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Abstract

Data integration tasks such as the creation and extension of knowledge graphs involve the
fusion of heterogeneous entities from many sources. Matching and fusion of such entities
require to also match and combine their properties (attributes). However, previous schema
matching approaches mostly focus on two sources only and often rely on simple similarity
measurements. They thus face problems in challenging use cases such as the integration of
heterogeneous product entities from many sources.

We therefore present a new machine learning-based property matching approach called
LEAPME (LEArning-based Property Matching with Embeddings) that utilizes numerous
features of both property names and instance values. The approach heavily makes use of
word embeddings to better utilize the domain-specific semantics of both property names and
instance values. The use of supervised machine learning helps exploit the predictive power
of word embeddings.

Our comparative evaluation against five baselines for several multi-source datasets with
real-world data shows the high effectiveness of LEAPME. We also show that our approach
is even effective when training data from another domain (transfer learning) is used.

Keywords: data integration, machine learning, knowledge graphs

1. Introduction

Data integration tasks such as the creation and refinement of knowledge graphs have to
increasingly deal with the matching and fusion of data from many sources, e.g., different
web sites, already created knowledge bases and repositories. Such knowledge graphs (KG)
physically integrate numerous entities with their properties (attributes) and relationships
as well as associated metadata about entity types and relationship types in a graph-like
structure [1]. Many companies (including Google, Facebook, and Amazon) are increasingly
relying on the integrated and curated information in knowledge graphs and there is also an
increasing amount of research on KG creation [2, 3, 4, 5, 6, 7, 8, 9] and KG exploitation,
e.g. for question answering [10, 11].
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Integrating new data sources and their entities into a KG is challenging due to the
typically large number of different kinds of entities and relationships, the high degree of het-
erogeneity in their representations and the often low data quality with frequently incomplete,
wrong or contradicting information. Subproblems to deal with include the categorization,
matching, clustering and fusion of entities. These steps in turn also require to match the
properties of entities, e.g., to focus entity matching on comparable properties or to fuse the
values of equivalent properties.

   <page title>: "Kodak DC220 digital cam era prices...",

   aperture: "F/4.0-4.8",

   autofocus: "Contrast Detect\n/ Live View\n/ Single",

   brand: "Kodak",

   category: "Digital Cam eras",

   digital zoom : "2x",

   exposure com pensation: "-/+ 2 EV range, in 1/2 EV steps",

   flash m odes: "Auto / Fill-in / Off",

   focal length equivalent to 35m m : "29 - 58 m m ",

   im age ratio: "4:3",

   im age resolutions: "640x480",

   light sensitivity iso: "140",

   live view: "Yes",

   lowest recom m ended price: "Rs.3,894.19 - http://www...",

   m ax shutter speed: "1/362",

   m in shutter speed: "1/2",

   optical zoom : "2x",

   product nam e: "Kodak DC220",

   product rating": "0 out of 5",

   resolution: "0.9 M P",

   screen size: "2\"",

   sensor type: "CCD",

   user reviews: "W rite a review",

   viewfinder type: "Optical",

   weight: "550 g"

   <page title>: "Nikon D3300 Kit with 18-55m m  VR II Len...",

   aspect ratio: "3:2",

   battery: "EN-EL14a lithium-ion battery and charger",

   continuous shooting: "Yes (5.fps)",

   dim ensions w x h x d: "124 x 98 x 76 m m  (4.88 x 3.86 x...",

   effective pixels: "24 m egapixels",

   focal length fm m : "1.5\u00d7",

   gps: "None",

   hdm i: "Yes (m ini-HDM I)",

   im age processor: "Expeed 4",

   im age stabilisation: "No",

   iso sensitivity: "Auto, 100, 200, 400, 800, 1600, 3200,...",

   lcd type: "Fixed",

   lens m ount: "Nikon F m ount",

   m ax resolution: "6000 x 4000",

   m icrophone: "M ono",

   sensor size: "APS-C (23.5 x 15.6 m m )",

   sensor type: "CM OS",

   shutter speed: "30 sec - 1/4000 sec",

   storage type: "SD/SDHC/SDXC",

   total pixels: "25 m egapixels",

   usb: "USB 2.0",

   viewfinder: "Optical (pentamirror), 95% ",

   weight inc batteries: "430 g (0.95 lb / 15.17 oz)",

   wireless: "Optional"

Eglobalcentral.co.uk

   <page title>: "Fujifilm  Finepix Z70 Price In India...",

   aperture range: "F4.0 (W ) - F4.8 (T)",

   audio form ats: "W AV",

   auto focus: "Yes, Contrast Detect, Tracking, Single, Live...",

   cam era resolution: "12 M P",

   digital zoom : "6.3x",

   focal length: "6.4 - 32 m m  (35 m m Equivalent to 36 – 180...",

   im age form at: "JPEG ( Fine &  Norm al JPEG Quality )",

   im age stablizer: "Yes",

   iso rating: "100 - 1600",

   lens type: "Fujinon 5x optical zoom  lens",

   m anual focus: "No",

   m axim um  shutter speed: "1/2000 sec",

   m inim um  shutter speed: "4 Sec",

   optical zoom : "5x",

   other focus features: "Norm al Focus Range (80 cm )...",

   self tim er: "Yes, 2 or 10 sec, Couple, Group",

   video form at: "AVI",

   white balancing: "W hite Balance Presets (6), Custom ..."

M ypriceindia.com

   <page title>: "Pentax K-5 II + 18-55 m m  W R – Digital...",

   battery type: "D-LI90 Lithium-ion battery",

   box contents: "AV cable USB cable Li-ion battery D-LI90...",

   colour of product: "Black",

   com patible m em ory cards: "SD/SDHC/SDXC",

   dim ensions w x d x h: "131 x 72.5 x 97 m m ",

   interface: "M ini-HDM I and AV outputs com patible with...",

   iso sensitivity: "80 to 51 200",

   lcd screen size: "3.0",

   lens type: "18-55M M  W R Lens",

   m egapixel: "16",

   sensor type: "CM OS",

   type: "Single Lens Kit",

   warranty: "1 Year",

   weatherproof: "Yes",

   weight: "760 g",

   white balance: "Auto Daylight Shade Cloudy Fluorescent..."

Ilgs.net

Shopm ania.in

Figure 1: Camera properties from different sources. Two properties from different sources being annotated
with the same shape denotes a match.
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Matching properties is far from trivial, especially with many sources. As an example,
Fig. 1 shows camera entities (from a real dataset used in our evaluation) from four sources
that may be integrated into a product KG together with some property matches indicated
by symbols of the same shape. The example shows that there are numerous similar but
differently named properties with diverse instance values. Matching properties often have
completely different names, e.g., for properties “camera resolution”, “effective pixels” and
“megapixel”. A property in one source, e.g. “shutter speed”, may also have several matches
in another source, e.g., “min shutter speed” and “max shutter speed”. The instance values
also show a high degree of heterogeneity due to the use of synonyms, abbreviations, different
technical units, or numeric values, making it difficult to find matches with standard tech-
niques that rely on string similarity metrics applied to either property names or instances.
Even if more sophisticated techniques are used (e.g. word embeddings), the computation of
similarities is usually unsupervised, making it hard to set thresholds that consistently achieve
a high similarity for related properties and a low one for unrelated ones. The number of
properties per entity may also differ to a large degree between sources and even within a
source, which may affect some techniques.

To help solve the property matching problem in the case of such scenarios, we present
a new approach called LEAPME (LEArning-based Property Matching with Embeddings).
It uses supervised machine learning and makes use of the typically good availability of
instance in a KG. LEAPME applies a dense neural network and a large set of features to
classify a pair of properties from different sources as related or not. The proposed features
make heavy use of word embeddings computed from both the property names and their
instance values. Word embeddings are numeric vectors associated to single words, created
so that they preserve their semantics. The use of embeddings gives the classifier information
about the semantic proximity between two properties even when their string similarity is
low. For example, we expect different words related to camera resolution such as “MP”,
“resolution” or “megapixels” to have similar embedding vectors. The use of property values
provides additional information that is not tied to the name of a property, and makes the
proposal applicable to scenarios in which the properties do not have meaningful names, e.g.,
identifiers that are automatically generated by information extraction approaches [12]. The
use of machine learning helps use these features in a smart way, learning what features are
more important and how they must be combined, which is of great relevance when it comes
to word embeddings, since they can have a high number of components that would make
setting manual weights and similarity thresholds very difficult.

Specifically, we make the following contributions:

• We propose LEAPME, a new learning-based approach for property matching that is
applicable for data integration in scenarios with many sources that result in a high
degree of heterogeneity, e.g., as needed for KG creation and refinement. We propose
the use of numerous features derived from both the property names and property
values and the heavy use of word embeddings for high match quality. These features
are exploited by a supervised classifier to avoid setting manual weights and similarity
thresholds for such features.

• We comprehensively evaluate LEAPME on four real-world datasets with entities from
several e-commerce contexts. The multi-source setting makes it reasonable to use some
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sources as training data in order to match the rest. We also provide a comparison with
five baselines and show that LEAPME clearly outperforms previous approaches even
with little training data.

• We show that LEAPME can also achieve better results than the baselines when trained
with data obtained from entities of a different type or domain. The reduced need
for domain-specific training data increases the applicability and impact of the new
approach, which shows that the application of supervised machine learning and the
development of labelled property matching datasets including varied domains is crucial,
since they allow the creation of context-independent universal classifiers.

The next section describes related work on schema matching and the previous use of ma-
chine learning for this task. Section 3 formally describes the problem of property matching.
Section 4 describes LEAPME in detail. Section 5 contains the evaluation including the com-
parison with several baselines and the use of transfer learning. Section 6 summarizes our
contributions and discusses potential future work.

2. Related work

In the last decades, a huge amount of research has been devoted to schema and on-
tology matching to automatically determine corresponding schema attributes (properties)
and ontology concepts. As described in several survey articles and books [13, 14, 15, 16, 17],
most of the proposed approaches focus on pairwise matching between two schemas or ontolo-
gies and utilize a combination of several similarity values to determine likely matches. The
most common approach is to determine the linguistic similarity of properties either based on
string similarity metrics, synonym information from background knowledge resources such
as dictionaries (e.g., WordNet [18]), or, more recently, pre-trained word embeddings [19, 20].
Background knowledge resources can even include a corpus of formerly matched schemas
as support for a new match [21, 22]. Some approaches additionally utilize the structural
similarity of elements (e.g., based on the similarity of neighbors in an ontology) and the
similarity of associated instance data [23, 24].

Taking these considerations into account, we have used four of the existing pairwise
tools as unsupervised baselines in our comparative evaluation according to their reported
performance or similarity to our proposal. Two of them, Agreementmaker Light (AML) [25]
and FCA-Map [26] because of their good results in the OAEI (ontology alignment evaluation
initiative). The proposal by Duan et al. [24] because of its use of property instances, and
SemProp [19] because of its use of word embeddings. They do not use supervised machine
learning to learn optimized similarity thresholds but require the user to fine-tune parameters
manually or with the help of some technique [27]. In particular, AML compares property
names by doing a full-name match and computing word similarity, string similarity, and
WordNet similarity. If any of the matchers returns a similarity above a user-given threshold
(0.6 by default), the pair is considered a match. FCA-Map applies lexical matching to
properties based on exact token co-occurrence. The technique by Duan et al. uses local
sensitive hashing to estimate the similarity between two groups of instances. SemProp
uses word embeddings to identify when two concatenated property names have semantic
coherence.
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The use of supervised machine learning is being increasingly applied for a simplified
configuration of schema and ontology matching, since it can be considered a way to aggre-
gate several similarity metrics or matchers, removing the need to set manual thresholds or
use vector distance metrics such as the cosine similarity, which give the same weight to all
features [28, 29, 30, 31, 32, 33, 30, 34, 35]. The training data consists of the similarity of
matching and non-matching pairs of schema/ontology elements together with multiple sim-
ilarity values, e.g., according to different linguistic and structural similarities. Surprisingly,
instance similarities have not been utilized so far in these approaches. As a representative
baseline we consider the approach of Nezhadi et al. [29] in our evaluation. It uses 12 name
string similarity metrics as well as metrics derived from background knowledge by comput-
ing the distance of two concepts in the WordNet graph, and structural metrics based on
the propagation of name similarities. They also considered 5 classification alternatives to
determine matches and found out that an AdaBoost aggregation of Decision Tree classifiers
achieves the best results.

The main limitation of supervised machine learning techniques is the need for training
data. There are two main ways to deal with this requirement: manual provision of training
data or the use of transfer learning. Manually labelling selected pairs of properties or concepts
is of course laborious and does not scale well. This approach thus has to be limited to
relatively small amounts of training data. With transfer learning the goal is to obtain the
training from another domain or use case to avoid the provision of specific training [32]. This
is especially valuable for scenarios such as knowledge graphs, in which there are typically
already integrated entities and properties from different sources so that matching information
can likely be reused. In our evaluation, we will consider both approaches: the use of manually
defined training matches as well as transfer learning.

Most previous work focuses on pairwise schema and ontology matching for two sources [22]
while we have to deal with an arbitrary number of sources with different sets of properties
per entity type. While multi-source property matching also builds on pairwise property
matching, the degree of heterogeneity and thus the difficulty to achieve good match quality
increases with more sources. In our approach, we will determine pairwise similarities between
properties that can be maintained in a similarity graph of properties from several sources.
Such a graph can be used as input for clustering so that all matching properties are in the
same cluster that can be used as a basis to fuse these properties. Property clustering is
beyond the scope of this paper but can be done with similar algorithms to those used for
clustering entities based on a similarity graph, e.g., [36, 37]. Other similar approaches have
been proposed to refine the initial matching [38, 39].

3. Problem definition

We first provide some preliminary definitions in Section 3.1, then we describe the problem
we focus on in a formal way with well-defined input and output in Section 3.2.

3.1. Preliminaries

Source: A source S is a location from where information comes, e.g., a website, a relational
database, or a SPARQL endpoint, among other examples. It typically conforms to
some kind of ontology and may contain structured entities of several types or classes.
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The example in Figure 1 contains camera entities from four different sources, namely
e-commerce websites such as “Mypriceindia.com” and “Shopmania.in”.

Entity and class: An entity e is a representation of something that can be uniquely iden-
tified, usually corresponding to some real world object. Entities belong to a certain
source and a source-specific type or class C, and we denote the source and class of
entity e with S(e) and C(e), respectively. The rectangles in Figure 1 correspond to
different entities of type ”camera”: “Fujifilm Finepix Z20”, “Nikon D3300”, “Kodak
DC220”, and “Pentax K-5 II”. Entities consist of several properties and their values.

Property and instances: A property is an attribute to describe information about enti-
ties. The values of a property are literals known as instances. Our algorithm processes
a collection of property instances represented as tuples (p, e, v) where p is the property
name, e is the entity (identifier), and v is the property value. An example instance is
(“camera resolution”, “Fujifilm Finepix Z20”,“12 MP”). The components of a property
instance i=(p, e, v) are denoted by p(i), e(i), and v(i). Each such tuple is implicitly
tied to the originating class C(e(i)) and source S(e(i)).

Class schema: For the sake of flexibility in applications such as E-commerce, we do not
assume the existence of a predefined schema with a fixed set of properties per class.
Rather, we view the schema of class C as the collection of all differently named prop-
erties for entities of class C in the respective sources. Individual entities may use any
subset of these class properties.

Property matching: Task of determining correspondences between the properties of dif-
ferent class schemas from different sources.

3.2. Definition

We address property matching for properties of the same class (e.g., camera properties).
We consider the case of multi-source matching so that properties may relate to entities from
an arbitrary number of sources. Correspondences are not limited to equivalence relationships
but also to more complex relationships between semantically related properties. A property
in one source may thus have 0, 1 or several matching properties in another source, e.g., as
for property “shutter speed” in Figure 1.

Therefore, the problem is as follows: Given a collection or property instances I corre-
sponding to properties from m sources with m > 1, we define property matching as a binary
classification problem where every pair of properties (pi, pj) from two different sources is
classified as related or unrelated. Alternatively, every pair of properties can be assigned
a similarity score sim indicating the strength of the relatedness. To enable the applica-
tion of supervised machine learning techniques, we also assume the provision of training
data consisting of pairs of properties from different sources labelled as either matching or
non-matching.

The output can be represented as a similarity graph between properties of different
sources. Such a graph can be used for determining clusters of matching properties, e.g.,
using clustering algorithms like transitive closure or more complex approaches as in [36, 37].
A simple transitive closure would group all same-shaped properties in Figure 1 within a
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cluster. This would be sub-optimal if we want to ensure that only equivalent properties
are grouped together, e.g., as useful for a fusion of property values within a KG. In such
a case the properties “min shutter speed” and “max shutter speed” should be in separate
clusters. This can be achieved with clustering techniques like in [37] that do not permit more
than one cluster member from the same source. An alternative approach is to post-process
the match correspondences, adopting a similar approach as in [40] that can determine the
semantic type of correspondences (such as equality and part-of) and only continue with
equality correspondences. The analysis of such post-processing options is beyond the scope
of this paper and left for future work.

4. Our approach

Having defined the problem of property matching, we give an overview of our proposal
LEAPME (Section 4.1), and describe in detail how features are computed (Section 4.2). We
discuss the use of embeddings in Section 4.3. Finally, we describe aspects related to the
implementation of LEAPME in Section 4.4.

4.1. Overview

LEAPME is a supervised ML-based property matching approach that focuses on the
use of novel features. It computes features from property instances, property names, and
property pairs to obtain large feature vectors that can be properly handled by a classifier.
For example, from the instance value “12 MP” we can compute features such as the number
of digits (2), the number of white spaces (1), or the fraction of letters (0.4). LEAPME thus
uses such characteristics about instance values (and property names) in addition to their
actual values.

Algorithm 1 describes the main steps of LEAPME; the workflow is also illustrated in
Figure 2.

1. First, there is the initialization of the instance feature vector IF , the property feature
vector PF , the property pair feature vector PPF , and the output similarity graph
(collection of matches) Sim (line 1 of Algorithm 1).

2. Next, the instance features are determined by every instance with the help of function
iFeatures, and added to the respective property in the instance feature vector IF (lines
2-3 of Algorithm 1, step 1 in Fig. 2). The features we determine will be described below
- they include meta-features about the instance values as well as an embedding vector
for the specific property value.

3. In lines 4-6 of Algorithm 1 we compute property features with the help of function
pFeatures (steps 2 and 3 in Fig. 2). They can be derived for the property name or
based on the aggregation of instance features, e.g., average values of numeric instance
features.

4. For each property pair, we compute the property pairs features using function ppFeatures
(lines 7-9 of Algorithm 1, step 4 in Fig. 2), which may be partially based on the ag-
gregation of property features.
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Resolution: “10 M p”

M ax-iso: “5000”

Brand: “Canon”

Res (m p): “7”

ISO: “200-4000”

S-speed: “1/4000”

weight: “760 g”

Iso sens: “50 to 20000”

lcd screen size: “3.0”

usb: “USB 2.0”

HDM I: “Yes”

m egapixel: “16”

PP1 PP2 PP3 … PPO

Resolution HDM I 1 1.5 1 … 0.5

Resolution Res (mp) 2 0.5 1 … 1

HDM I Res (mp) 3 1 0 … 1

… … … … … … …

Properties pair features

Result

Resolution HDM I 0.21

Resolution Res (mp) 0.93

HDM I Res (mp) 0.15

… … …

M atched properties

I1 I2 I3 … IM

Resolution: "10 M p" 2.0 2.0 1.0 … 0.0

Resolution: "5 M p" 2.0 1.0 1.0 … 0.0

HDM I: "Yes" 3.0 0.0 0.0 … 0.0

HDM I: "Yes" 3.0 0.0 0.0 … 0.0

Res (mp): "7" 0.0 1.0 0.0 … 0.0

… … … … … …

Instance features

P1 P2 P3 … PN

Resolution 2.0 1.5 1.0 … 1.3

HDM I 3.0 0.0 0.0 … 0.2

Res (mp) 0.0 1.0 0.0 … 1.0

… … … … … …

Property features

Classifier

W ord

embeddings

2

1

3

5

100

10101

10011

4

INPUT

O UTPUT

Resolution M ax-iso

RES (mp)
USB

m egapixel ISO

Refined matching

6

Figure 2: Workflow of LEAPME.
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5. We use the input training data with their labeled property pairs and associated fea-
ture vectors to train a classification model using function trainClassifier in line 10
(labeled(PPF ) denotes the already labeled property pairs). Then, we apply the trained
classifier to the unlabeled property pairs to obtain a match decision and similarity score
for each pair (lines 11-12 of Algorithm 1, step 5 in Fig. 2).

As shown in the last step of Fig. 2, the output represents a similarity graph that can be
post-processed as discussed above.

Algorithm 1: LEAPME

Input:
- I: set of property instances from m sources
- labeled property pairs (training)
Output:
- Sim: set of property pairs with similarities (similarity graph)
Variables:
- IF : Map<Property, FeaturesV ectorSet> with instance features vectors, grouped
by property
- PF : Map<Property, FeaturesV ector> with property features vectors.
- PPF : Map<PropertyPair, FeaturesV ector> with property pair features vectors.
- m: classification model

1 initialize(IF, PF, PPF, Sim)
// Steps 1-4: compute features

2 for i in I do
3 IF [p(i)]← IF [p(i)] ∪ iFeatures(i))

4 for (p, V ) in IF do
5 PF [p]← pFeatures(p)

6 for p1 in keyset of PF do
7 for p2 from different source in keyset of PF do
8 PPF [(p1, p2)]← ppFeatures(p1, p2)

// Step 5: training and classification

9 m← trainClassifier(labeled(PPF ))
10 for (p1, p2) : v in unlabeled(PPF ) do
11 Sim.add((p1, p2,m.classify(v)))

4.2. Features

Since we classify pairs of properties, the features that are ultimately fed to the classifier
must be associated to a pair of properties. However, as we have mentioned, LEAPME
considers features at several levels that can be later transformed into property pairs features.
Next, we describe in detail each of these levels:

Instance features: These features are computed from each individual instance of a prop-
erty (that is, a features vector is obtained for each property value) independently of
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the property names. They provide information about the format of property values
and can thus be considered as meta-features. We expect matching properties to fol-
low similar formats, which should be reflected in these features. For example, while
in Figure 2 properties “Res(mp)” and ”megapixel” have a different name, both have
short values with numeric characters, which could be reflected in features that measure
the number of such characters or token types. While on their own these features may
not be enough to properly match features (since, for example, many properties follow
similar numeric formats), they could help disambiguate problematic cases. Further-
more, in some contexts the name of the properties may be unknown or only a generic
identifier. For example, information extraction techniques may identify a piece of text
as an instance, but not be able to infer a label with its property name [12]. In these
cases, no features can be computed from the property names, and only these instance
features enable matching. In addition to format-oriented meta-features we also con-
sider the actual property values in the form of word embeddings or the numeric value
(see below).

Property features: These features are computed for each individual property. They in-
clude all features computed from the property name, such as the average embeddings
vector of its words. Furthermore, by grouping the instance features on a per-property
basis, we can aggregate them and turn them into property features. For example, we
could compute the average of each instance feature for a given property to represent
the overall format followed by its instances.

Property pair features: These features are computed for each pair of properties to be
classified. These are the final features actually fed to the classifier. Traditional string
similarity metrics such as the Levenshtein or Jaro-Winkler distance would be part of
these features, since they are computed from a pair or property names. Aggregated
property features can also be used to determine property pair features. In this case,
only two vectors are aggregated, e.g. by computing the numeric difference or average
between the vectors, or by determining their concatenation.

Note that while only property pair features are relevant to the classification of property
pairs, the other features are also used but are necessarily transformed into property pair
features. For example, since a property can have hundreds of instances, there is a need to
aggregate the hundreds of sets of instance features.

4.3. Embeddings and classification

When matching properties, a high value of the string similarity of the property names is
usually a clear indicator of a match. Low similarity, however, can be caused by the issues we
mentioned in Section 1. As discussed in Section 2, the usual way to mitigate this problem is
to use external knowledge bases like WordNet to determine synonyms or name-independent
similarities. These resources, however, are language-dependant and often of limited coverage.
Furthermore, their use is relatively complex, and may require the use of APIs to handle the
data.

As a more promising and versatile approach to overcome these limitations, we propose
the use of word embeddings for both property names and property values. They can provide
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rich information about the semantics of a property that can help solve some issues such
as the potentially low string similarity between synonymous properties. While embeddings
are language-dependant, versions for different languages can easily be trained from any large
text corpus, unlike knowledge bases such as WordNet, whose creation requires a large manual
effort. Furthermore, embeddings can be trained with a context-specific corpus, and are more
likely to contain certain concepts. For example, the GloVe embeddings we use contains an
entry for the word “28mm”, which is a typical aperture value for cameras.

Embeddings vectors usually have hundreds of components with unknown meanings that
may require nonlinear combinations to properly exploit their predictive power. For that
reason, LEAPME uses a neural network for classification, which is also a popular choice in
the related work and is able to properly weight features even when there is a large amount
of them. While word embeddings have already been used in the past as discussed in Sec-
tion 2, they have been exploited in an unsupervised way. Unsupervised techniques that
use embeddings are forced to compute the distance (usually the cosine distance) between
several embedding vectors, giving the same importance to all components, which may be
detrimental when the number of components is high.

4.4. Implementation

Table 1 provides an overview about the features we have implemented. Instance features
are computed with TAPON [41, 42], which includes several format-related features to which
we added the embedding ones.

The rationale behind these features is the following: Features 1 and 2 contain informa-
tion about the textual format of the instances, including absolute and relative frequencies of
both character and token types. We expect similar properties to follow similar formats (for
example, properties related to the ISO sensibility of a camera will usually contain at least 3
numeric characters). Feature 3 provides information about the specific value of purely nu-
meric properties in order to disambiguate them according to the distribution of their values.
Feature 4 provides information about the semantics of every instance. Feature 5 aggregates
the instance features in order to transform them into property features by computing their
average, which gives an overall idea of the format and the instance semantics of a property.
Feature 6 provides information about the semantics of a property from its name. Feature 7
aggregates the property features of two properties by computing the difference of each feature
in order to obtain information about the distance with regards to every feature. Features
8 to 15 use traditional string distance metrics applied to the names of the properties, since
properties with similar names are usually related.

To compute embeddings, we use the pre-trained GloVe approach [43]1, specifically for the
uncased Common Crawl corpus that includes 300-dimensional vectors for 1.9 million words,
promising a good coverage for different domains, since the corpus should contain a great
variety of tokens. Unknown words are mapped to a vector filled with zeroes. Each word in
a property value or property name can thus be mapped to a point in the 300-dimensional
data space so that similar words will have a small distance in it. For each property value
and name we determine the average embeddings of the individual words represented by 300

1https://nlp.stanford.edu/projects/glove/
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Type Id Description

# of 

features

1

The fraction and number of occurrences of several 

character types (letters (uppercase, lowercase, and both), 

mark characters, numbers, punctuation, symbols, 

separators, other)

18

2

The fraction and number of occurrences of several token 

types (words, words starting with a lowercase letter, 

words starting with an uppercase letter followed by a non-

separator character, uppercase words, numeric strings)

10

3 The numeric value of the instance (-1 if it is not a number) 1

4
The average embeddings vector of the words in the 

instance
300

5 The average of every instance feature 329

6
The average embeddings vector of the words in the 

property name
300

7
The difference between the features vectors of the two 

properties
629

8
The optimal string alignment distance between the 

property names
1

9 The Levenshtein distance between the property names 1

10
The Full Damerau-Levenshtein distance between the 

property names
1

11
The longest common substring distance between the 

property names
1

12 The 3-gram distance between the property names 1

13
The cosine distance between the 3-gram profiles of the 

property names
1

14
The Jaccard distance between the 3-gram profiles of the 

property names
1

15 The Jaro-W inker distance between the property names 1

Instance

Property

Properties 

pair

Table 1: Features used in our implementation.

Prop. 1 Prop. 2 LabelLevenshtein
Fraction of 

letters

Fraction of 

num bers

Inst. em b.

3/300

Inst. em b. 

4/300

Nam e em b. 

65/300

Nam e em b. 

66/300
�

camera resolution megapixel POS 13.00 0.00 0.10 0.13 0.07 0.70 0.04 �

camera resolution effective pixels POS 15.00 0.66 0.26 0.06 0.10 0.46 0.00 �

camera resolution dynamic af mode NEG 16.00 0.54 0.31 0.18 0.33 0.31 0.59 �

camera resolution alarm trigger NEG 14.00 0.81 0.42 0.23 0.41 0.38 0.69 �

Table 2: Sample feature values for matching and non-matching property pairs.

values that serve as features for our classification approach. We can deal with such relatively
large feature vectors since the use of supervised machine learning with a neural network
should be able to identify the most important ones features and give them an appropriate
weight.

As indicated in Table 1, we currently use 28 meta-features for instance values. The
actual instance values are reflected in one feature for numeric values and 300 features of the
embeddings vector. The averages for these 329 features over all instance values of a property
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serve as property features. They are complemented with 300 features of the embeddings
vector for the property name. The final feature vectors for property pairs thus include 629
features regarding the difference between the property features. Together with 8 features
about the string similarity of property names there are 637 features for property pairs in
total.

Table 2 shows an example for a small subset of our features computed for four labeled
property pairs (two matching and two non-matching). Note that the Levenshtein distances
are similarly high in both positive and negative match cases while other features can better
discriminate between them. For example, for feature ”fraction of letters” the difference is
0 between properties “camera resolution” and “megapixel” and can thus help to determine
such a match. Some of the embedding features (corresponding to individual components of
the embeddings vectors) have good discriminating potential, with a low difference in positive
and high difference in negative match cases (e.g., instance embedding 4 and name embedding
66).

Finally, regarding the architecture of the neural network behind LEAPME, it consists of
two fully connected hidden layers of sizes 128 and 64. We use a batch size of 32 and perform
10 epochs with learning rate 10−3, 5 with 10−4, and 5 with 10−5. We fine-tuned these hyper-
parameters manually in preliminary tests, though most alterations (such as changing the
size of the layers) do not significantly impact on the results. The final layer has two neurons
from which the final score is obtained for the two possible outcomes (positive/negative). This
allows the use of the positive output as a similarity score, which is useful for post-processing
steps such as property clustering.

5. evaluation

We experimentally evaluate our property matching approach LEAPME on four real-word
datasets with up to 24 sources. We analyze the impact of different amounts of training data
and the effectiveness of the different kinds of features; in particular, the use of embeddings for
both property values and property names. We further compare LEAPME with five baselines
and study the use of transfer learning. The focus is on match quality with the standard
metrics precision, recall and F-measure (F1 score).

We first give some details about the studied feature configurations for LEAPME and
the baseline approaches. Next, we describe the four datasets and the two use cases with
training data from either the same or a different domain. The results for the two use cases
are discussed in subsections 5.4 and 5.5, respectively. The evaluated implementations along
with the detailed results and additional material are available online2.

5.1. Feature configurations and baselines

The rich set of features exploited by supervised learning is a main advantage of LEAPME
and we therefore analyze the effectiveness of the different kinds of features in detail. Along
one dimension, we compare the use of instance-related features only, name-related features
only and the combined use of both kinds of features. Another dimension is the consideration

2https://github.eii.us.es/dayala1/LEAPME
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of embedding-based features only, non-embedding features only or the combined use of both
kinds of features. In total, this sums up to 9 possible feature configurations to analyze.

The LEAPME results are compared to the results obtained by the following baselines:

• The latest Github implementation of Agreement Maker Light [25] (AML), the highest-
ranked technique in the M2 variants of the “Conferences” track of OAEI 2019, which
involve the matching of only properties 3.

• The latest Github implementation of FCA-Map [26], the best-performing property
matching technique in the “Knowledge Graph” track of OAEI 2019 4.

• An implementation of the machine learning proposal by Nezhadi et al. [29]. It was
selected among machine learning proposals for having the largest features catalogue,
from which we removed the structural features since they were not applicable to our
evaluation datasets. We use AdaBoost with decision trees as classifier, which achieved
the best results in [29].

• An implementation of SemProp [19], selected as a representative of existing proposals
that use word embeddings. We used the proposed matchers graph by removing the
use StructS, which is not applicable since we only match properties, where there are
no class hierarchies involved. We tested all combinations of values 0.2, 0.4, 0.6, 0.8 for
the thresholds used by the SynM, SeMa(-), and SeMa(+) matchers. For our final
experiments we used the combination that yielded the highest average F1 score across
our datasets: 0.2 for SynM, 0.2 for SeMa(-), and 0.4 for SeMa(+).

• An implementation of the proposal by Duan et al. [24] based on local-sensitive hashing
(LSH), selected as a representative of existing proposals that use property instances
for matching. We tested both variants (random projections and minhash) with the
proposed number of hash functions (1000 and 500 respectively) and the following band
sizes: all integers from 1 to 10, and integers from 10 to 50 in steps of 5. For our final
experiments, we used the combination that yielded the highest average F1 score across
our datasets: minhash with a band size of 1.

5.2. Datasets

For our evaluation, we use four real-word datasets with different kinds of e-commerce
products (cameras, headphones, phones, and TV sets) from multiple sources.

All datasets align the properties in each source to a reference ontology. We consider
that two properties are related (matching) when they are both aligned to the same reference
property. All four datasets have been extracted from the Web using information extraction
techniques, and contain noise that is typical of real world scenarios, making matching more
challenging.

Table 3 provides main statistics for the four datasets. The camera dataset comes from the
DI2KG19 challenge [44]. It is the largest dataset with 24 sources, more than 3200 properties

3http://oaei.ontologymatching.org/2019/results/conference/index.html
4http://oaei.ontologymatching.org/2019/results/knowledgegraph/index.html
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Cam eras Headphones Phones TVs

# of Sources 24 6 12 8

Entities 2400 128 208 124

Properties 3245 172 554 415

Instances 65615 1129 5195 2069

Positives 9199 412 2677 1062

Entities 

per source

Instances 

per source

Properties 

per source

0

100

0

25

50

0

75

150

0

50

100

0

3350

6700

0

500

1000

0

1850

3700

0

350

700

0

350

700

0

50

100

0

75

150

0

75

150

Table 3: Datasets metadata. Each vertical bar in a plot represents a source within a dataset.

and about 9200 matching property pairs. We limited the number of entities to 100 per
source in order to balance their size and impact. But, as shown in the lower part of Table 3,
the number of different properties and the number of property entities differs substantially
between different sources, with almost 700 properties for one of the sources (EBay.com). The
other datasets contain headphones, phones and TV product entities and correspond to the
WDC Gold Standard for Product Matching and Product Feature Extraction [45]. These are
much smaller than the camera dataset and there are different numbers of entities per source
leading to a less balanced setting than that of the camera dataset. In our analysis of the
results, we will refer to the three smaller and imbalanced datasets as low-quality datasets as
opposed to the high-quality camera dataset.

5.3. Use cases and training data

For training, we differentiate two use cases in which the training data either refers to
properties from the same domain (entity type) or to properties from a different domain. For
the first use case, which we call Single Domain (SD), we take a fraction of the sources of a
dataset (at random) for training. We use the examples that involve two sources of data in
the training set to train the classifier, and test it with the rest. We performed experiments
using different training fractions: 0.2, 0.4, 0.6, and 0.8. For each of these fractions and for
each dataset, we ran LEAPME 25 times, using different random combinations of training
sources.

For the second use case, called Transfer Learning (TL), we train the classifier for one
dataset (entity type) with training data from the other datasets.

For this purpose, we tested all possible combinations of using 1, 2, or 3 datasets for
training.

Figure 3 shows an example of how data is divided into training and testing for both
use cases. The example illustrates SD training for the camera dataset where each labeled
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property pair uses properties from two of the 24 sources. For the TL use case, there are
many possible configurations. The shown example refers to training pairs from two datasets
to be used for evaluating property matching for the rest.

For all datasets and use cases, the training data consists of two negative (non-matching)
pairs of properties for every positive (matching) pair, and the negative pairs are randomly
selected.

Datasets

Headphones

Phones

TVs

Cam eras

M ypriceindia.com

Eglobalcentral.co.uk

Shopm ania.in

Ilgs.net

Training 

(TL)

Testing 

(TL)

Training 

(SD)

Testing 

(SD)

Figure 3: Use cases testing example.

5.4. Single-domain results

Next, we compare the results obtained by different configurations of LEAPME, as well
as those obtained by the five baselines.

We first evaluate the results in the single-domain case and compare LEAPME with the
five baselines. Figure 4 shows the precision (in blue) and recall (in red) results for the four
datasets for different amounts of training data (0.2 to 0.8) for the supervised approaches
LEAPME and Nezhadi. The results for the unsupervised approaches are shown as horizontal
lines since they do not depend on training data. The results for LEAPME are obtained by
using both features for property names and instances but we differentiate the three cases
of the use of embedding features only, the use of non-embedding features only and the use
of all features. The value ranges for the supervised approaches reflect the different training
configurations involving a random selection of the sources in a dataset. The variations are
generally higher for the smaller and unbalanced datasets like headphones that provide fewer
training data. We make the following observations:

• Unsupervised techniques can achieve a high precision but struggle to reach a similar
recall.

• LEAPME achieves better overall results than all the baselines, with a dramatic in-
crease of recall when compared to AML and FCA-Map and both recall and precision
improvements when compared to the rest.
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Figure 4: SD use case results. Matching with both property names and values. LEAPME(emb) = LEAPME
with embedding features only. LEAPME(-emb) = LEAPME without embedding features. Dashed line =
AML. Solid line = FCA-Map. Dotted line = SemProp. DotDash line = LSH.
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P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

20% 0.66 0.55 0.59 0.72 0.52 0.58 0.55 0.43 0.44 - - - - - - - - - - - -

80% 0.93 0.75 0.83 0.91 0.77 0.83 0.64 0.59 0.61 - - - - - - - - - - - -

20% 0.54 0.61 0.56 0.61 0.64 0.60 0.54 0.57 0.54 - - - - - - - - - - - -

80% 0.76 0.70 0.69 0.64 0.70 0.64 0.60 0.51 0.53 - - - - - - - - - - - -

20% 0.60 0.59 0.58 0.58 0.63 0.59 0.47 0.41 0.42 - - - - - - - - - - - -

80% 0.84 0.75 0.79 0.85 0.74 0.79 0.59 0.44 0.50 - - - - - - - - - - - -

20% 0.61 0.62 0.60 0.61 0.62 0.60 0.49 0.57 0.52 - - - - - - - - - - - -

80% 0.83 0.74 0.78 0.84 0.73 0.78 0.65 0.60 0.61 - - - - - - - - - - - -

20% 0.89 0.88 0.88 0.87 0.86 0.86 0.91 0.75 0.82 0.86 0.82 0.83 - - -

80% 0.99 0.98 0.98 0.98 0.98 0.98 0.95 0.76 0.84 0.96 0.93 0.94 - - -

20% 0.68 0.79 0.73 0.67 0.81 0.72 0.82 0.62 0.70 0.73 0.69 0.70 - - -

80% 0.84 0.82 0.82 0.83 0.81 0.81 0.91 0.58 0.70 0.80 0.72 0.75 - - -

20% 0.70 0.71 0.70 0.65 0.74 0.67 0.80 0.51 0.61 0.64 0.56 0.59 - - -

80% 0.93 0.84 0.88 0.91 0.85 0.88 0.92 0.51 0.66 0.74 0.68 0.71 - - -

20% 0.62 0.77 0.67 0.70 0.78 0.72 0.85 0.68 0.75 0.67 0.70 0.68 - - -

80% 0.95 0.86 0.90 0.93 0.84 0.88 0.93 0.70 0.80 0.83 0.79 0.81 - - -

20% 0.91 0.83 0.87 0.83 0.77 0.79 0.88 0.74 0.80 0.86 0.82 0.83

80% 0.99 0.97 0.98 0.98 0.97 0.98 0.93 0.82 0.87 0.96 0.93 0.94

20% 0.74 0.81 0.76 0.65 0.80 0.70 0.79 0.68 0.73 0.73 0.69 0.70

80% 0.89 0.87 0.88 0.88 0.90 0.89 0.80 0.68 0.72 0.80 0.72 0.75

20% 0.71 0.72 0.70 0.59 0.70 0.63 0.66 0.52 0.56 0.64 0.56 0.59

80% 0.93 0.85 0.89 0.92 0.86 0.89 0.83 0.57 0.68 0.74 0.68 0.71

20% 0.64 0.80 0.70 0.60 0.81 0.67 0.71 0.67 0.67 0.67 0.70 0.68

80% 0.95 0.89 0.92 0.94 0.86 0.90 0.88 0.77 0.82 0.83 0.79 0.81

0.99 0.34 0.50

tvs 0.97 0.40 0.57 0.99 0.34 0.50

0.99 0.38 0.55

headphones 0.95 0.36 0.52 0.99 0.37 0.54

B
o
th

cameras 0.99 0.61 0.75

phones 0.98 0.34 0.50

0.50

tvs 0.97 0.40 0.57 0.99 0.34 0.50

0.98 0.34 0.50 0.99 0.34

headphones

phones

tvs

N
a
m
e
s

cameras

headphones

phones

In
st
a
n
c
e
s

cameras

Nezhadi AM L FCA-M ap
Info Dataset

Train. 

%

LEAPM E LEAPM E(emb)LEAPM E(-emb)

0.99 0.38 0.55

0.99 0.37 0.54

0.99 0.61 0.75

0.95 0.36 0.52

0.62 0.68 0.65

0.66 0.65 0.66

SemProp

0.82 0.75 0.78

0.67 0.48 0.56

0.62 0.68 0.65

0.66 0.65 0.66

0.82 0.75 0.78

0.67 0.48 0.56

LSH

0.54 0.73 0.62

0.75 0.43 0.55

0.74 0.21 0.33

0.78 0.28 0.41

0.74 0.21 0.33

0.78 0.28 0.41

0.54 0.73 0.62

0.75 0.43 0.55

Table 4: SD use case summary with F1 scores. LEAPME(emb) = LEAPME with embedding features only.
LEAPME(-emb) = LEAPME without embedding features.

• The use of embedding features always improves recall compared to the sole use of
non-embedding features, but they need enough training data to reach or surpass their
precision. As expected, using all features achieves the best results for LEAPME.

• When only using embeddings, LEAPME achieves, with 20% of training data, sig-
nificantly better results than SemProp, except in the cameras dataset, where results
are similar. When using more training data, LEAPME achieves much better results,
showing that the use of embeddings greatly benefits from supervised learning.

For a more detailed analysis, we summarize the average results, including F1 scores, in
Table 4 for both 20% and 80% training data. The table also provides results for the sole
use of instance features and the sole use of name features, again differentiated by the use of
embedding features only, non-embedding features only or both. The best F1 results of each
row have been marked in bold. We make the following additional observations.

• For all datasets, LEAPME achieves a better F1 score than all baseline approaches even
when using only 20% training data. For 80% training data, it achieves excellent F1
scores from 88% (for headphones) to 98% (for cameras). In this case, the baselines
are outperformed especially for the low-quality and more challenging datasets (head-
phones, phones, and TVs). The unsupervised baselines were outperformed by up to
42 F1 percentage points (50 vs 92% for the TV dataset) and the supervised baseline
of Nezhadi by up to 18 percentage points (71 vs 89% for the phones dataset).

• When only using property names LEAPME without embedding features already out-
performs the baselines. The embedding features for property names are the most
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effective features in LEAPME. Their use alone is more more effective than the use of
non-embedding features relying on string similarities.

• Only using instance features achieves weaker results for LEAPME than using name
features especially with little training. Again, using embedding features is more effec-
tive than using the non-embedding ones that focus on format-oriented meta-features.
Still, the combination of both instance and name features helps to achieve a slight
improvement over the sole use of name features in most cases.

Table 4 includes a number of further interesting results such as that SemProp outper-
forms the other unsupervised baseline approaches due to its use of embeddings. For the TV
dataset, the use of non-embedding features proved to be slightly more effective than the use
of embeddings for 20% of data for training showing that the effectiveness of embeddings can
depend on the availability of a sufficient amount of training.

5.5. Results for transfer learning

Figure 5 shows the precision and recall results of our experiments in the TL use case.
Each point corresponds to a different combination of three or less datasets used for training,
the rest being used for validation. Note that baseline results are the same when using both
name and instances or only of them, since even when both are available, they only use one.
The figure also distinguishes between the use of high-quality and low-quality datasets for
training.

We observe that, similarly as in the SD use case, the unsupervised baselines can achieve
high precision but suffer from a lower recall. LEAPME again achieves the best results for
embedding features especially for names or both names and instances. The best results
are generally achieved when the training includes data from the high quality dataset (cam-
era dataset) that can also provide more training samples than the low-quality datasets.
LEAPME achieves near-perfect precision and recall when using it for training, demonstrat-
ing that it can make excellent use of transfer learning for good training data from a different
domain. By contrast, the supervised technique by Nezhadi et al. only achieves better pre-
cision for training from a high-quality dataset but worse recall making it less suitable for
transfer learning. SemProp can achieve results similar to LEAPME, but only when low
quality training data is used. This indicates that the use of embeddings in LEAPME in a
supervised way is a key reason for its highly effective use of transfer learning.

6. Conclusions

We have presented LEAPME, a new powerful approach for matching properties from
many sources. It is a machine learning approach that utilizes a large spectrum of features, in
particular embedding features, on both property names and instance values. Our evaluation
with four real-world multi-source datasets shows that LEAPME clearly outperforms several
baseline approaches representing the current state-of-the art. The improvements are even
achieved for relatively little training data. Moreover, we showed that the use of embeddings
in LEAPME in a supervised way enables an effective use of transfer learning so that existing
high-quality training data from different domains can be utilized to reduce the effort for
providing labeled training data.
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Figure 5: TL use case results. Rhombuses = high quality datasets in training split. Circles = high quality
datasets in testing split.

In future work, we will investigate the use of LEAPME within a more comprehensive data
integration approach for knowledge graphs that also includes entity matching and clustering
as well as data fusion. In particular, we plan to evaluate different methods for deriving
clusters of equivalent properties from the match results determined with LEAPME.
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