
foods

Article

Reduction of the Number of Samples for Cost-Effective
Hyperspectral Grape Quality Predictive Models

Julio Nogales-Bueno 1,2 , Francisco José Rodríguez-Pulido 1 , Berta Baca-Bocanegra 1,* , Dolores Pérez-Marin 2,
Francisco José Heredia 1 , Ana Garrido-Varo 2 and José Miguel Hernández-Hierro 1

����������
�������

Citation: Nogales-Bueno, J.;

Rodríguez-Pulido, F.J.;

Baca-Bocanegra, B.; Pérez-Marin, D.;

Heredia, F.J.; Garrido-Varo, A.;

Hernández-Hierro, J.M. Reduction of

the Number of Samples for

Cost-Effective Hyperspectral Grape

Quality Predictive Models. Foods

2021, 10, 233. https://doi.org/

10.3390/foods10020233

Academic Editor: Vincenzo Gerbi

Received: 16 December 2020

Accepted: 20 January 2021

Published: 23 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Food Colour and Quality Laboratory, Área de Nutrición y Bromatología, Facultad de Farmacia,
Universidad de Sevilla, 41012 Sevilla, Spain; julionogales@us.es (J.N.-B.); rpulido@us.es (F.J.R.-P.);
heredia@us.es (F.J.H.); jmhhierro@us.es (J.M.H.-H.)

2 Department of Animal Production, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain;
dcperez@uco.es (D.P.-M.); pa1gavaa@uco.es (A.G.-V.)

* Correspondence: bbaca1@us.es; Tel.: +34-955-420-973

Abstract: Developing chemometric models from near-infrared (NIR) spectra requires the use of a
representative calibration set of the entire population. Therefore, generally, the calibration procedure
requires a large number of resources. For that reason, there is a great interest in identifying the most
spectrally representative samples within a large population set. In this study, principal component
and hierarchical clustering analyses have been compared for their ability to provide different repre-
sentative calibration sets. The calibration sets generated have been used to control the technological
maturity of grapes and total phenolic compounds of grape skins in red and white cultivars. Finally,
the accuracy and precision of the models obtained with these calibration sets resulted from the
application of the selection algorithms studied have been compared with each other and with the
whole set of samples using an external validation set. Most of the standard errors of prediction (SEP)
in external validation obtained from the reduced data sets were not significantly different from those
obtained using the whole data set. Moreover, sample subsets resulting from hierarchical clustering
analysis appear to produce slightly better results.

Keywords: hyperspectral imaging; near-infrared; grape quality; sample selection; chemometrics

1. Introduction

Near-infrared spectroscopy (NIRS) is applied today to monitor a large number of
parameters in the food sector. Traditional spectroscopy provides useful methods that are
applied continuously in both food research and the food industry [1–3]. Particularly, in the
sector of viticulture, NIRS has been increasingly applied to grape quality assessment as a
rapid and non-destructive technique. NIRS can measure the absorption of electromagnetic
radiation at wavelengths in the range 780–2500 nm. The NIR spectra of grapes (as well
as other food products) comprise broad bands arising from overlapping absorptions cor-
responding mainly to overtones and combinations of vibrational modes, involving C–H,
O–H, and N–H chemical bonds. This makes NIRS a very feasible tool to measure organic
and biological systems such as grape samples [4]. NIRS has strongly demonstrated its
suitability for on-site and real-time quality control at different points of the wine production
chain. This technique can be applied to monitor grape quality during on-vine ripening,
helping, in this way, in the decision-making process. In addition, the implementation of
NIRS methods allows us to improve the sampling procedure, which translates into better
use of resources and a greater capacity for analysis [5–7]. Three comprehensive reviews
show the potential and challenges of NIRS for analysis of the chemical composition of
grapes in the laboratory, the vineyard and before or during the harvest, to provide better
insights into the chemistry, nutrition and physiology of grapes [5,8,9].
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In the last decade, image analysis has been added to spectroscopy resulting in hyper-
spectral imaging. The inclusion of the spatial domain allows some quantitative and qualita-
tive approximations that are not possible with traditional single-point spectroscopy [10,11].
Several hyperspectral studies have been carried out, in our laboratory, for the analysis
of the chemical composition of grapes [12], grape maturity [13] and to measure phenols
concentration in grape or grape seeds [14,15]. Other authors have used near-infrared
hyperspectral imaging to quantify these quality parameters in the lab [16,17] or even in the
field [18].

Both traditional NIR spectroscopy and hyperspectral image analysis require the use of
a representative calibration set of the entire population. Therefore, generally, the calibration
procedure requires a large number of resources, not only in the spectra acquisition step but
also in the determination of the reference parameters [19]. Some of the reference analyses
used in the oenological sector are based on time-consuming and polluting methodologies.
Chromatographic or spectrophotometric methods are usually applied to the determination
of reference parameters such as the contents of total phenols, individual phenolic com-
pounds, total acidity, elemental composition, etc. [20,21]. For that reason, in a real-world
situation, the number of samples that can be used for developing a regression model is
usually small due to budget and/or time constraints [22]. Thus, the optimal sample size
is often determined by a balance between the available budget and acceptable accuracy.
Furthermore, the calibration sampling strategy is crucial when the number of samples that
can be included in the calibration set is restricted. It exists a relation between the calibration
sampling strategy and the generalization ability of the models [22,23]. Therefore, there
is a great interest in identifying the most representative samples within a complete set of
samples to reduce the number of resources required without losing information that could
be important for the development of chemometric models.

A good option to achieve a representative subset of the spectral space is to study the
spectral distribution of the samples in that space and to take into account this distribu-
tion in the selection procedure. To do that, the spectral distances between samples and
the population center are usually measured. Euclidean and Mahalanobis distances are
employed to evaluate the distribution of the spectra in a spectral space [24]. Shenk and
Westerhaus [25,26] patented the algorithms denominated CENTER and SELECT, based
on measuring the Mahalanobis distance (H) and Neighbourhood Mahalanobis distance
(NH). These algorithms allow to structure spectra within a spectral matrix and to select the
most representative spectra for their subsequent analysis. When H is calculated using a
small number of latent variables, i.e., principal components (PCs) obtained after a principal
component analysis (PCA), some problems, such as multicollinearity are avoided [24]. The
global H measures the distance of each sample to the center of the sample population. Sam-
ples with an H value greater than 3 are considered spectral outliers [26]. The NH calculates
the distance between pairs of samples. An NH value lower than 0.6 indicates that the
two spectra are similar to each other (‘neighbor’). These algorithms have been extensively
used with NIRS data to study the structure and variability of the sample population and to
select samples, based on their spectral features, for several applications, such as calibration
development or spectral instrument matching applications [27,28].

In addition, different multivariate strategies can be applied, based on the measure-
ment of other spectral distances or differences between samples (k-nearest neighbors,
Kennard-Stone, successive projections algorithm, etc.). For example, Kennard-Stone (KS)
algorithm [29], a classic method for sample selection, calculates the distance between
samples, selecting samples uniformly distributed in the predictor space. KS commonly
uses the Euclidean distance and has been widely applied to select spectral samples in agri-
cultural and food products such as soy sauce [30], corn gluten meal [31] and grasses [32],
among others. Other statistical tools, such as dendrograms or clusters analysis, have also
been applied to identify representative samples within a spectral dataset. For instance,
Moros et al. [33] made up their calibration and validation sets from a dendrogram obtained
after hierarchical cluster analysis of NIR spectra of soils. Using this sample selection,
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they developed prediction models for the screening of physicochemical parameters of soil
samples obtaining similar or lower errors than those of the models reported in literature
developed without sample selection.

To check what is the better sample selection method for identifying representative
grape samples according to their NIR spectra, a comprehensive study has to be developed.
Consequently, the main aim of this study was to check the feasibility of different sample
selection methods for making up representative sample sets of grape spectra. Then, cali-
bration models for the prediction of total acidity, total soluble solids, total skin phenols and
pH were developed for the entire sample set and the different representative calibration
sets selected and, finally, results were compared.

2. Materials and Methods

The grape samples used, their spectral and chemical information acquisition and
some of the chemometric methods applied in this study were deeply described by Nogales-
Bueno, Hernández-Hierro, Rodríguez-Pulido and Heredia [13]. However, the present
study describes a new and different approach based on these data and, therefore, they
are briefly described in the following sections. Moreover, sample selection procedures are
described in detail.

2.1. Samples

A total of 213 grape samples (Vitis vinifera L.) were collected from 4 different vineyards
located in the Condado de Huelva Designation of Origin D.O. (Andalusia, Spain) at differ-
ent dates from mid-July to early September during the 2012 vintage. Samples belonged
to Syrah and Tempranillo red varieties and Zalema white variety. Samples were collected
weekly since the pre-bloom period to the vintage of each vineyard. In that way, different
stages of maturity were taken into account. From each vineyard and date, at least 1.5 kg
of grapes were collected. With the aim of achieving representative samples, they were
collected from several rows of vines distributed homogeneously in each vineyard. In these
rows, grapes were collected from the top, middle and bottom of the cluster, and in the
sunlight and shade side of this. Then, samples were carried to the laboratory, where a
subgroup of 20–30 berries was randomly selected for each sample. Later on, their spectra
were acquired and their reference composition was determined.

2.2. Spectral Matrix

A hyperspectral image of each sample was recorded, comprising 20 to 30 berries each.
Spectral images were acquired with a pushbroom hyperspectral device (Infaimon S.L.,
Barcelona, Spain). This device comprised a Xenics® XEVA-USB camera (320 × 256 pixels;
Xenics Infrared Solutions, Inc., Leuven, Belgium) with an InGaAs sensor covering the
spectral range between 900 and 1700 nm. Samples were placed at the bottom of the device
and two halogen lamps illuminated them at a 45◦ angle to avoid specular reflection and
maximize the scattering effects. Spectral images were saved in matrix files with two spatial
and one spectral dimension. In each acquisition session, the spectral information of an
almost totally reflective tile and the dark current of the camera was acquired. With this
information, the spectra of the samples were calibrated and then corrected images were
saved.

Hyperspectral images were segmented to identify the background and the sample
pixels applying stepwise linear discriminant analysis. A discrimination function was
constructed using the reflectance values of these six wavelengths (979, 1034, 1073, 1314,
1386 and 1550 nm) retained by the discriminant analysis. After that, only the sample
pixels were taken into account and the average spectrum of each sample was used for the
development of the rest of the study. Two spectra of white and red grape samples are
included as Supplementary Material (Figure S1).
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2.3. Reference Parameters

The number of reference parameters were determined and were used to evaluate the
goodness of the different sample sets constructed. Reference parameters were selected for
being useful and widely employed in the oenological industry. They are usually employed
for controlling grape quality and establishing the grape harvest time. For each sample,
total acidity, total soluble solids, total skin phenols and pH were determined. For the
determination of total acidity, total soluble solids and pH, grape must was obtained. The
total acidity of the must is the sum of its titrable acidities when it is titrated at pH = 7
against a standard alkaline solution. Soluble solids were obtained by densimetry and pH
was directly measured in the must. Total phenols of grape skins were determined using the
Folin–Ciocalteu method [34]. For that, grape skins were macerated in acidified methanol.
Later, methanolic supernatants were evaporated and redissolved in water. This solution
was subjected to the spectrophotometric method and total phenols were obtained as gallic
acid equivalents per gram of grape skin. All methods used for the determination of the
reference parameters are recommended by the Organisation Internationale de la Vigne et
du Vin (OIV) [20].

2.4. Sample Selections

From the whole set of samples, one-third of them (71 samples) were randomly selected
to build an external validation set. This validation set was saved and later used to develop
external validations in all the calibration models developed in this study. The remaining
two-thirds of samples (142 samples), in the following the full calibration (FC) set, were
used for building different calibration sets.

In the first step, a principal component analysis (PCA) was applied to the spectra
comprised the FC set to look for possible spectral outliers and to sort the samples according
to their spectral variability. The PCA explains 99% of the spectral variability of the FC set
using 15 principal components (PCs) [13]. The information provided by the PCA was used
to more easily achieve the selection of representative sample sets. Two different methods
were applied for obtaining representative sample selections: Neighbourhood Mahalanobis
(NH) distance and hierarchical clustering analysis (HC).

Mahalanobis distances (H) were measured between all samples and the average
spectra of the FC set. Samples with an H value higher than 3 were identified as spectral
outliers and deleted from that set. Following that procedure, one spectral outlier was
identified and eliminated. This sample of Zalema variety was no longer considered in
the rest of the study. Moreover, H distances were also used to calculate the NH distances
between samples. Then, samples were grouped according to their NH distance and these
groups were used for selecting spectrally representative calibration sets (in the following
the NH sets) [35]. PCA and NH selection were performed using Win ISI® (v1.50) (Infrasoft
International, LLC, Port. Matilda, PA, USA).

On the other hand, the PCA scores were submitted to a hierarchical clustering analysis.
Hierarchical clustering is a general approach to cluster analysis, in which objects are
analyzed to look for their similarities, therefore, it is a potent tool for grouping spectra
and selecting the most representative [33]. In the present study, a divisive process based
on the squared Euclidean distances and Ward linkage method was used. Ward’s method
uses an analysis of variance approach to evaluate the distances between clusters. In short,
this method attempts to minimize the sum of squares of any two (hypothetical) clusters
that can be formed at each step [36]. Then, the graphical representation of the hierarchical
clustering analysis, or dendrogram, was constructed. Selecting different Ward linkage
distances, samples were divided into different homogenous groups and these groups were
used for selecting spectrally representative calibration sets (in the following the HC sets).
Hierarchical clustering analysis and dendrograms were calculated using Statistica v.8.0
software (StatSoft Inc., Tulsa, OK, USA).
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2.5. Modified Partial Least Square (MPLS) Regressions on the Full Calibration (FC) Set

Initially, the FC set was used to establish the potential of this sample set for the
prediction of the reference parameters. For that, an Modified Partial Least Square (MPLS)
regression was developed for each reference parameter. This procedure is broadly described
by Nogales-Bueno, Hernández-Hierro, Rodríguez-Pulido and Heredia [13]. However,
since the results of this study were used to evaluate the goodness of the different sample
selections developed in this study, a brief summary is included. For calibration optimizing,
different signal pretreatments were applied to the spectra. Standard normal variate (SNV),
multiplicative scattering correction (MSC), detrend and different derivatives were tested, as
is described in detail in [14]. MPLS regressions were developed for each reference parameter
and standard errors of cross-validation (SECV) were evaluated. In this method, the group
of calibration samples is divided into a series of subsets to perform cross-validation to set
the number of Partial Least Square (PLS) factors, reducing the possibility of overfitting [37].
Chemical outliers were identified using the critical T outlier value. These chemical outliers
were removed applying the T ≥ 2.5 criterion, i.e., eliminating samples that presented a
high residual value when they were predicted. Only the model with the lowest SECV was
saved for each reference parameter. Then, samples belonging to the external validation set
were predicted and standard errors of prediction (SEP) were obtained. The most effective
pretreatments were MSC for total acidity, MSC plus first derivative for total soluble solids,
SNV plus second derivative for total skin phenols and MSC plus second derivative for
pH. The obtained models presented a good potential for a fast and reasonably inexpensive
screening of these parameters [13].

Afterwards, similar MPLS regressions were developed for the NH and HC calibra-
tion sets (i.e., the sample sets confirmed after the different sample selections). For each
reference parameter, the same pretreatment that produced the best results for the FC set
was applied. Then, SECV and SEP were evaluated and SEP were compared to those ob-
tained without sample selection (FC set) using a Fisher test [38,39], as described in detail in
Pérez-Marín et al. [40].

3. Results and Discussion
3.1. Sample Selection Using Neighbourhood Mahalanobis (NH) Distance

Initially, NH = 0.6 threshold was set. This threshold is the most frequently applied
in the available literature [26,27,41], although in most cases, it is applied to matrices
really different from the grape. Particularly, these examples were forages, commercial
feeds and oak wood shavings, samples with different structures and compositions than
grapes. However, due to its widespread use, this threshold value is a logical starting point
for assessing the relationship between spectral distance and actual differences in grape
samples. After obtaining all the NH distances between samples, 79 groups of spectrally
homogeneous samples were created. By selecting one sample from each group, an NH
calibration set of 79 samples was obtained. This number of samples represent most of the
55% of the samples present in the FC set. To reduce the number of selected samples, a
higher NH was tested. The higher the NH threshold, the bigger the size of the groups and,
in consequence, the lower the number of selected samples. Choosing an NH threshold of
0.9, as is also applied in some studies [26,42], the number of groups obtained was 42, i.e.,
almost 30% of the samples allocated in the FC set.

The described algorithm produces groups with a different number of samples and it
automatically selects the most central sample of each group. For example, for NH = 0.9, the
number of samples per group ranged from 1 to 30 samples. Therefore, selecting only one
central sample per group can be adequate in groups with a reduced number of samples, but
insufficient for the bigger groups. To solve this issue, another sample selection methodology
was also applied: selecting

√
n amples (square root of the number of samples in a group)

per group [43,44]. In this case, taking into account the NH distance between each sample
and the central one, the samples were selected to be as well distributed as possible in
the group. This methodology increased the number of samples to 62 and 96 samples for
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both thresholds of 0.9 and 0.6, respectively. In consequence, four NH calibration sets were
obtained using the NH sample selection procedure (Figure 1).
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3.2. Sample Selection using Hierarchical Clustering (HC) Analysis

Scores of the first 15 PCs of the PCA analysis were used for the development of
hierarchical clustering analysis. Squared Euclidean distances were calculated and the Ward
linkage method was applied to order and split in different groups the spectral samples
allocated into the FC set. In that way, a dendrogram was constructed (Figure 2).
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The hierarchical clustering analysis links samples according to the distance between
them. It established the maximum linkage distance (Dmax) between samples at 3 and, then,
it represents the different linkage distances (Dlink) as a percentage of that maximum dis-
tance. In Figure 2, the number of created groups depends on the linkage distance selected.
As can be seen, for values of Dlink/Dmax of 1.0% and 0.5%, they can be identified 28 and
45 different groups of samples, respectively. In that way, two different HC set of samples
can be constructed by randomly selecting one sample from each group. Furthermore, in
order to obtain two more sample sets and to take into account the different sizes of the
groups,

√
n samples per group were selected per each linkage distance. In this case, groups

were divided into
√

n subgroups (the nearest whole number). Subgroups were constructed
with the largest Dlink/Dmax between them (Figure 2). One sample was randomly chosen
for each subgroup. Therefore, 4 HC calibration sets were obtained with 28, 45, 61 and
74 samples (Figure 1).

3.3. Modified Partial Least Square (MPLS) Regressions on the NH and HC Sets

Following the procedure described above, MPLS regressions were applied to the
4 NH and 4 HC sample sets. The corresponding reference parameter values were added to
each spectrum of these calibration sets. Reference parameters were used as dependent (Y)
variables, whereas, the different wavelengths in the grape spectra were used as independent
(X) variables. MPLS calibrations were obtained for the prediction of total acidity, total
soluble solids, total skin phenols and pH. SECV values were obtained after the cross-
validation procedure. The statistical parameters of the different calibrations are shown in
Table 1.

To evaluate the results of the different models obtained, their statistical parameters
were compared with those obtained from the FC set and described by Nogales-Bueno,
Hernández-Hierro, Rodríguez-Pulido and Heredia [13]. These results are also included in
Table 1 for easier interpretation. Almost all models developed from NH sets showed similar
accuracy to FC models. For example, similar SECV values were obtained for total soluble
solids and pH using the NH set constructed with NH = 0.6 and choosing

√
n sample per

group. In that case, SECV obtained is lower or similar to those obtained with the FC set.
Taking into account the HC sample sets, those built with a Dlink/Dmax of 0.5 and choosing√

n samples per group show the best results. These models, calculated from 74 samples
(52% of the FC sample set), show slightly higher SECV values than those obtained with FC
sets for all reference parameters.

However, to confirm which sample selection procedure enables to get better sample
selection and, therefore, better MPLS models, external validation was performed. The
external validation set, initially reserved for this purpose, was used (Figure 1). The SEPs
obtained using the different sample selection sets were compared to those obtained without
sample selection (FC set) using Fisher’s test, to determine whether differences between
them were statistically significant (α = 0.05%). For each reference parameter, almost all
SEP values obtained using the NH and HC sets were not statistically different from those
obtained using the FC set. Only two models, developed for total soluble solids (one NH
and one HC), showed SEPs significantly higher than the FC model (Table 1). In order to
easily interpret these results, they were transformed to percentages taking into account
the applicability range of their respective models and compared with errors in the FC set
(Figure 3).

In general, the SEP values obtained from NH and HC sets are similar to those obtained
from the FC set. For NH sets, the SEP values were similar to those obtained for the FC set
(Figure 3a), except for the sample subset obtained with an NH value of 0.9 and choosing
1 sample per group. However, the sample selection developed with an NH value of 0.9
and choosing

√
n samples per group produced SEP values really acceptable from 44% of

the samples.
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Table 1. Main statistical parameters for the different Modified Partial Least Square (MPLS) calibrations. In the standard
errors of prediction (SEP) column, asterisks (*) indicate statistically significant differences (α = 0.05%) with the corresponding
full calibration (FC) model.

Set Reference
Parameters

Spectral
Pretreatments N 1 Toutliers Min 2 Max 3 RSQ 4 SECV 5 SEP 6

FC 7 [13] TA 11 MSC 14 0,0,1,1 141 7 0 45.06 0.96 2.72 3.89
FC 7 [13] TSS 12 MSC 14 1,5,5,1 141 8 0 31.40 0.97 1.23 1.61
FC 7 [13] TSP 13 SNV 15 2,5,5,1 141 1 0 16.34 0.77 1.77 1.97
FC 7 [13] pH MSC 14 2,5,5,1 141 2 2.17 4.29 0.92 0.13 0.18

NH-06-1 8 TA 11 MSC 14 0,0,1,1 79 2 0 45.42 0.95 2.92 4.18
NH-06-1 8 TSS 12 MSC 14 1,5,5,1 79 4 0 29.86 0.93 1.84 1.68
NH-06-1 8 TSP 13 SNV 15 2,5,5,1 79 2 0 16.15 0.60 1.96 2.11
NH-06-1 8 pH MSC 14 2,5,5,1 79 1 2.24 4.21 0.90 0.15 0.19

NH-06-
√

n 8,9 TA 11 MSC 14 0,0,1,1 96 2 0 48.37 0.96 3.01 3.98
NH-06-

√
n 8,9 TSS 12 MSC 14 1,5,5,1 96 6 0 31.03 0.96 1.53 1.74

NH-06-
√

n 8,9 TSP 13 SNV 15 2,5,5,1 96 0 0 17.11 0.78 1.99 2.32
NH-06-

√
n 8,9 pH MSC 14 2,5,5,1 96 3 2.17 4.26 0.92 0.13 0.17

NH-09-1 8 TA 11 MSC 14 0,0,1,1 42 2 0 45.89 0.93 3.60 4.56
NH-09-1 8 TSS 12 MSC 14 1,5,5,1 42 3 0 31.57 0.87 2.24 2.66*
NH-09-1 8 TSP 13 SNV 15 2,5,5,1 42 2 0 16.08 0.79 1.58 2.37
NH-09-1 8 pH MSC 14 2,5,5,1 42 1 2.25 4.29 0.94 0.16 0.18

NH-09-
√

n 8,9 TA 11 MSC 14 0,0,1,1 62 0 0 45.95 0.93 3.77 4.36
NH-09-

√
n 8,9 TSS 12 MSC 14 1,5,5,1 62 3 0 31.27 0.96 1.56 1.86

NH-09-
√

n 8,9 TSP 13 SNV 15 2,5,5,1 62 1 0 17.04 0.58 2.13 2.19
NH-09-

√
n 8,9 pH MSC 14 2,5,5,1 62 2 2.24 4.24 0.93 0.13 0.17

HC-1-1 10 TA 11 MSC 14 0,0,1,1 28 2 0 29.34 0.82 3.68 3.21
HC-1-1 10 TSS 12 MSC 14 1,5,5,1 28 2 0 31.65 0.83 2.71 3.14 *
HC-1-1 10 TSP 13 SNV 15 2,5,5,1 28 1 0 16.11 0.71 2.32 2.29
HC-1-1 10 pH MSC 14 2,5,5,1 28 1 2.20 4.25 0.87 0.20 0.19

HC-1-
√

n 9,10 TA 11 MSC 14 0,0,1,1 61 5 0 45.94 0.96 3.01 4.37
HC-1-

√
n 9,10 TSS 12 MSC 14 1,5,5,1 61 3 0 32.03 0.95 1.87 2.14

HC-1-
√

n 9,10 TSP 13 SNV 15 2,5,5,1 61 0 0 16.61 0.72 1.90 2.04
HC-1-

√
n 9,10 pH MSC 14 2,5,5,1 61 0 2.16 4.29 0.93 0.15 0.18

HC-05-1 10 TA 11 MSC 14 0,0,1,1 45 1 0 50.43 0.95 3.69 4.46
HC-05-1 10 TSS 12 MSC 14 1,5,5,1 45 1 0 31.24 0.96 1.87 1.61
HC-05-1 10 TSP 13 SNV 15 2,5,5,1 45 0 0 16.53 0.77 2.03 2.18
HC-05-1 10 pH MSC 14 2,5,5,1 45 1 2.12 4.36 0.91 0.16 0.18

HC-05-
√

n 9,10 TA 11 MSC 14 0,0,1,1 74 4 0 44.69 0.95 3.04 4.36
HC-05-

√
n 9,10 TSS 12 MSC 14 1,5,5,1 74 5 0 31.78 0.97 1.38 2.08

HC-05-
√

n 9,10 TSP 13 SNV 15 2,5,5,1 74 3 0 15.66 0.66 1.80 1.91
HC-05-

√
n 9,10 pH MSC 14 2,5,5,1 74 1 2.17 4.33 0.91 0.14 0.18

1 N: number of samples (calibration set); 2 Min: Minimum estimate; 3 Max: maximum estimate; 4 RSQ: coefficient of determination
(cross-validation); 5 SECV: standard error of cross-validation; 6 SEP: standard error of prediction in the external validation; 7 FC: full
calibration set; 8 NH: Neighbourhood Mahalanobis distance; 9 √n: square root of the number of samples in a group; 10 HC: Hierarchical
Clustering; 11 TA: total acidity (g L−1, expressed as tartaric acid equivalents). 12 TSS: total soluble solids (◦Brix); 13 TSP: total skin phenols
(mg g−1 of skin grape, expressed as gallic acid equivalents); 14 MSC: multiplicative scatter correction; 15 SNV: standard normal variate.

Similarly, HC sample selections produce SEP values quite acceptable from 43% and
32% (for the settings

√
n samples of 28 groups and 1 sample of 45 groups, respectively) of

the samples allocated in the calibration set (Figure 3b).
Therefore, the sample selection procedures tested here show great potential for the

reduction of the number of samples required for the calibration set. In this way, the
necessary resources for the development of MPLS calibrations can be drastically reduced.
Finally, some evidence has been found of greater suitability of the dendrogram method for
reducing the number of samples of the calibration set.
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Figure 3. SEP in external validation for the models developed for all the reference parameters and for all the sample
sets. SEP values are expressed as percentages taking into account the applicability range of their respective models. (a)
Comparison for NH sample selection. (b) Comparison for Hierarchical Clustering (dendrogram) sample selection. SEP:
standard errors of prediction; NH: Neighbourhood Mahalanobis distance; FC, full calibration; Dlink: different linkage
distances; Dmax: the maximum linkage distance;

√
n: square root of the number of samples in a group.

3.4. Comparison of Sample Selection Methods

NH distance and HC analysis have proven to be powerful tools for reducing the
number of samples that must be chemically measured to develop a PLS calibration with
useful predictive capacity. These tools can reduce the number of samples up to, at least,
44% and 32% of the samples allocating in the FC set, for NH and HC, respectively, without
a high loss in the predictive capacity of the models. However, it is not possible to make
a comparison of the performance of the two sample reduction methods evaluated, since
the number of samples they select is different. Therefore, a comparative procedure was
carried out to determine which of these sample selection methods could select the most
representative samples.



Foods 2021, 10, 233 10 of 13

The described NH and HC procedures were modified to establish the number of
samples rather than the distance between them as the threshold. The thresholds were set
at 47 and 71 samples, one third and a half of the samples in the FC set, respectively. For
obtaining 47 and 71 sample groups, NH values were respectively set at 0.82 and 0.65. In
the case of hierarchical clustering, the Dlink/Dmax had to be reduced to 0.47 and 0.28% to
achieve 47 and 71 groups, respectively. Four new sample sets were constructed (NH-47,
NH-71, HC-47 and HC-71) with the most spectrally representative samples of each group
created. MPLS regressions were performed using these new sample sets (Table 2).

Table 2. Main statistical parameters for the MPLS calibrations developed for comparing the different sample selection
methods. In the SEP column, asterisks (*) indicates statistically significant differences (α = 0.05%) with the corresponding
FC model.

Set Reference
Parameters

Spectral
Pretreatments N 1 Toutliers Min 2 Max 3 RSQ 4 SECV 5 SEP 6

FC 7 [13] TA 10 MSC 13 0,0,1,1 141 7 0 45.06 0.96 2.72 3.89
FC 7 [13] TSS 11 MSC 13 1,5,5,1 141 8 0 31.40 0.97 1.23 1.61
FC 7 [13] TSP 12 SNV 14 2,5,5,1 141 1 0 16.34 0.77 1.77 1.97
FC 7 [13] pH MSC 13 2,5,5,1 141 2 2.17 4.29 0.92 0.13 0.18

NH-47 8 TA 10 MSC 13 0,0,1,1 47 2 0 52.57 0.96 3.68 4.33
NH-47 8 TSS 11 MSC 13 1,5,5,1 47 1 0 30.96 0.90 2.52 2.51 *
NH-47 8 TSP 12 SNV 14 2,5,5,1 47 3 0 14.98 0.74 1.54 2.10
NH-47 8 pH MSC 13 2,5,5,1 47 1 2.12 4.34 0.96 0.13 0.17

NH-71 8 TA 10 MSC 13 0,0,1,1 71 4 0 45.78 0.97 2.73 4.42
NH-71 8 TSS 11 MSC 13 1,5,5,1 71 5 0 30.60 0.93 1.89 1.76
NH-71 8 TSP 12 SNV 14 2,5,5,1 71 3 0 15.74 0.66 1.72 2.13
NH-71 8 pH MSC 13 2,5,5,1 71 2 2.26 4.24 0.90 0.13 0.19

HC-47 9 TA 10 MSC 13 0,0,1,1 47 1 0 49.51 0.95 3.47 4.43
HC-47 9 TSS 11 MSC 13 1,5,5,1 47 2 0 30.50 0.94 1.71 1.76
HC-47 9 TSP 12 SNV 14 2,5,5,1 47 1 0 16.50 0.78 1.87 2.19
HC-47 9 pH MSC 13 2,5,5,1 47 4 2.12 4.38 0.95 0.12 0.18

HC-71 9 TA 10 MSC 13 0,0,1,1 71 1 0 47.90 0.93 3.87 4.55
HC-71 9 TSS 11 MSC 13 1,5,5,1 71 5 0 31.42 0.96 1.59 1.67
HC-71 9 TSP 12 SNV 14 2,5,5,1 71 0 0 16.11 0.59 2.02 2.08
HC-71 9 pH MSC 13 2,5,5,1 71 2 2.19 4.30 0.93 0.13 0.18
1 N: number of samples (calibration set); 2 Min: Minimum estimate; 3 Max: maximum estimate; 4 RSQ: coefficient of determination
(cross-validation); 5 SECV: standard error of cross-validation; 6 SEP: standard error of prediction in the external validation; 7 FC: full
calibration set; 8 NH: Neighbourhood Mahalanobis distance; 9 HC: Hierarchical Clustering; 10 TA: total acidity (g L−1, expressed as tartaric
acid equivalents). 11 TSS: total soluble solids (◦Brix); 12 TSP: total skin phenols (mg g−1 of skin grape, expressed as gallic acid equivalents) );
13 MSC: multiplicative scatter correction; 14 SNV: standard normal variate.

In general, statistics for these new calibrations were slightly inferior to those obtained
with the FC set. However, as seen in the previous section, this reduction in performance is
offset by the reduced number of samples taken into account (with a consequent reduction
in the chemical analyses that would be required). When comparing each developed model
with the correspondent FC model using the Fisher test, only the NH-47 selection produced
a SEP value for total soluble solid statistically higher in comparison with the FC model.
In the remaining models, the differences in the performance (percentage of the SEP with
respect to the mean of the range of applicability) of the calibration methods developed with
47 and 71 samples were not clearly found (Figure 4). For both sample selection methods,
some reference parameters were better predicted with 47 samples and others with 71.
Therefore, it seems that a spectral selection of one-third of the samples (47 samples) can
be enough for the adequate prediction of most of the reference parameters. Finally, taking
into account the different selection methods applied for constructing these sample sets,
HC sample selections produced slightly better SEP values, i.e., six equations developed
using HC sets shown better predictions in external validation. However, the differences
between the two sample selection methods are so small that both can be considered a good
alternative when a reduction in the number of samples is required.
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4. Conclusions

The results obtained in the present study showed that it is possible to reduce the
number of hyperspectral images needed to perform NIR calibrations in grape samples
without a significant loss in the predictive capacity. To reduce the number of hyperspectral
samples, different sample selection procedures have been tested. Neighbourhood Ma-
halanobis distance and hierarchical clustering analysis were used to split samples into
different groups. Standard errors of prediction (SEP) were calculated for each developed
model and compared to those obtained using the full calibration (FC) set. SEPs obtained
from the different sample selection sets are comparable to those obtained using the FC set.

Models of high accuracy were obtained with only the 30–40% of the samples belonging
to the original entire calibration set. In general, sample subsets obtained from Neighbour-
hood Mahalanobis distance and from hierarchical clustering analysis produce results with
no significant differences to each other, indicating the suitability of both methods to be
applied when a reduction of the sample set is required.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-8
158/10/2/233/s1. Figure S1: Example spectra of the red and white grape samples in the NIR zone
between 950 and 1650 nm.
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