores for all properties in a given dataset. 5) Datasets that contain
ambiguity can be detected by universality and uniqueness score
plots. We expect such datasets to have a variety of properties whose
universality scores are high but uniqueness scores are low. These
cases entail that multiple properties need to be aggregated in order
to produce quality links, which is responsibility of the automated
link discovery technique at hand. 6) We are generally interested
in configurations whose singularity scores are high, which entails
that mostly unique source and target individuals appear in the links
generated. However, this may not be the case in scenarios where we
expect one-to-many and/or many-to-one links involving the same
individuals several times, which we expect to be known by users
in advance. 7) Singularity can be combined with other measures to
help users select suitable configurations, such as a range of number
of links expected based on source and/or target individuals, or a
range of unique source and/or target individuals expected.
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