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Simple Summary: Immuno-oncology has redefined the treatment of lung cancer, with the ultimate
goal being the reactivation of the anti-tumor immune response. This has led to the development of
several therapeutic strategies focused in this direction. However, a high percentage of lung cancer
patients do not respond to these therapies or their responses are transient. Here, we summarized the
impact of immunotherapy on lung cancer patients in the latest clinical trials conducted on this disease.
As well as the mechanisms of primary and acquired resistance to immunotherapy in this disease.

Abstract: After several decades without maintained responses or long-term survival of patients with
lung cancer, novel therapies have emerged as a hopeful milestone in this research field. The appearance
of immunotherapy, especially immune checkpoint inhibitors, has improved both the overall survival
and quality of life of patients, many of whom are diagnosed late when classical treatments are
ineffective. Despite these unprecedented results, a high percentage of patients do not respond
initially to treatment or relapse after a period of response. This is due to resistance mechanisms,
which require understanding in order to prevent them and develop strategies to overcome them
and increase the number of patients who can benefit from immunotherapy. This review highlights
the current knowledge of the mechanisms and their involvement in resistance to immunotherapy in
lung cancer, such as aberrations in tumor neoantigen burden, effector T-cell infiltration in the tumor
microenvironment (TME), epigenetic modulation, the transcriptional signature, signaling pathways,
T-cell exhaustion, and the microbiome. Further research dissecting intratumor and host heterogeneity
is necessary to provide answers regarding the immunotherapy response and develop more effective
treatments for lung cancer.

Keywords: lung cancer; immunotherapy; resistance mechanisms; PD-1/PD-L1; immune checkpoint
inhibitors; monoclonal antibodies; NSCLC; SCLC

1. Introduction

Lung cancer is the most common cancer, contributing 11.6% of the total case number, and is
responsible for 18.4% of cancer-related deaths around the world [1,2]. Despite the social effort to
identify high-risk populations by lung cancer screening and the development of prediction tools, as
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well as prevention campaigns, the incidence of lung cancer is expected to increase by 71.4% by 2040
worldwide [3]. It has been estimated that approximately 1 in 15 people will develop lung cancer
throughout their lives [4]. In addition, according to seX, it is the most prevalent tumor in men and the
third most prevalent tumor in women. Although lung cancer causes more deaths every year than all
breast, prostate and colorectal tumors combined according to the American Cancer Society, the good
news is that the decline in lung cancer mortality has been accelerating by 2% in the last decade for both
men and women [4].

Tobacco smoking is the leading risk factor associated with this disease, with 80% of cases attributed
to it in Western countries. Nevertheless, this pattern shows up to 20-fold variation in lung cancer rates
from one country to another, especially according to the level of development and socioeconomic
status of the region, where the rates of pollution also play an important role [5]. Thus, it is more
common in developed countries, especially in the USA and Europe, and less frequent in less developed
countries, such as Africa and South America [6]. Moreover, exposure to secondhand smoke, radon
gas, asbestos, infections and genetic susceptibility are other common risk factors for lung cancer [2].
Individual susceptibility, which derives from different human polymorphisms present in the human
population, affects the balance between metabolic activation, detoxification, and reparation of DNA
adducts differently [7,8].

Lung cancer is a heterogeneous group of malignant tumors of epithelial cells originating in the
lining or glandular epithelium of the bronchial tree, with a common cellular and molecular origin
but with different accumulated genetic alterations and different clinical and prognostic behaviors.
This heterogeneity among patients has led to the establishment of different subgroups according to
morphological, immunohistochemical and genetic characteristics. Thus, lung cancer is classified into
two main groups, each ranging from stage I to IV depending on tumor progression: small cell lung
cancer (SCLC) (15% of patients) and non-small cell lung cancer (NSCLC) (80% of patients). The latter
is, in turn, subdivided into three subtypes: large cell carcinoma (LCC, 10% of all cases), squamous
cell carcinoma (SCC, 25%), and lung adenocarcinoma (ADC, 40%). Between the main histological
subtypes of NSCLC, studies have shown that SCC tends to arise centrally within the main or lobar
bronchus, showing slow growth, and its prevalence is highly associated with tobacco smoking, which
increases the mutational burden by 10 times [9]. In these tumors, the proposed actionable genes with
clinical efficacy are limited. On the other hand, ADC appears more peripheral, mainly affecting distal
bronchioli and alveoli, with glandular and mucin differentiation. ADC is the most common subtype
among never smokers and women [10], and although it generally has a worse prognosis, it is frequently
associated with druggable driver mutations such as epidermal growth factor receptor (EGFR) mutation
and echinoderm microtubule associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK)
fusion protein, among others, for which there are targeted therapies with good clinical results [2].
In turn, SCLC is frequently located centrally in the lung and presents a poor prognosis. Consequently,
the implementation of genetic characteristics for the histological classification of cancer opens the
possibility of developing novel targeted therapies and therefore optimizing precision medicine [11].

2. Clinical Management of Patients with Lung Cancer

The treatment of lung cancer depends on several factors, such as the condition of the patients,
histological features, and tumor TNM staging. Classical treatment options include surgical resection,
platinum-based chemotherapy and radiation therapy, in monotherapy or in combination, as well as
sequential therapeutic strategies, among others. Surgery is the standard option for early-stage lung
cancer, when the cancer is confined to the lung and therefore considered to be curable [12]. These stages
involve potentially resectable lesions, macroscopically or microscopically, offering more guarantees
of control or cure of the disease [13]. In intermediate stages, surgery is only for diagnostic purposes
because at this point, the disease becomes difficult to control [14]. Despite surgery, the recurrence rate
remains high in the early stages of NSCLC, and 30-55% of patients with curative resection develop
recurrences that occur mainly at a distance [15]. In very advanced cases, that is, stages associated
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with distant metastases, surgery only has indication with palliative or diagnostic effects, and systemic
anticancer treatments are applied in an attempt to slow tumor growth and improve overall survival
(OS) and the quality of life of the patient and minimize symptoms [16]. Regarding systemic treatments,
chemotherapy (CT) is the first option in patients with SCLC. However, in patients with NSCLC, it is
used as a complementary strategy to surgery, where it can be given before (neoadjuvant) or after
(adjuvant) surgery for curative or palliative purposes. In early-stage NSCLC, radiotherapy (RT) can be
used instead of surgery with curative effects. After surgery in stage Il and IIIA patients, adjuvant CT
has proven to prevent recurrence [17], while unresectable stage III lung tumors are recommended to
be treated with CT-RT. In the case of metastatic cancer, treatment with CT has been established, but
RT is also used for palliative care of symptoms [18,19]. In the case of SCLC, treatment consists of a
combination of platinum-based CT with etoposide. In addition, RT will be used in cases of localized
disease and for the prevention and treatment of brain metastases.

However, despite the results obtained with CT and RT in lung cancer, they have many undesirable
side effects, and the mortality and morbidity data are still very high, with 5-year OS rates of
approximately 10-15%, making it the most lethal neoplasm [1]. Approximately 25% of lung cancer cases
harbor genetic abnormalities amenable to treatment with targeted therapies, improving the survival
time of patients. This has allowed targeted therapies to appear in clinical oncology practice, improving
the survival rates and quality of life of patients. These therapies are treatments that selectively target
cancer-specific genes, proteins, or the tissue environment that contribute to cancer growth and survival,
blocking them and minimizing damage to healthy cells [20]. Many of these targeted therapies focus
on various tyrosine kinase receptors (RTKs) that are involved in cell growth and survival, whose
alterations amplify the signals that lead to tumorigenesis. Thus, RTK inhibitors (TKIs) are used to
interrupt these signaling pathways, but their use tends to produce acquired resistance [21]. Successful
biomarkers with therapeutic purposes in patients with ADC have been mainly EGFR mutations, ALK-
and RET- (rearranged during transfection) gene rearrangements, ROS1 (receptor tyrosine kinase ROS
proto-oncogene 1) fusions; V600E-specific mutation of BRAF (v-Raf murine sarcoma viral oncogene
homolog B) gene; MET (hepatocyte growth factor receptor) factor amplification, KRAS and HER2
(human epidermal growth factor receptor 2) gene mutations, among others [16,21-23]. In contrast,
patients with SCC show few alterations for therapeutic purposes. FGFR1 (fibroblast growth factor
receptor 1) amplification or PI3K (phosphoinositol 3-kinase) mutations are challenging targets but with
no effective inhibitors yet [24]. However, the limited understanding of SCLC molecular biology has
led to completely nonexistent targeted treatment today. In addition, it is important to highlight that
targeted therapies in patients with lung cancer may fail or have little or no efficacy when treatments
are carried out in populations that are not molecularly selected.

The greatest challenge for lung cancer clinical management has become markedly evident with
the use of immunotherapy (IT). There is increasing evidence of the role of the host immune system
in immunosurveillance and tumor rejection in which every known innate and adaptive immune
effector mechanism participates. Moreover, may be transitory or long-lasting a crucial role so that
local immunosuppression in a tumor context caused by chronic inflammation has protumor effects,
whereas enhancing T-cell function and dendritic cell maturation derived from acute inflammation
has the opposite (antitumor) effect [25]. Thus, the immune system has been recognized as another
important cancer hallmark [26]. This has led to the development of therapeutic strategies focused
in this direction, such as molecules for reactivating the host immune response as cancer vaccines or
checkpoint inhibitors to emphasize intrinsic antitumor immunity [27]. However, a high percentage of
patients with lung cancer do not respond to these treatments, or their responses may be transitory or
long-lasting. Here, we review the relevance of immunotherapy in lung cancer, with a focus on the
underlying resistance mechanisms of the disease.
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3. Immunotherapy for Lung Cancer

Immuno-oncology has emerged as a promising field that seeks to reinforce the host’s own immune
system to avoid immune evasion of the tumor by recognition of tumor-specific antigens (neoantigens)
and tumor-associated antigens (TAAs) that trigger an immune reaction that causes tumor remission [28].
Therefore, attacking tumor cells directly is no longer the target of the therapy, but the strategy is
redirected towards the immune system. This makes it work for any tumor histology or driver mutation,
and the side effects are different from other therapies [29]. Accordingly, cancer immunotherapy
has been developed based on several approaches, ranging from stimulating effector mechanisms to
counteracting inhibitory and suppressive mechanisms. Vaccines are among the strategies to activate
immune effector cells, while additional stimulation strategies include cytokines, adoptive cell therapy
and oncolytic viruses. On the other hand, the use of antibodies against immune checkpoint molecules
stands out as one of the strategies to neutralize immunosuppressive mechanisms [30] (Figure 1).

IMMUNOTHERAPY FOR LUNG CANCER
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Figure 1. Different strategies and immunotherapeutic agents with clinical application in lung cancer.
Created with Biorander.com.

Thus, since the activation of the immune checkpoint pathways is a very frequent tumor evasion
mechanism, the use of inhibitors against immune checkpoints (ICIs) arises as IT, stimulating antitumor
responses towards tumor-specific antigens within the TME, which is composed of stromal cells,
immune cells, and extracellular matrix, all of which are closely related to tumor cells. The rate of
tumor-infiltrating immune cells in the TME can be classified as immunodesert (noninfiltrated or also
called ‘immunologically cold’), immunoexcluded (peripheral immune infiltration around tumor cells)
and immunoinflammed (infiltrated or also called ‘immunologically hot’). The latter expresses immune
checkpoint molecules and is correlated with a more favorable response to ICI therapy [31].

Because IT has promising results in terms of survival and quality of life, more treatments of this
type for lung cancer are trying to be developed, since it is frequently diagnosed in advanced stages,
when other classical therapies such as surgery, chemotherapy, and radiotherapy are minimally effective.
Nonetheless, IT can be combined with any of the therapeutic modalities already described. While
the synergistic effects of combining these drugs are being evaluated, they do not produce additional
toxicities or death [29].

3.1. Nonspecific Immunotherapies

Nonspecific immunotherapies, also known as immunomodulatory therapies, are not directed
against a specific antigen but rather aim to bolster the antitumor immune response. They usually involve
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both the innate and adaptive responses of the immune system, and their mechanisms of action can be
direct antitumor effects, reversing immunosuppression, activating innate immunity, and activating
antigen-nonspecific T-cells [32]. These treatments include cytokines (interleukins and interferons) as
the most frequently used compounds, although there are others, such as immune-stimulatory agents
(CpG oligonucleotides or Bacille Calmette-Guérin, BCG), antibodies and enzyme inhibitors [32]. The two
Food and Drug Administration (FDA)-approved cytokines for the treatment of severe malignancies
are IL-2 and IFN-o; however, neither of them has an indication in lung cancer.

3.2. Oncolytic Viruses (OVs)

Tumors create an immunosuppressed microenvironment that allows them to escape from the
immune system, but in turn, this makes tumors more sensitive to viral infections. Oncolytic virotherapy,
which uses attenuated and genetically modified viruses capable of selectively infecting tumor cells, is
based on this premise, taking advantage of the deregulated pathways to produce cell lysis. The second
mechanism of action of OVs is the induction of antitumor immunity, which takes place thanks to the
antigens released during oncolysis. The third is the ability to produce acute vascular-disrupting effects
that lead to tumor reduction [33]. Thus, in OV therapy, the virus is the active agent itself and not a
carrier, as occurs in gene therapy [34]. The advantages of oncoviral immunotherapy are its specificity
targeting tumor cells, its independence of specific receptor expression patterns and therefore of the
associated resistances, and its ability to enhance the antitumor immune response or induce a novel
nonself antigen response [35].

Some of the viruses that are being considered for this type of immunotherapy are from the herpes
simplex family, such as fowlpox virus, Newcastle disease virus, reovirus and measles virus (MV), but
some adenoviruses, picornaviruses (including coxsackie), reovirus, maraba, vaccinia virus, retroviruses
and mumps are also considered [35-37]. In 2015, the FDA approved talimogene laherparepvec (T-VEC
or Imlygic), a second-generation oncolytic herpes simplex virus type 1 (HSV-1) armed with Granulocyte
Macrophage colony-stimulating factor (GM-CSF) [34], for the treatment of metastatic melanoma, which
was the first approved oncolytic viral immunotherapy, although there are several clinical trials of
oncolytic viruses that cover almost all solid tumors, including lung cancer.

Today, there are some OVs garnering intense interest for use in lung cancer clinical practice. This
is the case for TG4010, which is a modified vaccinia virus Ankara designed to express MUC-1 and IL-2
that is being evaluated in a phase III clinical trial for advanced NSCLC. In addition, it has been reported
that TG4010 in combination with CT improves the progression-free survival of patients and increases
durable responses and long-term survival. Furthermore, there is evidence pointing to a synergistic effect
when combined with anti-PD-1/PD-L1 (programmed cell death protein 1 and programmed death ligand
1, respectively) ICIs [37-39]. On the other hand, the oncolytic vaccine MAGE-A3 is also being evaluated
in two phase I/II clinical trials. One of them uses the MG1 Maraba/MAGE-A3 (MG1MA3) virus alone
or in combination with the adenovirus/MAGE-A3 (AdMAB3) virus in patients with incurable advanced
MAGE-A3-expressing solid tumors (NCT02285816; https://clinicaltrials.gov). Another clinical trial
evaluated the combination of MGIMA3 + AdMA3 + pembrolizumab in previously treated patients
with metastatic NSCLC (NCT02879760; https://clinicaltrials.gov). Inoculation of the antigen-expressing
adenovirus that is also encoded within the OV results in T-cell-mediated tumor clearing and protection
from relapses in vivo, avoiding an antiviral response [40]. Additionally, coxsackievirus A21 (CVA21,
CAVATAK), which targets ICAM-1 naturally and in combination with pembrolizumab, is well tolerated
and appears to increase the number of PD-L1+ tumor cells in a phase Ib clinical trial [41]. Another
coxsackievirus, type B3 (CV-B3), is a nonenveloped, human-pathogenic enterovirus that produces a
significant reduction in cell survival in KRAS-mutant NSCLC cell lines [42]. Adenovirus AVID-317 has
shown effectiveness in 70% of tested human NSCLC-derived cell lines and an increase in the median
survival in murine models [43]. Similarly, infection of NSCLC cells by MV induces tumor apoptosis
in vitro and reduces tumor size in mice [44]. In SCLC, there are also OV studies, specifically with a
modified oncolytic myxoma virus (MYXV), in murine models. This strategy produces tumor-specific
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cytotoxicity, necrosis mediated by immune cell infiltration and increased survival [45]. Despite these
promising results, further studies are needed to optimize the delivery of vectors, as well as to obtain
OVs with precise coordination with the immune system to effectively eradicate the tumor.

3.3. Adoptive T-Cell Immunotherapy

In adoptive cell transfer, tumor-reactive lymphocytes from the patient are collected, cultured
ex vivo and reinfused, often along with growth factors, into the patient as therapy with the goal of
recognizing, targeting, and destroying tumor cells. The cytotoxic T lymphocytes (CTLs) that can
be used for this are tumor-infiltrating lymphocytes (TILs), T-cell receptor (TCR)-modified T-cells
and chimeric antigen receptor (CAR)-modified T-cells [46—-48]. In the latter, the cells are genetically
engineered to target tumor-specific surface antigens. The advantages of this strategy [48] are that it is
highly specific towards tumor cells; has a robust clonal expansion ability; presents tropism towards the
antigen, so it can migrate towards metastasis; generates memory, maintaining long-term effectiveness;
and under the right therapeutic conditions, adoptive cell therapy can eradicate tumors.

The FDA approved the use of CAR-T-cells, making them the first genetically engineered modified
cell therapy with this approval. However, despite the good results in hematological tumors, their
application in solid tumors has been largely limited. This is believed to be due to difficulties
in finding specific targetable antigens, T-cell homing, infiltration and survival in the TME [47].
Nevertheless, strategies are already being developed to overcome these obstacles, such as the split,
universal, and programmable (SUPRA) CAR system, which uses universal receptors that allow target
multiplexing and implements multiple advanced logic and control features [49]. The application of
this technology has not been very extensive in the treatment of patients with NSCLC, caused among
other reasons by the fact that choosing an appropriate target is a challenge. Notwithstanding, there
are currently 5 ongoing clinical trials (NCT04153799, NCT03525782, NCT03029273, NCT04025216 and
NCT02706392; https://clinicaltrials.gov) trying to validate these new treatment options. However,
despite being a powerful tool in nonresponsive patients and immunologically cold tumors, it is a
high-cost individualized medication, which is currently limiting its use in the general population.

3.4. Cancer Vaccines

The idea of using cancer vaccines emerged in the late 19th century from the observation that some
tumors remitted spontaneously after the patient suffered an infectious disease. Thus, vaccines are
designed as an active specific immunotherapy that stimulates the immune response by presenting a
pathogen or TAAs and producing an adaptive antitumor response. This boosts tumor antibodies and
T-cells in vivo in a similar way to passive immunotherapy (i.e., tumor-specific antibodies or T-cells) [50].
In addition, they can be used for both treatment and prevention and may or may not be combined
with other therapies.

Several types of tumor vaccines have been investigated, such as (i) allogeneic vaccines in which
antigens come from non-self-cancer cells to stimulate the cytotoxic immune response; (ii) antigens or
protein-based vaccines; (iii) autologous dendritic cell vaccines in which self-dendritic cells (DCs) are
activated with tumor antigens; iv) DNA vaccines in which an expression plasmid harbors the target
antigen; and (v) vector-based vaccines in which antigens are administered through special viruses,
bacteria, yeast cells or other structures. The most widely used vaccines are peptide-based vaccines
with immunogenic epitopes, usually from tumor-specific or tumor-associated antigens. This strategy
typically uses synthetic peptides, DNA or RNA to encode the neoantigen; however, the fact that these
neoantigens are not universal for a type of tumor or a group of patients limits their widespread use
and leads to the development of tailored and even polyneoantigen vaccines [47].

Despite efforts, only one vaccine has been approved by the FDA, namely, the therapeutic DC-based
cancer vaccine Sipuleucel-T (Provenge™), for the treatment of metastatic castration-resistant prostate
cancer [51]. However, in some Latin American countries, the CIMAvax- Epidermal Growth Factor
(EGF) and Racotumomab vaccines have been approved for advanced NSCLC [46]. Despite the fact
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that the use of CIMAvax-EGF in NSCLC seems to have a tendency towards clinical benefit and to
be immunogenic, the phase IIl randomized trials carried out have not been able to demonstrate
sufficient efficacy and survival impact to include it in the protocols of NSCLC treatment [52]. In the
case of racotumomab, approximately 20-25% of patients who received this therapeutic vaccine in a
phase II/III study did appear to have great clinical benefit with longer progression-free survival (PFS)
and OS [53,54]. However, these strategies are not supported as clinical approaches to patients with
lung cancer.

3.5. Monoclonal Antibodies (mAbs)

Monoclonal antibodies recognize a single epitope region by a pair of variable domains (fragment of
antigen binding, Fab) [55]. Antibodies are involved in cell lysis, which is caused by antibody-dependent
cell-mediated cytotoxicity (ADCC) carried out by immune effector cells such as natural killer
cells, neutrophils, mononuclear phagocytes and DCs. In addition, antibodies are also key in
complement-dependent cytotoxicity (CDC) and the induction of adaptive immune responses, which
intervene in the long-term benefit of these treatments through the presentation of tumor-derived
peptides on MHC class II molecules (activating CD4* T-cells) and on MHC class I molecules (activating
CD8* cytotoxic T-cells).

mAbs are produced as chimeric, humanized or human antibodies by recombinant DNA
hybridomas. This is done to avoid immunogenicity of the original murine antibodies, which decrease
the efficacy due to the human anti-mouse antibody response [51]. Depending on the type of antibody,
a different suffix will be added to the name of the treatment. Thus, murine mAbs will use the
suffix -omab, chimeric mAbs will end in -ximab, humanized mAbs in -zumab and human mAbs
in -umab [56]. In turn, mAbs can be self-acting nacked (the most frequent in nonleukemic cancers),
having a therapeutic function by targeting growth factor receptors, or conjugated, when they are
combined with chemotherapeutic drugs or radioactive isotopes. Nacked mAbs work either by labeling
tumor cells, by targeting immune system checkpoints or by blocking tumor antigens involved in
cell growth and spread. Meanwhile, the conjugated mAbs act as a specific delivery system. On the
other hand, there are bispecific mAbs capable of recognizing two different epitopes, normally one in
tumor cells and the other in immune effector cells, which bring them closer together. To overcome its
clinical limitations due to their short half-life and toxicity, a modification known as BiTE (bispecific
T-cell engager) molecules has been developed, as well as engineered protein scaffolds with antitumor
activity [55].

Different mechanisms of action have been attributed to mAbs with antitumor effects (Tables 1
and 2). First, they can function as targeted therapy when designed against a specific tumor molecular
target. In this case, when the type and location of the tumor do not define the treatment but depend
only on the molecular target, it is called tumor-agnostic treatment. The first drug approved by the FDA
with this indication was pembrolizumab, an anti-PD-1 antibody used to treat patients with unresectable
metastatic solid tumors with microsatellite instability-high (MSI-H) or DNA mismatch repair deficiency
(dAMMR). Second, mAbs can activate the patient’s immune system to destroy tumor cells. This
usually consists of unblocking certain pathways that are altered as a tumor evasion mechanism by
targeting immunoregulatory coreceptors, reversing tumor immunosuppression and modulating the
constant fragment (Fc) domain of mAbs. Ipilimumab, a cytotoxic T lymphocyte-associated antigen 4
(CTLA-4)-specific mAb that enhances the effector functions of T-cells while inhibiting Regulatory T
cells (Tregs), stands out among these immune cell-targeting therapeutic strategies in NSCLC. However,
there are also other approaches for different tumors, including antibodies targeting CD40, CD25, CD134,
CD137, etc. (Tables 1 and 2). Fc domain modifications are accomplished by mutations resulting in
improved ADCC, such as in ocrelizumab (anti-CD20), or by modification of the oligosaccharide content
(defucosylation) [55]. Finally, blocking ligand binding to growth factor receptors and/or their signaling
pathways, as well as targeting the tumor microenvironment, through the inhibition of angiogenesis,
cytokines, and growth factors, are other therapeutic strategies with increasing chances of success [55].
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Examples of these latter types of antibodies are nintedanib, a triple angiokinase inhibitor used as a
second-line therapy in combination with taxotere, and bevacizumab (a humanized VEGF-specific
mADb), which was the first approved agent against tumor angiogenesis [57].

Currently, neutralizing monoclonal antibodies targeting immune checkpoints such as CTLA-4
and PD-1/PD-L1 have shown significant efficacy against various types of cancer, including NSCLC.
Anti-CTLA-4 was the first immune checkpoint antagonist available for NSCLC; however, it has shown
higher toxicity and less effectiveness than anti-PD-1/PD-L1 treatments, the latter being the most
successful to date. Currently, four of these ICIs have been approved for NSCLC: nivolumab and
pembrolizumab (both anti-PD-1) and atezolizumab and durvalumab (both anti-PD-L1) [28] (Table 1).

In the case of SCLC, ICIs appear to be a promising therapy, and numerous clinical trials are
underway to test them (Table 2). Thanks to the results of the CheckMate-032 study, the FDA approved
the use of nivolumab as a third-line therapy for metastatic SCLC in 2018. The following year,
atezolizumab with carboplatin and etoposide as first-line therapy and durvalumab in combination
with CT in 2020 were approved for extensive-stage SCLC by the FDA [58].

Despite the great advances achieved through the use of ICIs, not all patients with lung cancer
respond to this treatment due to primary resistance and the development of secondary resistance. As a
result, long-lasting clinical remission only represents a small percentage of outcomes. For this reason,
great effort is being made to find predictive and monitoring biomarkers [28].
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Table 1. NSCLC tumor-associated antigens targeted by monoclonal antibodies that are currently being tested in clinical trials.

Antigen Target Monoclonal Antibody Name Clinical Trial ID (https://clinicaltrials.gov)

B7-H3 Enoblituzumab (MGA271) NCT02475213
BTLA TAB004 NCT04137900
CD137 BMS-663513 NCT00461110
CD40 APX005M NCT02482168
SEA-CD40 NCT02376699
CD44 v6 Bivatuzumab NCT02204059
CD73 CPI-006 NCT03454451
Oleclumab NCT04262388
CEA Yttrium Y 90 anti-CEA monoclonal antibody cT84.66 NCTO00738452
Yttrium Y 90 anti CE:: ;ntii)élgcAlo;zln zi)r:;l::ﬁ); xgogi (E/(IJI\\{I-T;AN 14), indium In 111 NCT00006458
CEACAM1 CM-24 NCT02346955
c-MET Sym015 NCT02648724
CSFIR Cabiralizumab NCT03502330

Ipilimumab * NCT03001882, NCT02350764
CTLAA ONC-392 NCT04140526
REGN4659 NCT03580694

Tremelimumab NCT02542293, NCT02000947
DLL3 Rovalpituzumab tesirine NCT03000257
DLL4 Demcizumab NCT01189968
EpCAM Tucotuzumab celmoleukin NCT00016237
Cetuximab NCTO00986674
ErbB1/EGFR Futuximab/modotuximab (Sym004) NCT02924233
Necitumumab * NCT02496663
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Table 1. Cont.

Antigen Target Monoclonal Antibody Name Clinical Trial ID (https://clinicaltrials.gov)
Nimotuzumab NCT01393080
Matuzumab NCTO00111839
ErbBl/EGFR Panitumumab (ABX-EGF) NCT00034346
Pertuzumab NCT03845270
SCT200 NCT03808701
ErbB2/HER?2 Trastuzumab (Herceptin) NCT04285671, NCT03505710, NCT03845270

ErbB3/HER3 Seribantumab (MM-121) NCT02387216, NCT00994123
GDF15 NGM120 NCT04068896
GM2 Ganglioside BIW-8962 NCT01898156
HGF Ficlatuzumab (AV-299) NCT01039948
GSK3359609 NCT03693612
ICOs KY1044 NCT03829501
Vopratelimab NCT03989362
IGF-1, IGF-2 Xentuzumab NCT02191891

Cixutumumab NCT00778167, NCT00986674
IGF-1R Dalotuzumab NCT00951444
Figitumumab (CP-751,871) NCTO00560573
Ganitumab (AMG 479) NCTO00807612
IL1RAP Nidanilimab (CAN 04) NCT03267316
LAG-3 TSR-033 NCT02817633
LIF MSC-1 NCT03490669
Amatuximab NCT00325494
Mesothelin Anetumab Ravtansine NCT03455556
LMB-100 NCT04027946
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Table 1. Cont.

Antigen Target Monoclonal Antibody Name Clinical Trial ID (https://clinicaltrials.gov)
CD134 INCAGNO01949 NCT02923349
BCD-100 NCT03288870
Budigalimab (ABBV-181) NCT03000257
Camrelizumab (SHR-1210) NCT03527251
Cemiplimab NCT03580694
Dostarlimab NCT02715284

Nivolumab *

NCT04043195, NCT04023617

Pembrolizumab *

NCT04393883, NCT03053856

o Retifanlimab (MGA012) NCT02475213
Sasanlimab (PF-06801591) NCT04181788
SCT-I10A NCTO04171284
Serplulimab (HLX10) NCT04033354
Sintilimab NCT03812549
Spartalizumab NCT04323436, NCT04000529
Tislelizumab NCT03358875
Toripalimab NCT04158440, NCT04304248
Zimberelimab (AB122) NCT04262856, NCT03629756
PDGF-R « Olaratumab NCT00918203
Adebrelimab (SHR-1316) NCT04316364
Atezolizumab * NCT03977467, NCT03645330
Avelumab NCT03158883
PD-L1 Cosibelimab NCT03212404
Durvalumab * NCT02000947, NCT03694236
Sugemalimab (CS1001) NCT03789604
TQB2450 NCT03910127
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Table 1. Cont.

Antigen Target Monoclonal Antibody Name Clinical Trial ID (https://clinicaltrials.gov)
Pgﬁ’tzplﬁa;ﬁy;ie;g)‘e Bavituximab NCT01160601, NCT01138163
PSMA 177Lu-J591 NCTO00967577
RAAGI12 RAV12 NCT00101972
sCLU AB-16B5 NCT04364620
SEMA4D Pepinemab NCT03268057
TF MORAD-066 NCT01761240
TGFB Fresolimumab NCT02581787
Cobolimab (TSR-022) NCT02817633
TIM-3 INCAGN02390 NCT00994123
MBG453 NCT02608268
TRAIL-R1 TRM-1 (HGS-ETR1) NCT00092924
TRAIL-R2 Conatumumab (AMG 655) NCT00534027
Bevacizumab * NCT03836066, NCT03779191
VEGF GB222 NCT04175158
LY01008 NCT03533127
QL1101 NCT03195569
VEGER2 Alacizumab pegol (CDP791) NCTO00152477
Ramucirumab (IMC-1121B) * NCT01160744
o531 integrin Volociximab NCT00666692

* Monoclonal antibodies approved by the FDA for NSCLC.
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Table 2. SCLC tumor-associated antigens targeted by monoclonal antibodies that are currently being tested in clinical trials.

Antigen Target Monoclonal Antibody Name Clinical Trial ID (https://clinicaltrials.gov)
BEC-2 Mitumomab NCTO00037713
CD56 Lorvotuzumab mertansine NCTO00346385

Yttrium Y 90 anti-CEA monoclonal antibody MN-14 (90Y-hMN-14), indium In 111

CEA anti-CEA monoclonal antibody MN-14 NCT00006347
CTLAA Ipilimumab NCT03575793
Tremelimumab NCT02701400
DLL3 89Zr-DFO-5C16.56 NCT04199741
Rovalpituzumab Tesirine NCT03000257
EpCAM Tucotuzumab celmoleukin NCT00016237
ErbB1/EGFR Cetuximab NCT00104910
ErbB2/HER2 Trastuzumab (Herceptin) NCT00028535
GD2 ganglioside Dinutuximab NCT03098030
MOAB 3F8 NCTO00003022
GD3 ganglioside Mitumomab NCT00006352
GM2 Ganglioside BIW-8962 NCT01898156
IGF-1R Cixutumumab NCTO00887159
Dalotuzumab NCTO00869752
Lewis-Y Hu35193 NCTO00084799
Budigalimab (ABBV-181) NCTO03000257

PD-1 Camrelizumab (SHR1210) NCT03755115, NCT03417895
Nivolumab * NCT03382561
Pembrolizumab NCT03319940
Serplulimab (HLX10) NCT04063163
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Table 2. Cont.

14 of 36

Antigen Target Monoclonal Antibody Name Clinical Trial ID (https://clinicaltrials.gov)
Atezolizumab * NCT03262454
PD-L1 Durvalumab * NCT02701400
TQB2450 NCT04234607
ZKAB001 NCT04346914
TAA Bevacizumab NCTO00079040
TIM-3 INCAGNO02390 NCT03652077
VEGF SC-002 NCT02500914

* Monoclonal antibodies approved by the FDA for SCLC.
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4. Impact of Immunotherapy on the Survival of Patients with Lung Cancer

Despite substantial improvements in survival rates achieved by therapeutic advances in solid
tumors since 1975, in the case of lung cancer, platinum-based chemotherapy has been the only
therapeutic option with limited benefit on OS and very few long-term survivors [59]. Thus, the 5-year
OS is only ~5% for patients with metastatic NSCLC, and between 20-25% or 2% for SCLC, depending
on the extent of the disease. Although targeted therapies (i.e., against EGFR and EML4/ALK mutations)
have subsequently improved these results and show response rates of 80%, only 20-25% of worldwide
patients are candidates for these therapies, and some of them will relapse and require additional
therapeutic options.

Regarding modulation of the immune response as a therapeutic option, lung cancer has also found
insufficient results with the use of nonspecific immunotherapies such as interleukins and interferons
or, more recently, vaccines. However, monoclonal antibody-based immunotherapy has emerged,
revolutionizing the treatment of these tumors. In particular, in patients with NSCLC, anti-PD-1/PD-L1
therapy has shown the greatest significant benefit in OS, long-term responses, and a good safety profile,
including naive and pretreated patients, regardless of the histological subtype. Patients with advanced
NSCLC treated with nivolumab (anti-PD-1) in a phase I clinical trial showed a 5-year OS rate of 16%,
quadrupling survival with standard CT [60]. These therapies were initially recommended for that
subgroup of patients with high expression of PD-1 in tumors, who achieved better results in terms of
survival with less toxicity [61]. However, it has been observed that ICI therapy even works in patients
with tumors that are negative for PD-1 expression.

On the other hand, the results of the CheckMate-017/057 trials [62], in which patients with lung
cancer were treated with nivolumab versus docetaxel as a second-line treatment, showed long-term
clinical benefit for both SCC (23% versus 8% 2-year OS, respectively) and non-SCC NSCLC (29% versus
16% 2-year OS, respectively) [63]. Similarly, the KEYNOTE-010 study showed that in patients with
advanced NSCLC treated with pembrolizumab, the OS was greater than that with docetaxel (12.7 vs
8.5 months, hazard ratio (HR) 0.61, 95% confidence interval (CI) 0.49-0.75; p < 0.0001). This difference
was even more pronounced in patients with at least 50% of tumor cells expressing PD-L1 (17.3 vs 8.2
months; HR = 0.50, 95% CI 0.36-0.70; p < 0.0001) [64]. Finally, the phase III OAK study showed that
atezolizumab in previously treated patients with NSCLC improved OS compared to docetaxel (13.8 vs
9.6 months; HR 0.73, 95% CI 0.62-0.87, p = 0.0003), and furthermore, this benefit was independent of
histology and PD-L1 [65,66].

Currently, the most commonly used indication is first-line monotherapy with pembrolizumab for
patients with NSCLC with >50% PD-L1 expression (KEYNOTE-024) [67] and the combination of CT +
pembrolizumab for those patients whose PD-L1 expression is <50% (KEYNOTE-189) [68]. There is
also a current first-line indication for the use of CT combined with atezolizumab + antiangiogenic
drugs (bevacizumab) due to the significant improvements in PFS and OS of this combination versus
the standard-of-care bevacizumab + CT observed in the IMpower150 study [69].

Therapeutic combinations based on immunotherapies are also being evaluated, and their results
are highly promising. For instance, a synergistic effect has been seen in the combination of anti-PD-1
and anti-CTLA-4, which may result in even more long-term responders and could continue to improve
OS [29], although toxicity also increases in some cases. Specifically, this study showed an OS of 17.1
months with nivolumab + ipilimumab (95% CI 15.0-20.1) compared to CT, which was 14.9 months
(95% CI12.7-16.7) for patients with NSCLC with a PD-L1 expression level of 1% or more (p = 0.007).
This benefit was also observed when PD-L1 expression was less than 1% (17.2 vs. 12.2 months) [70].
In addition, the effect continues in 70% of the patients who interrupt the treatment [71]. Recently,
the 3-year update from CheckMate-227 showed that these new dual IT regimens without CT achieve
OS above 30% regardless of PD-L1 expression, as well as a 3-year sustained response in one-third
of responder patients [72]. Overall, it appears that ICIs are well tolerated in terms of quality of life
compared to other cancer therapies [73].
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With regard to SCLC, nivolumab was also tested for pretreated patients with SCLC in the
CheckMate-032 trial, obtaining approval from the FDA. This trial showed an objective response rate
(ORR) of 10% with nivolumab and 23% with nivolumab + ipilimumab, with grade 3—4 adverse effects
of 14% and 33%, respectively [74]. Soon after, the addition of atezolizumab (anti-PD-L1) to CT in the
first-line SCLC treatment in the IMpower133 trial achieved the first OS improvement in decades [70].
This analysis showed that the risk of death decreased by 30% with the combination versus CT alone,
without deterioration of the safety profile (median OS: 12.3 vs. 10.3 months; HR = 0.70, 95% CI 0.54 to
0.91, p = 0.0069). A similar reduction in the death risk was also identified in the phase Il CASPIAN trial,
which included the PD-L1 inhibitor durvalumab in combination with CT [71]. Thanks to the results of
the KEYNOTE-028 and KEYNOTE-158 trials, the FDA approved in 2019 the use of pembrolizumab as
monotherapy for patients with metastatic SCLC with disease progression on or after platinum-based
CT and at least one other prior line of therapy [74].

Besides, there are several trials currently ongoing evaluating different uses of ICIs is SCLC.
Among them, the phase III CheckMate-331 trial (nivolumab vs topotecan/amrubicin), the phase III
CheckMate-451 trial (nivolumab vs nivolumab + ipilimumab vs placebo), the phase IIl KEYNOTE-604
trial (pembrolizumab + platinum/etoposide vs platinum/etoposide), the phase III CASPIAN trial
(durvalumab =+ tremelimumab + CT vs CT) and the phase IIl MERU trial (Rova-T + dexamethasone vs
placebo (after CT)) [74].

In addition, much of the current research on NSCLC is focusing on studying the combination
of different ITs with each other, as well as CT, RT, and targeted gene and cell-based therapies, with
encouraging results [61]. Specifically, encouraging results from the CheckMate-9LA (dual IT plus CT)
trial were presented, although the follow-up time was still not very long (12 months) [75]. Several
preclinical and clinical studies are also testing the combination of ICI with RT. This combination has
been found to have synergistic effects in NSCLC, improving the survival of lung cancer patients
without significantly increasing adverse reactions. For example, in the phase I KEYNOTE-001 trial,
patients with advanced NSCLC who had received RT prior to pembrolizumab significantly improved
their PFS (4.4 vs. 2.1 months) and OS (10.7 vs. 5.3 months), while toxicity remained similar to patients
treated with pembrolizumab alone. However, the underlying mechanisms of this combined therapies,
possible biomarkers, and optimal therapy parameters - especially the design of RT- have not yet been
clarified [76,77].

Finally, there are other strategies that hold great promise against cancer, such as CAR T-cell
and suicide gene therapies; in 2013, CAR T-cell therapy achieved a response rate of 89% in acute
lymphoblastic leukemia and complete responses in acute B lymphoblastic leukemia, so its effect on
solid tumors is currently being investigated. In the case of suicide gene therapy, it is based on the use
of genes encoding toxic proteins or enzymes capable of transforming a prodrug into a toxin. Typically,
adenovirus and herpes virus, among others, are carriers. The use these therapy systems would lead to
the sudden and massive presentation of TAA that can be synergistically enhanced by its combination
with ICI. The combination of both therapies has demonstrated its antitumor effect in murine models.
However, this hypothesis is still in the preclinical stages of development [78].

5. Resistance to Immune Checkpoints in Lung Cancer Immunotherapy

Immunotherapy, specifically treatment with ICIs, has been implemented in the clinical routine as
a standard of care, with special relevance in patients with NSCLC who have shown unprecedented
durable response rates. However, it has been observed that the majority of patients do not respond
initially to treatment or relapse after a period of response. This is due to resistance mechanisms, whose
understanding is key to preventing them and increasing the number of patients who can benefit from
these treatments. Furthermore, the scarcity of competent immune preclinical models in which tumor
regression is induced by ICIs limits the study and understanding of the mechanisms involved in the
response [79].



Cancers 2020, 12, 3729 17 of 36

Resistances to ICIs can be classified into primary (or innate) and secondary (or acquired) resistance
(Figure 2), and all them can be mediated by both intrinsic and extrinsic host factors. The former
prevents the infiltration or function of immune cells in the TME, while the latter involves components
other than tumor cells within the TME [80]. In primary resistance, patients do not respond to initial
treatment with ICIs, mainly due to a lack of recognition by T-cells because of the absence of tumor
antigens. In secondary resistance, patients relapse after a period of initial response as a consequence
of the appearance of tumor evasion mechanisms. Primary resistance to IT accounts for 7-27% of
first-line treatment and 20—44% of second-line treatment in patients with lung cancer [81]. According
to the KEYNOTE-001 trial results, approximately 25% of patients treated with ICIs could develop
secondary resistance [82]. It is a dynamic process in which the response depends on the immune/tumor
cell balance [83]. The TME provides a chronic inflammatory and immunosuppressive space for
tumor development [84], and it can manifest clinically as primary resistance, mixed responses or
secondary resistance.
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Figure 2. Classification of the most relevant resistance mechanisms to ICI therapies operating in
lung cancer.

Intrinsic resistance mechanisms include genetic and epigenetic alterations that alter the formation,
presentation and/or processing of neoantigens, as well as disruption of cellular signaling pathways
that lead to impaired action of cytotoxic T-cells [85]. These mechanisms can be summarized in
the absence of antigens or their aberrant processing, lack of antigen presentation (loss of human
leukocyte antigen (HLA)), genetic T-cell exclusion and insensibility to T-cells. Some of the pathways
altered in these mechanisms are the MAPK, PTEN, PI3K, WNT/(3-catenin, STING and IFN-y signaling
pathways, as well as constitutive PD-L1 expression by cancer cells. On the other hand, extrinsic
mechanisms involve noncancerous stromal or immune cells or other systemic influences, such
as microbiota, that promote the tumor process [85]. The most relevant include the lack of or
exhaustion of T-cells, immune checkpoint blockers (i.e., CTLA-4 or PD-1), and immunosuppressive
cells. Here, the role of Tregs, myeloid-derived suppressor cells (MDSCs) and type II macrophages
is highlighted, as well as that of regulatory molecules released in the TME, such as IFN-y, IDO,
CEACAM]I, TIM-3, TGF-p or adenosine [80,86]. Other host factors that also influence treatment
resistance include endocrine, metabolic, environmental (dysbiosis, antibiotic or steroid consumption)
and personal factors (age, chronic disease or genetic susceptibility) [87]. Additionally, different
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resistance mechanisms (primary/secondary) and antitumor immunity converge depending on the
tumor phenotype. Thus, immunodesert tumors show immunological ignorance, tolerance or lack of
T-cell priming. Immunoexcluded tumors are able to evade stromal factors as a result of mechanical
barriers, vascular factors or an immune-suppressive chemokine state. In the case of immunoinflammed
tumors, all the mechanisms mentioned above come together [87]. In addition, Syn et al. [88] observed
a parallelism between the primary and secondary resistance mechanisms.

Among the most remarkable resistance mechanisms in lung cancer are aberrations in tumor
neoantigen burden, effector T-cell infiltration in the TME, epigenetic modulation, transcriptional
signature, signaling pathways, T-cell exhaustion, and the microbiome. Their involvement in resistance
to immunotherapy in this disease is described below (Figure 2).

5.1. Tumor Neoantigen Burden

The effectiveness of PD-1/PD-L1 blockade is also correlated with the tumor mutation burden
(TMB) [89-91]. Tumors with high mutational loads, in the range of 5-10 somatic mutations per
megabase of DNA, such as NSCLC [89] and SCLC [92,93], are highly immunogenic and correlate with
a high ORR, extended PFS and/or durable benefit after PD-1 blocker treatment. In the case of SCLC,
these tumors present fewer mutations per megabase than NSCLC, which could be related to the lower
efficacy of immunomodulatory therapies observed in this histological subtype of lung cancer [94].
Thus, high immunogenicity increases the number of neoantigens and therefore the sensitivity to
therapy through the development and infiltration of antigen-specific effector T-cells. This increase in
the number of mutations is due to deficiencies in DNA damage repair pathways, which occur more
frequently in tumors of patients with durable responses to anti-PD-1 therapy (21% of patients with
complete responses and 53% with objective radiographic responses [95]) due to MSI-H [31]. C-to-A
transversions and specific gene deletions are also correlated with clinical benefits [96]. In the case of
lung cancer, tobacco smoke contains many carcinogens that produce a high-transversion mutational
profile known as the “molecular smoking signature” [89] responsible for the increase in TMB and,
therefore, for the efficacy of ICI treatment, especially in patients who smoke compared to never
smokers [94].

Many studies have attempted to determine a TMB cutoff capable of identifying responders to ICI
therapy. For example, Rizvi et al. [89] determined a cutoff of 178 mutations per tumor for NSCLC,
Carbone et al. [97] set it at > 243 mutations for patients with NSCLC from the phase 3 CheckMate-026
trial, while Hellmann et al. [91] established it at > 248 mutations for patients with SCLC from the
CheckMate-032 trial. Often, PD-L1 expression was not predictive of response and did not correlate
with TMB [94], the latter being an independent positive predictive biomarker [98].

Selective loss of mutation-associated antigens by a T-cell-dependent immunoselection process has
also been proposed as an immunoediting mechanism of cancer in acquired resistance. Furthermore,
these neoantigens can be lost by gene downregulation, removal of tumor subclones, loss of mutated
alleles or elimination of chromosomal regions harboring truncal alterations [84]. Thus, tumors with a
poor response correlate with those whose neoantigens are expressed in a smaller number of tumor
cells (subclonal level) [31]. In NSCLC, it has been observed that a T-cell response that has a favorable
impact on clinical outcome requires clonal neoantigens present in 100% of the tumor cells, as it is
associated with an inflamed TME. Meanwhile, subclonal neoantigens do not elicit an effective antitumor
response [99].

On the other hand, tumor cell clones that never express neoantigens can proliferate, constituting
another escape route [85]. Furthermore, the efficiency of the tumor in the presentation of neoantigens on
MHC-I to T-cells also influences the response to ICIs, since the antitumor activity of CTLs depends on
it. The efficiency of antigen presentation can be diminished by the reduction/loss of MHC-I expression,
decreasing the affinity of neoantigens for MHC-I or the homozygosis of the HLA-A, HLA-B and HLA-C
genes [96]. In early-stage untreated NSCLCs, multiple independent mechanisms of immune evasion
have been observed due to strong selective pressure from the immune system. Specifically, it has been
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observed that clonal neoantigens may be subject to loss of copy number (through HLA-LOH (loss
of heterozygosity)) or transcription downregulation (by hypermethylation of the promoter, which
occurs in ~23% of neoantigens, or other additional mechanisms) [100]. Furthermore, the SCC subtype
has been observed to express HLA class I genes and B2M to a lesser extent than adenocarcinoma and
normal tissue. This would explain the lack of correlation between OS and neoantigen load observed in
SCC tumors [99].

5.2. Effector T-Cell Infiltration in the TME

The response to PD-1/PD-L1 blockade is highly dependent on several mechanisms that alter the
infiltration of effector T-cells in the TME, such as aberrations in neoantigen or T-cell activation or
even inaccessibility of T-cells to the tumor. First, the number and diversity of previously activated
tumor-specific T-cells, as well as the infiltration of effector T-cells in the TME, which is associated
with mutational and neoantigen burden, especially if the antigens are derived from essential mutated
proteins for tumors such as p53, are key. Accordingly, a correlation was observed between the density
of TILs and survival in lung cancer. Thus, high levels of CD8+, CD3+ and CD4+ T lymphocyte
infiltration in the TME showed better OS in patients with lung cancer [101], and T helper type 1 (Th1)
polarization and consequent CD8+ T-cell activation also correlated with a stronger antitumor immune
response [102,103]. Thus, a resistance mechanism consists of avoiding the infiltration of effector
T-cells into the tumor using epigenetic mechanisms, modifications of the posttranscriptional program,
alteration of chemokines and stromal cells and TIL dysregulation [96]. In relation to T-cell activation
during PD-1 blockade, T-cell-DC crosstalk is required. Accordingly, a new immunotherapy strategy for
NSCLC with DCs cocultured with cytokine-induced killer cells (DC-CIKs) has been extensively studied
and demonstrated its efficacy and safety, showing a significant improvement in PFS, OS and disease
control rates (DCRs) for patients with NSCLC without an increase in serious adverse events [104]. On
the other hand, tumor-infiltrating DCs produce IL-12 in response to the IFN-y produced by neighboring
T-cells, which are in turn activated by IL-12. This forms a loop that can be amplified by the activation
of the noncanonical NF-kB transcription factor pathway [105].

Second, stromal cells form a physical myofibroblastic barrier around tumor cells induced by
TGF-f that prevents infiltration by influencing the migration and positioning of T-cells. In addition,
cancer-associated fibroblasts, which are the main stromal cells and are associated with poor patient
prognosis, can mediate T-cell death and dysfunction through PD-L2 and FAS antigen ligand (FASL) [31].
This has been shown in lung cancer, where PD-L2 and FASL are enriched within the stromal regions of
tumors [106]. TGF-f3 can also be secreted, as well as other inhibitory cytokines such as IL-10 or IL-35,
by Treg cells to prevent the immune response within the lung tumor environment [87] by inducing
CD4* T-cell differentiation into inducible Tregs (iTregs) [102].

5.3. Epigenetic Modulation

Epigenetics comprises inheritable and reversible changes in the genome without modifying
nucleic acid sequences. Epigenetic mechanisms include DNA methylation, histone modifications,
nucleosome remodeling, and alterations in noncoding RNA expression. Epigenetic alterations produce
abnormal tumor-associated gene expression that causes tumorigenesis and cancer progression. Some
of these epigenetic alterations have been associated with the efficacy of immunotherapy in vivo and
in vitro [107] due to phenotypic changes in not only cancer cells but also immune cells for cellular
killing and functional adjustment [108,109]. For example, epigenetic loss of the IFN-y signaling
pathway is related to resistance to anti-CTLA-4 treatment [109]. There are currently promising clinical
trials combining epigenetic agents and immunotherapy as cancer therapy.

Alterations in epigenetic regulation affect the expression of immune checkpoints and TAAs in
tumors, damaging antigen presentation, as well as the migration of T-cells to the TME, the cytokine
profile and T-cell activation, inducing cell death [109]. These alterations consist mainly of methylation
changes. The addition of methyl groups to DNA is generally a repressive label that prevents the
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expression of tumor suppressor and apoptosis genes. Epigenetic alterations are also frequently achieved
by the acetylation of histones, which causes an increase in gene expression by relaxing chromatin,
which in turn favors the recruitment of transcription factors [110]. Other epigenetic mechanisms
associated with clinically beneficial responses to ICIs include disruption of the SWI/SNF complex,
a chromatin remodeler, enhancing secretion of effector T-cell-attracting chemokines through increased
tumor sensitivity to IFN-y [96].

Thus, it has been shown that the promoter DNA methylation of PD-1, PD-L1, and CTLA-4 inversely
correlates with the expression of these proteins in NSCLCs compared to normal tissues [111,112], as
well as in other types of tumors. This is possibly mediated by TGF-31 and TNF-« during EMT [113].
Furthermore, there seems to be an association between this type of epigenetic modification and the
response to immunotherapy and survival in NSCLC [114]. This association can be determined by a
signature of DNA methylation in 301 CpGs, namely, EPIMMUNE, which can be reduced to FOXP1
epigenetic status for clinical practice. FOXP1 is a transcription factor involved in quiescent CD4+ T-cell
and follicular T helper cell regulation.

Treatment with epigenetic agents potentiates innate and adaptive immune pathways by improving
antigen presentation, reexpressing TAAs, upregulating MHC class I and MHC class 1I, increasing
IFN-y release by tumor-specific CTLs, enhancing the proinflammatory functions of DCs to boost T-cell
proliferation and effector T-cell trafficking, and improving the transcriptional activity of some genes
related to the immune system, including PD-L1 and genes of the interferon signaling cascade [109].

These agents may also increase the number of TILs, which are decreased due to the suppression of
Thl-type chemokine CXCL9 and CXCL10 expression, thereby enhancing the clinical efficacy of PD-L1
checkpoint blockade. They can also lead to the expression of a major T-cell costimulatory molecule on
tumor cells, which in turn improves the immune response by efficient antitumor CTLs [115].

On the other hand, T-cell exhaustion arises as a consequence of persisting antigenic stimulation
during chronic infections and cancer, producing effector impairment functions. However,
anti-PD-1/PD-L1 treatment can reverse this situation, which is known as reinvigoration. Nevertheless,
an acquired resistance mechanism to checkpoint inhibitors, which leads to a lack of long-lasting
improvements, consists of the genetic stability of exhausted CD8+ T-cells, which prevents them from
acquiring the memory T-cell phenotype after reinvigoration. The inability to acquire a memory T-cell
phenotype despite transcriptional rewiring and reengagement of the effector circuitry is believed to be
due to the epigenetic landscape, which is minimally remodeled after PD-L1 blockade [84].

It should not be forgotten that miRNAs also participate in all these processes. For example,
miR-214, miR-126, and miR-568 participate in T-cell exhaustion by promoting the development of
Tregs and improving their function, thus downregulating CTL activity [109]. In the case of NSCLC,
the expression of PD-L1 is regulated by ZEB-1, which blocks the expression of miR-200, an inhibitor of
PD-L1 expression [113].

5.4. The Innate Anti-PD-1 Resistance (IPRES) Gene Signature

A set of transcriptional signatures with the ability to stratify tumors, including lung
adenocarcinoma, according to response to anti-PD-1 treatment (referred to as innate anti-PD-1 resistance,
IPRES) has been reported [116]. This molecular classification displays concurrent deregulation of
genes involved in increased hypoxia, angiogenesis, mesenchymal transition, and wound healing.
Specifically, it consists of 26 transcriptomic signatures related to immunosuppression (IL10, VEGFA,
and VEGFC), EMT transcription factors (AXL, ROR2, WNT5A, LOXL2, TWIST2, TAGLN, and FAP),
monocyte and macrophage chemotaxis (CCL2, CCL7, CCL8 and CCL13), wound healing, angiogenesis
and treatment/resistance to MAPK pathway inhibition [84,85,116]. It is suggested that mitigating
the biological processes underlying this IPRES signature may reverse and modulate the efficiency of
the ICIs.
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5.5. PD-L1 Expression

PD-1-mediated T-cell suppression is a recurrent resistance mechanism. PD-L1 overexpression
often exists in the TME, as well as in immune, stromal and tumor cells, and it is regulated by the
latest response to oncogenic signaling or induced by inflammatory cytokines. In acquired immune
resistance, TIL-secreted IFN-y and tumor antigen-specific T-cells mediate PD-L1 upregulation after
tumor antigen recognition, and this functions as a tumor escape mechanism that uses constitutive
oncogenic signaling, such as c-Jun and STAT3.

On the other hand, the mutational landscape of the tumor can also influence PD-L1 expression,
which may also be overexpressed as a consequence of amplification of the chromosomal region
9p24.1 (containing PD-L1, PD-L2, and JAK2) [85]. Then, PD-L1 binds to PD-1 on T-cells adjacent to
tumor cells and sends a coinhibitory signal dampening T-cell activity [117]. Other mechanisms of
PD-L1 upregulation are overexpression of Myc along with mutated KRAS; activating mutations of
EGEFR, KRAS or JAK2; and CMTM4 and CMTMS6 posttranslational regulation in tumor cells and DCs,
in addition to other posttranscriptional modifications [96]. According to the EGFR mutations and ALK
rearrangements, the absence of high levels of CD8+ TILs and concurrent PD-L1 expression indicates
innate resistance and limits the response to anti-PD-1/PD-L1 treatment in the majority of EGFR-mutant
and ALK-positive NSCLCs. This PD-L1 expression can be due to constitutive oncogenic signaling [118].
Based on these results, PD-L1 expression has been proposed as an important predictor of the response to
ICIs. In fact, the KEYNOTE-024 results demonstrate that treatment with pembrolizumab (an anti-PD-1
inhibitor) produces significantly longer PFS and OS and fewer adverse events when there is PD-L1
expression on at least 50% of tumor cells in advanced NSCLC [67]. This prompted the FDA to approve
pembrolizumab as a first-line treatment for PD-L1+ (>50%) NSCLC with no EGFR or ALK genomic
tumor aberrations in 2016.

However, PD-L1 expression is not a good predictor of response, since it also depends on other
factors, such as the presence of CD8+ TILs and the clonal TCR repertoire. Building on this, a tumor
classification system [119] has been proposed where type I tumors are PD-L1-/TIL- (immune ignorance),
type Il tumors are PD-L1+/TIL+ (acquired immune resistance), type III tumors are PD-L1-/TIL+
(immune tolerance by other suppressor factors), and type IV tumors are PD-L1+/TIL- (constitutive
expression of PD-L1) [120]. This tumor classification system, which is called TIME (Tumor Immunity
in the MicroEnvironment), has been applied to colorectal cancer to predict response to immunotherapy
without success [121]. However, studies in NSCLC highlight the role of TILs such as CD8+ FOXP3+
T-cells (a Treg subtype), CD8+ T-cells, and FOXP3+ T-cells. Thus, longer OS was associated with
low tumor CD8+ FOXP3+ T-cell density in the TME, making it a likely negative prognostic factor in
NSCLC. On the other hand, significantly more CD8+ T-cells were found in lung adenocarcinoma than
in SCC. It should be noted that while adenocarcinomas showed better OS, SCCs expressed significantly
higher amounts of PD-L1 [122].

5.6. T-Cell Exhaustion

T-cells play a key role in antitumor function and have demonstrated to be crucial for cancer
immunotherapy. However, they are not completely effective because part of them go into a dysfunctional
state of exhaustion. This promotes uncontrolled growth of tumors [123]. Under physiological conditions,
T-cells specifically recognize and react to tumor antigens through their TCRs. Following T-cell priming
and tumor localization, the balance between co-stimulation and co-inhibition determines degree of
T-cell activation and subsequent immune response [124]. On the one hand, co-stimulation amplifies
T-cells activation and enhances CTL proliferation, survival and effector function. On the other, inhibitory
receptors, suppressive soluble mediators, cell subsets and metabolic factors from immunosuppressive
TME lead to T cell “exhaustion” [123]. The intensity of these different signals depends on parameters
such as specific mutations in cancer cells, spatial gradients in tumor composition, and therapy-induced
alterations in TME. Collectively, these immunosuppressive signals in TME lead to the intratumoral
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T-cell exhaustion by influencing the expression of inhibitory receptors, changing metabolic pathways,
modifying the epigenetic state, and altering their transcription factor profiles [125].

Functional exhaustion of CD8+ T-cells has been well described in chronic viral infections and in
cancer [85]. Exhausted T-cells show poor effector function, express inhibitory receptors, and have altered
transcriptional states. They are characterized by a hierarchical loss of proliferation and cytolytic activity,
followed by defects in cytokine production and eventual depletion. In a first stage, interleukin-2 (IL-2)
production and ex vivo killing capacity are lost, followed by loss of tumor necrosis factor-« (TNF-«x)
production, and ends with loss of interferon-y (IFN-y) and granzyme B (GzmB) production [126].
In addition, exhausted T-cells are associated with the overexpression of multiple inhibitory receptors,
including PD-1, TIM-3, CTLA-4, LAG3 and BTLA, which in turn are associated with resistance to
anti-PD-1 therapy in NSCLC. Depending on the expression of these five receptors in CD8+ T-cells,
a depletion gradient is created that includes severe defects in cytokine production, proliferation and
migration when all of them are coexpressed [84]. However, there are different subpopulations of
PD-1+ CD8+ T-cells that respond differently to anti-PD-1 treatment in solid tumors. In addition,
different epigenetic T-cell states influence the reprogrammability and dysfunction of exhausted PD-1+
T-cells [127]. A recent study conducted with NSCLC data and validated with pan-cancer data identified
a 78-gene signature for exhausted CD8+ T-cells (GET) [128]. Furthermore, T-cell exhaustion was related
to immune cytolytic activity. This could be explained by the understanding that T-cell exhaustion is
a heavily regulated hyporesponsive adaptation to maintain prolonged tumor control while limiting
detrimental immunopathology rather than just loss of functionality. However, the GET signature was
not predictive of the clinical response to ICIs until it was combined with immune cytolytic activity (CYT)
and T-cell-inflamed gene expression profiles (GEPs), which can be interpreted as T-cell exhaustion not
implying complete immune incompetence [128].

Therefore, the scientific community has focused on the development of therapies that enhance
T-cell anti-tumor immunity, including adoptive transfer of TILs, endogenous peripheral blood-derived
T-cells (ETC), CAR-T, and TCR -engineered T-cells (TCR-T), neoantigen vaccines and checkpoint
blockade therapies. To improve the efficacy of these therapies, the dysfunctional state of the T-cells
must be reversed. This has led to the investigation of transcriptional regulators as well as metabolic
and epigenetic factors as possible targets [123].

5.7. Genomic Drivers

Specific oncogenic signaling pathways play a crucial role in PD-1/PD-L1 inhibition resistance.
An example is the increased activity of the PI3K-AKT pathway, which is commonly observed in many
tumors. One of its causes is the loss of PTEN, which suppresses PI3K signaling activity, constituting
a primary resistance mechanism, and constitutive expression of PD-L1. The lack of PTEN in tumor
cells, which can be biallelic, decreases T-cell-mediated tumor killing, CD8+ T-cell infiltration into
tumors, successful T-cell expansion from resected tumors and outcomes with PD-1 inhibitor therapy.
This occurs through the upregulation of the expression of the immunosuppressive cytokines VEGF
and CCL2 [84,85,96,129]. In the case of NSCLC, loss of PTEN expression occurs frequently (55% to
74%) [130]. Furthermore, the PTEN mutation rate in this pathology ranges from 8% to 17% [130], while
promoter methylation occurs in up to 35% of NSCLC [131]. On the other hand, loss of heterozygosity
at microsatellites surrounding and intragenic to the PTEN locus occurs in 19% [132]. It has also been
proposed that activation of the WNT/[3-catenin signaling pathway in many tumors is involved in
primary resistance to anti-PD-L1/anti-CTLA-4 monoclonal antibody therapy [133]. Its activation is
correlated with the absence of CD8+ T-cells and reduced CCL4 gene expression, leading to diminished
infiltration of CD103+ dendritic cells and impaired antitumor immune responses [84,85,134]. On the
other hand, dysfunctional mutations in JAK genes (JAK1 and JAK2) have been described as a secondary
resistance mechanism. This loss of function was found in homozygosity by deletion of the wild-type
allele. Although CD8+ T-cells produce IFN-y after tumor recognition, complete loss of JAK functionality
results in the absence of STAT1 phosphorylation and insensitivity to [IFN-y. Consequently, there was
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a drop in the expression of MHCI and PD-L1. Similarly, the knockdown of IFN-y receptors (Ifrngrl
and Ifngr2) leads to resistance to anti-PD-1 treatment. However, the role of JAK1/2 could be more
complex because its inhibition could also overcome resistance. Another mechanism of secondary
resistance is truncating mutations in the (3-2-microglobulin (B2M) gene. This loss results in impaired
cell surface expression of MHC class I since B2M is key in its folding, stabilization and expression at
the cell surface. Therefore, the presentation of antigens to cytotoxic T-cells is impaired [84,85,135]. B2M
inactivation is enriched in patients who are nonresponsive to immune checkpoint blockade. Under
other conditions, loss of STK11/LKB1 in the setting of an oncogenic KRAS mutation produces silenced
STING expression and an inability to detect cytoplasmic double-stranded DNA (dsDNA). Its loss also
increases IL-6, resulting in an increase in neutrophil recruitment, a decrease in T-cell infiltration, higher
levels of T-cell exhaustion markers (PD-1, CTLA-4 and TIM3), and lower expression of PD-L1 on
tumor cells [85,136], which impairs the ICI response. STK11/LKB1 mutations often coexist with KEAP1
mutations in NSCLC, correlating with a worse clinical outcome. Mutations in KEAP1, which have a
frequency of 15-18% in NSCLC, produce constitutive activation of NRF2, leading to cellular resistance
to oxidative stress, proliferation, and metabolic reprogramming [137]. Finally, T-cell recruitment and
function can be impaired by MAPK pathway activation through activating point mutations of the BRAF
gene [138]. BRAF mutations are detected in 3-8% of NSCLC, of which canonical V600E mutations
represent approximately 50-75%, and they are found mainly among smokers. ICI treatment in patients
with BRAF-mutated NSCLC seems to be more effective; however, its use in this context is not yet fully
justified [139].

5.8. Enteric Microbiome

The microbiome is also suggested as a potentially key mechanism of immune resistance in
patients with lung cancer. There is already scientific evidence showing the importance of the intestinal
microbiota in the response to CT and IT and how its alteration and the concomitant use of antibiotics
inhibit the benefit of ICIs in advanced cancer, decreasing OS and PFS in NSCLC [140]. Among the
different immune cells, the microbiota has been shown to be associated with the development of
effector cells of the immune system, such as Th1, Th2, Th17 and Treg cells [141-143]. In the case of
SCLC, there is not yet evidence that supports the role of the microbiome specifically as an immune
resistance mechanism.

With respect to microbiota composition, the relative abundance of Akkermansia muciniphila
appears to significantly affect the clinical response to anti-PD-1/PD-L1 therapy in NSCLC and renal cell
carcinoma. This was demonstrated with in vivo models by administering oral feces from ICI-responsive
patients with NSCLC or oral supplements with A. muciniphila to restore the efficacy of PD-1 blockade.
Furthermore, the authors propose that this effect is IL-12 dependent due to the increased recruitment
of CCR9+ CXCR3+ CD4+ T lymphocytes [140]. In another study, a combination of 11 gut bacterial
strains isolated from healthy donors was also capable of enhancing the antitumor efficacy of IClIs
in mice by inducing IFN-y-producing CD8+ T-cells in the intestine [96,144]. There are other similar
studies where a greater diversity of the gut microbiome is related to the responding phenotype in
melanoma models. Additionally, there is also a need for the presence of certain live bacteria, such
as Bifidobacterium, to modulate DC activation and influence the T-cell response [145]. Taken together,
these data suggest that resistance mechanisms to PD-1/PD-L1 blockade therapy are even more complex
and require more understanding in lung cancer.

6. Potential Biomarkers of Resistance to Immunotherapy in Lung Cancer

One of the greatest challenges in the field of immuno-oncology is the identification of
response/resistance predictive biomarkers, since only 20% of patients with NSCLC show a durable
response to this type of treatment. The identification of new and reliable biomarkers able to discriminate
between “responding” and “nonresponding” patients before starting therapy would allow us to treat
only those patients who are going to have a clinical benefit with anti-PD1/PD-L1 therapy. This would
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mean not only an increase in the 5-year OS of patients with advanced NSCLC but would also allow us
to not add toxicity to patients who are not going to benefit from the treatment and to provide economic
savings due to the high cost of these treatments. In addition, longitudinal tumor sampling throughout
immune checkpoint blockade treatment has emerged as a good methodological strategy to study the
response and resistance mechanisms due to their dynamic nature. Thus, immune markers that did not
show response prediction power before treatment did show response prediction power in the early
stages of treatment [80,146].

To date, tumor PD-L1 expression and TMB have emerged as predictive biomarkers for NSCLC;
however, both are imperfect tools, and this has led to further studies to find more effective tools. PD-L1
is an inducible and dynamic protein subject to changes according to the variations that exist in the
TME. However, the predictive value of PD-L1 expression in immune cells and the TME for PD-1/PD-L1
blockade therapy has not yet been confirmed in NSCLC [147]. Similar results have been described
for SCLC, where the extent of the benefits of PD-L1 expression on the long-term survival of patients
continues to be demonstrated [148-151]. Its main limitations as a biomarker in immunotherapy are
the variability between immunohistological techniques making standardization difficult, the tumor
constitutive expression of PD-L1 driven by different mechanisms independent of the adaptive response
to tumor immunity and TIL assessment. Thus, in addition to PD-L1 expression, strong peritumoral
CD8+ T-cell activity is required to contribute significantly to the antitumor response. Together with the
results of clinical trials, these findings suggest considering PD-L1 as a prognostic and not a predictive
marker [152,153]. In the case of TMB, NSCLC and SCLC have a TMB average well above the rest of the
tumors, with the exception of melanoma [93]. However, although their prognostic value is related to
the number of neoantigens and the degree of immune infiltration, TMB cannot predict the immune
infiltration in cancers driven by copy number alterations [31]. Moreover, TMB analysis through NGS
platforms requires a large amount of tissue, and in some cancer types, substantial responses to ICIs
are observed despite a low TMB. There are also studies [154] in which the median TMB did not differ
between responders and nonresponders. However, the HLA-corrected TMB algorithm with HLA-LOH
has been proposed as a solution since it shows additional predictive and prognostic value for response
to ICIs [86] in advanced NSCLC. Recently, it has also been reported that the predictive power of TMB
to differentiate the efficacy of ICISs is related to the age of the patients, i.e., it is better in young than
elderly NSCLC patients [155]. Nevertheless, for TMB to be incorporated into clinical decisions, it is
necessary to establish for which patient groups it would be beneficial, as well as the value of the cutoff
for their benefit. For instance, Ricciuti et al. proposed that a classification of TMB by tertiles allows
discerning patients with SCLC with better one-year PFS and OS rates [156]. However, these results
need to be validated in large patient cohorts to extrapolate to all pre-ICI lung cancer patients.

Over the past few years, other potential TME predictive markers of response to ICI treatment in
NSCLC have also been identified, such as the enzyme IDO1 (indoleamine 2,3-dioxygenases), which is
overexpressed in NSCLC and catabolizes tryptophan into immunosuppressive metabolites such as
kynurenine. IDOI1 function is evaluated through the kynurenine/tryptophan ratio, which inversely
correlates with PFS and OS. Patients with a lower ratio showed a better clinical outcome [152,157].
Therefore, IDO inhibitors in combination with ICIs are currently being conducted in several clinical
trials including solid tumors, such as NSCLC and SCLC (NCT02298153, NCT03348904, NCT02959437,
NCT03322566, NCT03322540, NCT03361228, NCT03347123, NCT03277352, and NCT03085914; https:
/[clinicaltrials.gov). Additionally, the genetic mutations and gene expression signatures such as IPRES,
described above, as well as the epithelial-to mesenchyme status in the TME, may have potential clinical
use and aid in treatment decisions with ICIs, although further investigation of these biomarkers is
required in NSCLC [147]. Otherwise, through NGS, the presence of MSI within a tumor, a signature
of dMMR, and modifications in genes involved in response can also be evaluated, such as PTEN,
STK11/LKB1, KEAP1, B2M, 3-catenin and others described above [137]. In relation to this, AIMMR
and MSI-H have a high predictive value [96,115], while somatic mutations such as STK11/LKB1 and
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KEAP1 are prognostic of poor outcomes but not predictive [158] in terms of response to therapies with
checkpoint inhibitors in lung adenocarcinoma.

There is a high percentage of patients with lung cancer who do not have adequate tissue at
diagnosis for standard clinical tests, so it has been proposed to search for predictive biomarkers of
response in peripheral blood. Blood is a type of sample that is frequently accessible, quickly and
noninvasively, which allows (1) determining biomarkers in pretreatment; (2) continuous monitoring of
the disease and treatment response evolution; and (3) avoiding comorbidities in patients by rebiopsy.
Some of the potential blood markers are serum lactate dehydrogenase levels, the number of circulating
tumor cells (CTCs), circulating tumor DNA (ctDNA), soluble forms of PD-1 and PD-L1 (sPD-L1),
blood-based TMB, and immune cell subpopulations [159]. In fact, some of these markers have been
shown to be useful in predicting response to ICI treatment [160]. Specifically, low levels of sPD-L1 may
correlate with longer survival in advanced NSCLC, multiple myeloma, and renal cell carcinoma [161].
Similarly, complete reduction in ctDNA levels after initiation of therapy was associated with clinical
response, while increments or no changes in ctDNA levels were observed in nonresponder NSCLC
patients [162]. Blood exosomes and other extracellular vesicles (EVs) are also emerging in the field
of oncology for their possible clinical applications. Thus, PD-L1+ exosomes released from tumors
can inhibit T-cell activation in the tumor-draining lymph node [96]. In addition, PD-L1 levels in
exosomes have been associated with NSCLC progression, but these results were not observed with
sPD-L1 in the same study [163]. In turn, EVs are ubiquitous mediators of intercellular communication
that transport proteins, metabolites, RNA species, and nucleic acids. They can be found in biological
fluids other than blood and can be emitted by tumors with organ-specific immunosuppressive loads to
prepare metastatic niches [164]. However, the role of EVs is still poorly studied and requires further
investigation and understanding. On the other hand, analysis of multiple antigens at the single-cell
level in peripheral blood mononuclear cells (PBMCs) by mass cytometry has recently made it possible
to identify certain cellular subpopulations that correlate with a better response to treatment with
anti-PD-L1 in melanoma. Studies in melanoma have also described that the frequency of specific
cell populations in peripheral blood could also be used to predict the response to anti-PD-1 [165].
In patients with NSCLC specifically, the levels of specific immune cells have also been proposed
as response predictors to PD-1/PD-L1 blockade. Thus, CD8+ T-cell density has been reported as
a significant predictive and stage-related prognostic factor, while stromal CD8+ TIL density has
independent prognostic value. On the other hand, immunosuppressive immune cells such as Tregs,
MDSCs, tumor-associated macrophages (TAMs) and neutrophils in the TME have emerged as relevant
predictors in this disease. However, the heterogeneity of these populations (i.e., due to differences
in CD25 or Foxp3 expression in the case of Tregs) causes them to show discrepancies, making their
interpretation difficult, which will require further investigation to reach consistent conclusions in lung
cancer. Along these same lines, a high B-cell count and DC aggregates in the tumor are correlated with
good clinical outcomes, suggesting that they could have prognostic value in NSCLC [147]. In the case
of the immune contexture of SCLC, it is known that it can differ depending on the tumor stage and
performance status. Therefore, further research is necessary to understand how variations in immune
subpopulations could be key to the ICI response.

In turn, it is well known that the immune system has coevolved with the microbiome that
populates the human body, and its composition provides many beneficial functions to its host,
including nutrient synthesis, protection against pathogen invasion and regulation of immunological
responses to autoantigens [166-168]. This suggests that the microbiota plays a critical role in balancing
the host immune system between activation and tolerance, since it retains the potential to interfere with
innate and adaptive immune responses through different mechanisms. In other words, breaking this
relationship could contribute to the reduced effectiveness of immunotherapy in cancer. There is already
scientific evidence showing the importance of the gut microbiota in the response to CT and IT and
how its alteration due to the concomitant use of antibiotics inhibits the benefit of immune checkpoint
inhibitors in advanced cancer, decreasing OS and PFS in NSCLC [140]. Thus, different microbiome
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clusters have been proposed as predictive biomarkers; however, the strong variability of microbiota
according to geographic, dietary and lifestyle differences makes its interpretation difficult [152,169].
In addition, it is important to note that alterations of the microbiome could be analyzed in different
biological samples, such as saliva, sputum, bronchial fluids and lung tissue, instead of feces. However,
much remains to be done in this regard, not only before starting treatment but also in longitudinal
studies to correlate it with the evolution of the response in more or less invasive samples from patients
with lung cancer.

7. Conclusions

Immunotherapy has had a deep impact on the treatment paradigm for patients with lung cancer,
especially with antibody-based immunotherapy. The current state of immunotherapy for lung cancer
is mainly aimed at patients with advanced NSCLC. However, some studies are being carried out in
patients with SCLC. Despite the promising results, only a lower-than-expected percentage of patients
with lung cancer achieve lasting antitumor efficacy with these therapeutic strategies. This encourages
the identification of both primary and acquired resistance mechanisms associated with immunotherapy
in the hope of assisting in more focused decision-making in clinical practice, as well as the development
of new and more effective immunotherapy strategies. An increasing number of biomarkers with
potential predictive or prognostic value are being identified, since there is a real need to anticipate the
response of patients to immunotherapeutic treatments, specifically anti-PD-1/PD-L1, and to prevent
the possible resistance mechanisms involved. Moreover, the clinical benefit of immunotherapy can be
adapted not only according to the characteristics of the tumor itself but also the features of each patient.
This will allow us to make decisions even with minimally invasive samples for patients. In addition,
we predict that the developed and optimized single-cell technology will play a key role in dissecting
intratumoral and host heterogeneity and will provide answers to the immunotherapy response.

In summary, the use of cutting-edge technologies, the types of biological samples analyzed,
and the development of clinical trials with novel immunotherapeutic strategies will continue to be
essential to improve the clinical outcomes of patients with lung cancer. This improvement will be
based mainly on the resistance mechanisms identified in current immunotherapies.
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BRAF v-Raf murine sarcoma viral oncogene homolog B
CAR Chimeric antigen receptor

CDC Complement-dependent cytotoxicity
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CIK Cytokine-induced killer cell

CT Chemotherapy

ctDNA Circulating tumor DNA
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DCR
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Cytotoxic T lymphocyte

Cytotoxic T lymphocyte-associated antigen 4
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Dendritic cell

Disease control rates

DNA mismatch repair deficiency
Double-stranded DNA

Epidermal growth factor

Epidermal growth factor receptor
Echinoderm microtubule associated protein-like 4
Endogenous peripheral blood-derived T-cells
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FAS antigen ligand

Food and Drug Administration

Fibroblast growth factor receptor 1
Granulocyte Macrophage colony-stimulating factor
Granzyme B

Human epidermal growth factor receptor 2
Hazard ratio

Herpes simplex virus type 1

Immune checkpoints inhibitor

Indoleamine 2,3-dioxygenases

Interferon-y

Interleukin-2

Immunotherapy

Inducible regulatory T cell

Large cell carcinoma

Loss of heterozygosity

Monoclonal antibody

Myeloid-derived suppressor cell

Hepatocyte growth factor receptor

MG1 Maraba/MAGE-A3 virus

Microsatellite instability-high

Measles virus

Myxoma virus

Non-small cell lung cancer

Objetive response rate

Overall survival

Oncolytic virus

Peripheral blood mononuclear cells
Programmed cell death protein 1
Programmed cell death ligand 1
Progression-free survival

Phosphoinositol 3-kinase

Receptor tyrosine kinase ROS proto-oncogene 1
Radiotherapy

Tyrosine kinase receptor

Squamous cell carcinoma

Small cell lung cancer

soluble forms of PD-L1

Split, universal, and programmable chimeric antigen receptor system
Tumor-associated antigen
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TAM Tumor-associated macrophage
TCR T-cell receptor

TCR-T TCR-engineered T-cells

TIL tumor-infiltrating lymphocyte

TKI Tyrosine kinase receptor inhibitor
TMB Tumor mutation burden

TME Tumor microenvironment

TNF-« Tumor necrosis factor-o

Treg Regulatory T cell

VEGF Vascular endothelial growth factor
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