
A Tool for Web Links Prototyping
Inma Hernández, Hassan A. Sleiman, David Ruiz, Rafael Corchuelo

University of Seville
Seville, Spain

Email: {inmahernandez, hassansleiman, druiz, corchu}@us.es

Abstract—Crawlers for Virtual Integration processes must be
efficient, given that VI process i s online, which means that while
the system is looking for the required information, the user
is waiting for a response. Therefore, downloading a minimum
number of irrelevant pages is mandatory in order to improve
the crawler efficiency. M ost c rawlers n eed t o d ownload a page
in order the determine its relevance, which results in a high
number of irrelevant pages downloaded. We propose a tool
that builds a set of prototype links for a given site, where
each prototype represents links leading to pages containing a
certain concept. These prototypes can then be used to classify
pages before downloading them, just by analysing their URL.
Therefore, they are the support for crawlers to navigate through
sites downloading a minimum number of irrelevant pages while
reducing bandwidth, making them suitable for VI systems.

Index Terms—Web Crawling, Web Page Classification, Virtual
Integration,

I. INTRODUCTION

Virtual Integration aims at accessing web information in
an automated manner, starting with a query, in which users
express their interests, and obtaining information relevant to
that query from the web. Automated access to the web requires
a crawler, which is a tool able to navigate through web sites
automatically, looking for relevant information. Traditional
crawlers visit every link on every page, download their target,
and check whether the page contains relevant information.
This means that, even when a page is irrelevant, the crawler
has to download it to realise it, which results in a large number
of irrelevant pages downloaded.

Note that the VI process is online, which means that
while the system is looking for the required information,
the user is waiting for a response. Therefore, downloading a
minimum number of irrelevant pages is mandatory in order to
improve the crawler efficiency, which is a concern for several
researchers [14].

We propose a classifier t hat h elp c rawlers t o efficiently
navigate through web sites. This classifier is able to determine
if a web page is relevant or not by analysing exclusively its
URL.

There are some crawling techniques that improve traditional
crawlers efficiency by endowing the crawler with classification
skills. For example, focused crawlers [1], [10], [13], [22],
[24], [25] aim at finding p ages b elonging t o o ne o r more
topics exclusively, so they are supported by a content based
classifier t hat d etermines w hether e ach p age b elongs t o the
topics, discarding the rest. Other crawlers include classifiers
based on other features, like page structure [19], [20], [27].

Our classification proposal is different, since it is based on
features that are not in the page to be classified, but in pages
that link to it. Therefore, it is not necessary to download a page
in order to classify it, which avoids downloading irrelevant
pages, reducing the bandwidth and making it efficient and
suitable for VI systems.

Other crawling techniques rely completely on the user to
define the navigation patterns [2], [5], [8], [23], [29]. Instead,
our proposal is automated and requires a minimum interven-
tion from the user. Furthermore, our classifier is trained using
an unlabelled training set of URLs, thus relieving the user
from the tedious task of assigning a label to each page in the
training set.

Our experience focuses on web sites that follow a certain
navigational pattern, which is the most common pattern in the
Web [19]. This pattern starts with a form page that allows
issuing queries; then, after users submit a query, the system
returns a hub, that is, a page containing an indexed list of
answers to it, each of them containing just a brief description
and a link to a page with more details. Note that the term
“hub” is based on the hub and authority concepts introduced
by Kleinberg [18].

Hubs in this kind of web sites are often defined by populat-
ing some patterns or scripts with data stored in a database [7].
This has two main implications: first, all hubs from the same
web site usually share a common template with some fixed
parts. Usually, this common parts are structured in the form
of headers, footers and side bars containing navigational aids,
copyright information and advertising [30], which frame the
page areas that contain the information that varies from hub
to hub. The second implication is that hubs and detail pages
are generated on demand to respond to a user query. Similarly,
URLs that point to each hub and detail page in the site are
generated on demand as well by the same proceeding of filling
a URL pattern with keywords or numbers that identify the
generated page. Therefore, all URLs from a certain site can
be expressed by a collection of URL patterns.

Furthermore, our hypothesis is that there is usually a corre-
spondence between URL patterns and the concept contained
in the pages with URLs following that pattern, so that we can
classify web pages containing different concepts by means of
the pattern matching their URL. Therefore, our classification
technique consists on finding the different URL patterns that
compose links in a given web site, that is, to build a set
of prototypes for all URLs in the site. Then, we use these
prototypes to classify links by template matching, that is, by

assigning each link to the class associated to its matching
prototype. Furthermore, our technique is able as well to detect
links belonging to the web site template, so that the crawler
can process them adequately.

As a motivating example, in Figure 1 we show a hub page
obtained after issuing a query on Amazon.com. If the user is
interested in obtaining detailed information about products, for
example, following only links marked in red means avoiding
to download more than 50% of the hub linked pages, with
the proportional reduction of used bandwidth. We notice that
all links leading to pages containing information about the
concept ’Product’ have a similar pattern, which is shown in
the Figure as well.

The rest of the article is structured as follows. Section II
introduces the core definitions that will be used throughout
the paper; Section III introduces the features that support
our proposed classification tool; Section IV describes the
tool design; Section V presents the related work in the web
page classification area; finally, Section VI lists some of the
conclusions drawn from the research and concludes the article.

II. CORE DEFINITIONS

Next, we introduce some necessary concepts that will be
used throughout the rest of the paper.

Hubset We define a hubset H as a set of hubs obtained from
a particular site.

H = {H1,H2,H3, ..., Hn}, n ≥ 1 (1)

We define a hub Hi as the set of links lj it contains.

Hi = {l1, l2, l3, ..., lm}, m ≥ 1 (2)

Linkset For each hubset H , we define its linkset L as the set
of links contained in H , that is, the set of links from every
Hi in H .

L =
n⋃

i=1

Hi ∈ H,n ≥ 1 (3)

Link We define a link l as a tuple that represents a URL, and
is composed of

l = (S, A, P, N, V) (4)

Where S is the schema of the URL, A is its authority or
domain name, P is a sequence of path segments, N is a
sequence of names of the parameters in the URL query string
and V is the sequence of the former parameters values.

Links are obtained from URLs by means of a tokeniser,
according to RFC 3986. Figure 2 show an schema of link
tokenisation, using URL http://scholar.google.com/scholar?q=
Web+crawling as an example. Note that RFC 3986 states that
links also include an optional fragment preceded by a ’#’
symbol, which points to a specifical section inside a page.
However, our goal is to build URL prototypes of URL that
link to pages about a particular concept, and not specifical
sections inside pages, therefore the fragment part of an URL
is not useful for our purposes. Throughout this paper we will

URL

schema :// hier-part ? query string

auth / path* / parameter* &

name = value

http scholar.google.com scholar q Web+crawling

Fig. 2: RFC 3986 simplified URL schema with as an example
of tokenisation

omit the fragment, although including it in the process will
not affect the results.

Prototype We define a prototype p as a link

p = (S,A, P,N, V) (5)

where each element in P , N and V is either a literal or a
wildcard, ?. In this case, a wildcard represents any sequence
of characters (excluding separators ’?’, ’/’, ’#’, ’=’ and ’&’).

Common Path Links Let L be a linkset from a given site,
l = (S, A, P,N, V) be a link in L and P (i) be the i-th path
element of l, P (i) ∈ P . We define the set CPL as the set
of all links l’ in L having the same prefix as l up to (and
excluding) P (i), being l′ = {S′, A′, P ′, N ′, V ′}.

CPLP (l, i) = {l′ ∈ L·
(S,A) = (S′, A′) ∧ P (j) = P ′(j), j ∈ [1, i)} (6)

Similarly, we define CPL for the parameter names and
values in l as the set of links l’ in L having the same prefix
as l ip to (and excluding) N(i) or V (i).

CPLN (l, i) =
{l′ ∈ L · (S, A, P) = (S′, A′, P ′) ∧N(j) = N ′(j)
∧V (k) = V ′(k), j ∈ [1, i), k ∈ [1, i− 1)} (7)

CPLV (l, i) =
{l′ ∈ L · (S, A, P) = (S′, A′, P ′) ∧N(j) = N ′(j)
∧V (k) = V ′(k), j, k ∈ [1, i)} (8)

Recall that a prototype is nothing more than a link that includes
some wildcard sections, so we can calculate the CPL (p,i) set
of a prototype likewise.

Example As an example, consider p defined in Figure 3a.
Prototype p represents all links starting with http://www.
amazon.com/, followed by any combination of characters
except separators, then the literal string /dp?ie=UTF-8&qid=,
and another combination of characters at the end. Represented
links are depicted in Figure 3c. If we check links in Amazon,
we find out that links following this pattern are links to product
detail pages.

http://www.amazon.com/�/dp?ie=UTF-8&qid=�

Fig. 1: Example of Link Classification: Amazon.com hub page.

Let L be a linkset composed of links in Amazon, as shown
in Figure 3b, and l1 be the first link in Figure 3b. The
CPLP (l1, 1) set is shown in Figure 3d.

III. CLASSIFICATION FEATURES

Next, we introduce the features that support building the set
of prototypes that represent all links in a given site. We take
a statistical approach to the problem of prototype building,
and we base our technique in the definition of probabilistic
features for each link and each token inside a link. First we
give a formal definition of these features and later we illustrate
their use by means of an example.

A. Features Definition

Link feature Let H be a hubset from a certain web site with
size n, and l be a link l ∈ H . Probability FL of a link in the
context of H is defined as follows.

FL(l) =
|{Hi ∈ H · l ∈ Hi, i ∈ [1, n]}|

n
(9)

In Equation 9, we must assure that the hubset is sufficiently
large so that the probability estimation is statistically signifi-
cant, so we require that |H| ≥ 30, which is the usual threshold
in statistical literature. FL (l) takes values in the range [1/n, 1].
Links that appear more frequently in hubs from a hubset, have
a higher FL than those appearing just in a few of them, to the
point that links with FL = 1 appear in every single Hi ∈ H .
At the other end of the distribution, links with FL near to 0
never appear in any of H hubs.

As an example, Figure 4a shows the histogram of FL

values obtained from the 100 hubs in an e-commerce site
(Amazon.com) an two academic sites (Microsoft Academic
Search and TDG Scholar).

Tokens Features Let H be a hubset from a given site with
size n, L its linkset, l a link of the form (S, A, P, N, V) in
L and X(i) be the i-th element of X , we define the feature
value of X(i) given as the following probability.

FX(l, i) =
|{Hj ∈ H ·Hj ∩ CPLX(l, i + 1) 6= ∅, j ∈ [1, n]}|

n
(10)

These features values are in the same range as FL, [1/n, 1].
Same as with FL, path segments that appear more frequently
in hubs from H have a higher FP than those that only appears
in URLs from some of the hubs.

Figure 4b shows the histogram of FP , FN and FV values
from the same hubsets and sites as defined for FL values. It is
noticeably similar to the FL histogram presented earlier, with
the majority of values around 1/n, and just a small tail near
1.

Given that a prototype has the same signature as a link,
both previous definitions III-A and III-A are applicable as
well to prototypes. For the sake of simplicity, we assume that
FP (p, i) = 1 ⇐⇒ p = {S, A, P, N, V }∧P (i) = ? (similarly,
with FN and FV).

B. Features Examples

Example Consider an experiment over Amazon.com, in
which we issue 100 queries using the top 100 words in English
language, discarding stop words. The result of this experiment
is a hubset H composed of n = 100 hubs.

The FL values calculated for some of the links in H are
shown in Table I

All Amazon pages contain a navigation bar in the upper part
of the page, including useful links such as “Home” “Sign In”

 http www.amazon.com � dp ie qid UTF-8 �
a) Prototype p

LINK S A P N V
1 2 3 1 2 1 2

l1 http www.amazon.com Head-First-Java dp ∅ ie qid UTF-8 130
l2 http www.amazon.com Effective-Java dp ∅ ie qid UTF-8 333
l3 http www.amazon.com gp site-directory ref=topnav_sa ∅ ∅ ∅ ∅
l4 http www.amazon.com Head-First-Java p-r ∅ ie qid UTF-8 130
l5 http www.amazon.com Effective-Java p-r ∅ ie qid UTF-8 333
l6 http www.amazon.com Beginning-Programming dp ∅ ie qid UTF-8 234
l7 http www.amazon.com Sam-Teach-Java dp ∅ ie qid UTF-8 123
l8 http www.amazon.com Introduction-Java dp ∅ ie qid UTF-8 130
l6 http www.amazon.com Beginning-Programming p-r ∅ ie qid UTF-8 234
…
ln http www.amazon.com ref=gno_logo ∅ ∅ ∅ ∅ ∅ ∅

b) Amazon Linkset
LINK S A P N V

1 2 1 2 1 2
l1 http www.amazon.com Head-First-Java dp ie qid UTF-8 130
l2 http www.amazon.com Effective-Java dp ie qid UTF-8 333
l3 http www.amazon.com Sam-Teach-Java dp ie qid UTF-8 123
l4 http www.amazon.com Beginning-Programming dp ie qid UTF-8 234
…
ln http www.amazon.com Introduction-Java dp ie qid UTF-8 234

c) Links in L matching prototype p

LINK S A P N V

1 2 1 2 1 2
l1 http www.amazon.com Head-First-Java dp ie qid UTF-8 130
l2 http www.amazon.com Head-First-Java p-r ie qid UTF-8 130

d) CPLP(l1,2)
Fig. 3: Example of Prototype

and “Help”. Examples of these links URLs are, respectively,
links with ID 2, 3 and 4, and they are always present in
almost any page we choose from the site. Therefore, for any
hubset extracted from Amazon, the probability of these URLs
is always 1 or near 1.

On the other side, there are links whose appearance depends
on the specifical page being considered. For example, links to
a page with detailed information about a product, just like
links with ID 1, 5 and 6 in the example, only appear in
hubs which are responses to certain queries. Therefore, its
probability depends on the hubset, although we can assume
that, for a random set of hubs, FL value is rather low.

In general, our hypothesis is that for links whose FL in a
hubset H is not 1 (or near 1), it is in fact around 1/n, that
is, probability values are grouped around the two extremes
of the distribution (0 and 1), and the number of links whose
probability is in the middle of the distribution is very low.
Back to Figure 4a, we observe that most values are grouped
around 0.05, which means that most links just appear in a
range of 1 to 5 hubs, approximately. We must note that there

ID l FL(l)
1 http://www.amazon.com/Head-First-Java/dp?ie=UTF8&qid=130 0.01
2 http://www.amazon.com/ref=gno_logo 0.99
3 http://www.amazon.com/Help/b/ref=topnav_help?ie=UTF8&node=508510 0.99
4 http://www.amazon.com/gp/yourstore/ref=pd_irl_gw?ie=UTF8&signIn=1 1.00
5 http://www.amazon.com/Effective-Java/dp?ie=UTF8&qid=130 0.01
6 http://www.amazon.com/Head-First-Java/product-reviews?ie=UTF8 0.03

TABLE I: Values for feature FL in Example III-B

is a small but significant group of values around 1, that is,
the group of links that are present in every hub from the site.
We can therefore conclude that links with FL = 1 are those
belonging to the site template. Hence, our technique allows us
to detect the template of a given site, besides classifying its
links according the concept contained in their targets.

Let l1 be the link with ID = 1 in H defined previously.
After the experiment, we obtained the values for features FP ,
FN and FV presented in Table II. As a comparison, in Table
III we show the values for features FP , FN and FV for the

110
100100010000100000

0,05 0,1 0,15 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Frequency

Mean Values

FL values

TDGAmazonMSA
(a) FL values histogram

110
100100010000100000

0,05 0,1 0,15 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Frequency

Mean Values

FP∪∪∪∪FN∪∪∪∪FV Values

TDGAmazonMSA
(b) FP , FN , FV values histogram

Fig. 4: FP , FN , FV and FL values histogram, from sites:
Amazon.com, TDG Scholar and Microsoft Academic Search

l1 = http://www.amazon.com/Head-First-Java/dp?ie=UTF-8&qid=123

 i = 1 i = 2
FP(l1, i) 0.01 0.01
FN(l1, i) 0.01 0.01
FV(l1, i) 0.01 0.01

TABLE II: Values for feature FP , FN and FV for link l1 in
Example III-B

prototype p that results when we replace the first path segment
in l (“dp”) with a wildcard. Based on the former example, we
can extract some conclusions from the different values of FP ,
FN and FV . For example, token “dp”, with FP (p, 2) = 0.98,
is a fixed part of every link to Amazon product detail pages,
and therefore, it is more frequent throughout the site than
token “123”, whose FV (p, 2) is near 0 as it is a parameter
that identifies queries, and therefore, it is different for every
issued query. As a result, its FV value is 0.01, indicating that
it just appears in links from a single hub. Similarly, parameter
1, with name “ie” and value “UTF-8”, is also a fixed part in
all Amazon links, so their FN and FV values respectively are

p = http://www.amazon.com/�/dp?ie=UTF-8&qid=123

 i = 1 i = 2
FP(p, i) 1 0.98
FN(p, i) 0.99 0.99
FV(p, i) 0.99 0.01

TABLE III: Values for feature FP , FN and FV for prototype
p in Example III-B

Link Classifier

Link Extractor
Setup

DW AccessForm Filler
Form Analyser Keyword ManagerForm Model

Link Prototyping
Keywords

Prototypes LinksHubset Tokeniser Features Calculator
Features

Fig. 5: Diagram of the architecture.

near to 1 in Table III. Our hypothesis regarding FP , FN and
FV values is the same exposed earlier for FL values. In this
case, the straightforward application is to build prototypes:
tokens with a near-zero value are not relevant, so we can
abstract over them and obtain a more general representation
of all such segments in the form of a regular expression, that
is, of a prototyping token. Meanwhile, tokens with a feature
value significantly higher than the others (usually around 1)
appear in most hubs, so they are part of the characteristic URL
patterns used the site to compose URLs. In other words, they
are relevant, and they are not grouped with others to form a
prototype; instead, they stay as literals.

IV. CLASSIFICATION TOOL

Based on the previous features, we implemented a link
classifier, following the architecture in Figure 5. First, a
training set is needed, composed by links from the site we
wish to extract information from. For this purpose, we make
use of the Form Analyser which analyses the forms to obtain
a form model, and the Form Filler that uses this model to
automatically fill in the form and retrieve the resulting hubs,
composing a hubset. Our proposal is focused on keyword-
based queries, hence the form filler only deals with forms
that contain at least one text field. A Keyword Manager is
responsible for finding a corpus of keywords to be used by
the form filler, trying to obtain the maximum number of hubs
as possible, minimising the keywords that yield no result.

Afterwards, all URLs from the retrieved hubset are extracted
and tokenised. For each link, values of features FP , FN , FV

and FL, as defined in section III are calculated, and used
to build an ordered set of prototypes, where each prototype
represents a different class of links, that is, links leading to
pages containing a different concept. Empirical results show

that it is indeed necessary that prototypes keep an order, as we
usually obtain some prototypes that subsume other prototypes,
that is, a regular expression that is more general than other,
and that matches all links matched as well by the latter. To
avoid misclassifications, in cases like that we always give
more priority to the most specifical prototype than to the most
general one.

We developed a proof-of-concept application, obtaining
promising evaluation values. Due to space limitations, we only
include an example of the classification results in Figure 6,
in which we observe Cluster 0 representing the site template
links, Cluster 8 representing products, Cluster 9 representing
product reviews and Cluster 12 representing authors, amongst
others. A demo version of the application can be found in
[16].

V. RELATED WORK

A. Web page classification

Web page classification has been extensively researched,
and several techniques have been applied with successful
experimental results. In general, we catalogue classifiers ac-
cording to the type and location of the classification features.
There are three main trends in feature types: content-based,
structure-based and hybrid classifiers. As for feature location,
most approaches obtain features from the page to be classified,
while others get them from neighbour pages.

Content-based classifiers ([17], [26]) categorize a web page
according to the words and sentences it contains. This kind
of classifiers group all pages within the same topic, assigning
them the same class label. As for structure-based classifiers
([3], [4], [6], [12], [27] and [28]), the main feature used
to classify pages is their physical organisation of contents,
usually expressed in a tree-like data structure, like a DOM
Tree. Also, there are hybrid approaches, [9] and [21], which
take into account both content and structural features.

All the previous classifiers consider different kinds of fea-
tures, but in most cases those features are extracted from the
page to be classified, which requires downloading it previ-
ously. There are also classifiers that explore the possibility
of classifying a web page by using features extracted from
neighbour pages, instead of the page itself, being the neighbour
of a page another page that has a link to the former, or,
conversely, that is linked from it. All these proposals are
content-based, and usually rely on features such as the link
anchor text, the paragraph text surrounding the anchor [11], the
headers preceding the anchor, the words in the URL address,
or even a combination of these [15]. If the link is surrounded
by a descriptive paragraph or the link itself contains descriptive
words, it is possible to decide the page topic in advance of
downloading it.

VI. CONCLUSIONS

Our proposal classifies pages according to their URL for-
mat without downloading them beforehand. Parting from an
unlabelled set of links, a set of prototypes is built, each of one
representing all links to pages containing a concept embodied

in a particular web site. The resulting prototype set can be used
by a crawler to improve its efficiency by selecting in each page
only links leading to pages with concepts that are interesting
for the user, reaching those pages while downloading the
minimum number of irrelevant pages. Besides, our classifier
is able to detect the template of a web site, that is, links that
appear in every page in the site, and hence will most probably
not lead to information related to that query.

Using features located on a page to classify it requires
previous download, which results in wasted bandwidth and
time. There are some proposals that classify pages according
to the text surrounding the link in the referring page. This
improves the crawlers efficiency, but it is not a general
technique, given that not all links include in their surroundings
words useful for classification. Our proposal classifies web
pages depending on the link URL format, so it is not only
efficient, but also generic and applicable in different domains.
Besides, user supervision is kept to a minimum, given that the
classifier is trained using an unlabelled set of links collected
automatically.

These links are analysed and a set of prototypes is built, each
of them representing all URLs that link to pages containing a
different concept. Therefore users do not have to label large
training sets, as it happens in supervised classifiers; instead
they are only responsible for defining his or her interest, by
picking the related prototypes. Note that users intervention is
unavoidable, given that the relevancy criteria depends solely
on them, but in our proposal it is kept to a minimum.

Traditional crawlers browse the whole sites, retrieving all
pages, and spending a significant time and bandwidth while
downloading them. Focused crawlers retrieve pages belonging
to a topic more efficiently than traditional crawlers do, but still
they are not a suitable solution for virtual integration systems,
because a page has to be classified to know if the crawler must
follow that path, and that requires the page to be downloaded
in most cases.

The prototypes thus generated can later be used by a crawler
to classify links following the template matching approach,
that is, links are compared against prototypes, and assigned to
the first class whose prototypes they match. If the link class
is marked as relevant by the user, the links are followed by
the crawlers; otherwise, they are ignored, making the crawler
more efficient. As a result, we designed a link classifier that
lays the foundations for an efficient crawler, able to access
web pages automatically, while requiring as little intervention
as possible from the users.

ACKNOWLEDGMENT

This paper was supported by the European Commission
(FEDER), the Spanish and the Andalusian R&D&I pro-
grammes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-
4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E,
TIN2010-10811-E, and TIN2010-09988-E).

Fig. 6: Example of Link Classification: Amazon.com hub page.

REFERENCES

[1] Charu C. Aggarwal, Fatima Al-Garawi, and Philip S. Yu. On the design
of a learning crawler for topical resource discovery. ACM Trans. Inf.
Syst., 19(3):286–309, 2001.

[2] Vinod Anupam, Juliana Freire, Bharat Kumar, and Daniel F. Lieuwen.
Automating web navigation with the webvcr. Computer Networks, 33(1-
6):503–517, 2000.

[3] Arvind Arasu and Hector Garcia-Molina. Extracting structured data
from web pages. In SIGMOD Conference, pages 337–348, 2003.

[4] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data
mining and its applications. In WWW, pages 580–591, 2002.

[5] Claudio Bertoli, Valter Crescenzi, and Paolo Merialdo. Crawling
programs for wrapper-based applications. In Information Reuse and
Integration, pages 160–165, 2008.

[6] Lorenzo Blanco, Valter Crescenzi, and Paolo Merialdo. Structure and
semantics of Data-IntensiveWeb pages: An experimental study on their
relationships. J. UCS, 14(11):1877–1892, 2008.

[7] Lorenzo Blanco, Nilesh Dalvi, and Ashwin Machanavajjhala. Highly
efficient algorithms for structural clustering of large websites. In
Proceedings of the 20th international conference on World wide web,
WWW ’11, pages 437–446, New York, NY, USA, 2011. ACM.

[8] Jim Blythe, Dipsy Kapoor, Craig A. Knoblock, Kristina Lerman, and
Steven Minton. Information integration for the masses. J. UCS,
14(11):1811–1837, 2008.

[9] James Caverlee and Ling Liu. Qa-pagelet: Data preparation techniques
for large-scale data analysis of the deep web. IEEE Trans. Knowl. Data
Eng., 17(9):1247–1262, 2005.

[10] Soumen Chakrabarti. Focused web crawling. In Encyclopedia of
Database Systems, pages 1147–1155. 2009.

[11] William W. Cohen. Improving a page classifier with anchor extraction
and link analysis. In NIPS, pages 1481–1488, 2002.

[12] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. RoadRun-
ner: Towards automatic data extraction from large web sites. In Very
Large Data Bases, pages 109–118, 2001.

[13] Guilherme T. de Assis, Alberto H. F. Laender, Marcos André Gonçalves,
and Altigran Soares da Silva. Exploiting genre in focused crawling. In
String Processing and Information Retrieval, pages 62–73, 2007.

[14] Jenny Edwards, Kevin S. McCurley, and John A. Tomlin. An adaptive
model for optimizing performance of an incremental web crawler. In
WWW, pages 106–113, 2001.

[15] Johannes Fürnkranz. Hyperlink ensembles: a case study in hypertext
classification. Information Fusion, 3(4):299–312, 2002.

[16] Inma Hernández. Relc demo. http://www.tdg-seville.info/
inmahernandez/Thesis+Demo, 2011.

[17] Andreas Hotho, Alexander Maedche, and Steffen Staab. Ontology-based
text document clustering. KI, 16(4):48–54, 2002.

[18] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
J. ACM, 46(5):604–632, 1999.

[19] Juliano Palmieri Lage, Altigran Soares da Silva, Paulo Braz Golgher, and
Alberto H. F. Laender. Automatic generation of agents for collecting
hidden web pages for data extraction. Data Knowl. Eng., 49(2):177–196,
2004.

[20] Stephen W. Liddle, David W. Embley, Del T. Scott, and Sai Ho Yau.
Extracting data behind web forms. In ER (Workshops), pages 402–413,
2002.

[21] Alex Markov, Mark Last, and Abraham Kandel. The hybrid repre-
sentation model for web document classification. Int. J. Intell. Syst.,
23(6):654–679, 2008.

[22] Sougata Mukherjea. Discovering and analyzing world wide web collec-
tions. Knowl. Inf. Syst., 6(2):230–241, 2004.

[23] Alberto Pan, Juan Raposo, Manuel Álvarez, Justo Hidalgo, and Ángel
Viña. Semi-automatic wrapper generation for commercial web sources.
In Engineering Information Systems in the Internet Context, pages 265–
283, 2002.

[24] Gautam Pant and Padmini Srinivasan. Link contexts in classifier-guided
topical crawlers. IEEE Trans. Knowl. Data Eng., 18(1):107–122, 2006.

[25] Ioannis Partalas, Georgios Paliouras, and Ioannis P. Vlahavas. Rein-
forcement learning with classifier selection for focused crawling. In
European Conference on Artificial Intelligence, pages 759–760, 2008.

[26] Ali Selamat and Sigeru Omatu. Web page feature selection and
classification using neural networks. Inf. Sci., 158:69–88, 2004.

[27] Márcio L. A. Vidal, Altigran Soares da Silva, Edleno Silva de Moura,
and João M. B. Cavalcanti. Structure-based crawling in the hidden web.
J. UCS, 14(11):1857–1876, 2008.

[28] Karane Vieira, Altigran Soares da Silva, Nick Pinto, Edleno Silva
de Moura, João M. B. Cavalcanti, and Juliana Freire. A fast and robust
method for web page template detection and removal. In CIKM, pages
258–267, 2006.

[29] Yang Wang and Thomas Hornung. Deep web navigation by example.
In BIS (Workshops), pages 131–140, 2008.

[30] Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web
pages for data mining. In Knowledge Discovery and Data Mining, pages
296–305, 2003.

