
Implementation of a hardware and software
framework for a simple academic processor

J. Ruiz, D. Guerrero, I. Gomez and J. Viejo
Departamento de Tecnología Electrónica

Universidad de Sevilla
Sevilla, España

jonathanruizpaez@gmail.com, guerre@dte.us.es , igomez@us.es, julian@dte.us.es

Abstract—An academic processor to be used in the “Computer
Structure” subject has been developed in this work. During the
lab sessions students will apply their knowledge about digital
systems to design and implement this processor so they will
interact with a real implementation of the system in several ways:
modifying it to increase its functionality, programming it and
watching its internal state while executing instructions. The fact
that students are able to use a functional implementation
improves remarkably their motivation.

Keywords-trainer; laboratory; digital systems; processors;
learning

I. INTRODUCTION

Developing a syllabus requires establishing the main goals
of the subject. Once the set of topics to be learned is set, the
syllabus summary is structured to teach theses topics in order
and progressively. Usually, these topics are introduced in
lectures, but a set of lab sessions is also necessary in order to
reach the learning objectives. During the lab sessions, students
have to manipulate real systems, which enhance their practical
skills and clarify the topics learned at class. When teaching
electronics, lab sessions are crucial since every lecture refers to
the behaviour of real electronic devices. That is why every lab
session must be selected carefully.

In this paper a simple academic processor will be
introduced. It is used in the introductory subject computer
structure of the new grades in Computer Engineering of the
University of Seville. The lesson describing it precedes others
describing commercial processors. The processor is extremely
straightforward so it possible to describe comprehensively its
programming model and implementation to the students. It also
makes it easier to implement a system based on this processor
within an FPGA prototyping board as well as developing
programming and debugging tools for such a system. Students
can use this set of tools in lab sessions to interact with a real
implementation of the processor in several ways: modifying it
to increase its functionality, programming it and watching its
internal state while executing instructions. This approach is
more effective than others based on simulation [1]. To carry
out the lab sessions students must use the processor instruction
set (ISP) and understand the implementation internal behaviour
at register transfer level (RT), which requires learning and
understanding key topics he will need when dealing with
commercial systems. Also, the students’ motivation is

increased if they can use what they learn to build a functional
implementation of the design described during the lectures. [2],
[3] and [4] describe the advantages of active learning of
microprocessor related topics.

This paper is structured as follows: in the next section the
content of the Computer Structure subject will be outlined.
Then, the academic processor will be described. After that, the
proposed lab session will be presented. The hardware and
software to be used will be described in section V. Section VI
will show the guide to be used by the students during the lab
session. Finally, the most relevant conclusions will be resumed.

II. SUBJECT OUTLINE

In order to explain the benefits of using the proposed
processor for teaching we must describe the content and goals
of the subject. Computer Structure is a compulsory subject of
the Computer Engineering grades of the University of Seville
that is taught during the second half of the first year. Its
objective is introducing how computers work internally. To
reach such a goal, the following lessons are included in the
syllabus:

• Digital systems

• A simple computer design

• Commercial processors

In order to develop these lessons it was necessary to choose
the simple computer as well as the commercial system to be
used. The commercial system chosen was the ATmega328P
microcontroller [5], since it had already been used in lab
sessions of others subjects so professors and students were
already familiarized with it. Also, there is a lot of didactic
information as well as inexpensive educational prototyping
boards for this microcontroller [6]. Regarding the simple
academic computer to be described in the lectures, it was
desirable that it were similar to commercial systems in use
nowadays, specially to the chosen ATmega328P. However, it
must be taken into account that this is an introductory subject.
Hence, the academic processor should not be too complex.
None of the commercial architectures suggested was simple
enough to be utterly analyzed, implemented and modified by
the students. That is why a new processor was designed for that
lesson. It was called SAP (for Simple Academic Processor).

TABLE I. SAP INSTRUCTION FORMATS

III. ARCHITECTURE

The goals when designing the processor architecture were
the following:

• Simplifying the user model so it could be easily
understood by the students.

• Making the user model similar to the commercial
system to be described later.

• Providing a reference implementation of the data
processing unit as simple as possible.

• Prioritizing the control unit simplicity (students
should be able to implement it).

A. User model
After several modifications requested by the lecturers we

got an architecture suitable for their needs. In order to simplify
the control and data units, the processor includes the following
features:

• There are few visible registers, and they are all of
the same size.

• There are few instructions, and all of them have
the size of a code memory location.

• There are very few instructions formats, and they
share fields.

• Harvard architecture.

• Load/Store architecture.

• Memory mapped I/O so there is no need of special
input/output instructions.

• There are no interrupt system, special operation
modes, memory management units nor memory
caches.

In order to use this processor at low level it is necessary to
know the set of visible registers as well as the format and
semantic of the instructions. The memory system model is also
required. The effect of any instruction is basically the same of
it homologous in the AVR8 architecture [5]. The remaining
user model is detailed below.

1) Memory and Visible registers
The SAP has a 256x8 data memory space and a 256x16

code memory space. The visible registers are 8-bit wide.
Within them, the general purpose ones are labelled R0, R1, R2,
R3, R4, R5, R6 and R7. The special purpose registers are the
following:

• PC (Program Counter): It contains the address of
the next instruction to be executed. Its initial value
is zero, and it is incremented every time a non-
branch instruction is executed.

• SR (Status Register): Only four of its bits are used.
There are labelled Z (Zero), V (oVerflow), N
(Negative) and C (Carry). They indicate,
respectively, if the result of the last

logic/arithmetic instruction executed was zero,
that it can not be represented assuming two's-
complement notation, that it is negative assuming
two's-complement notation or that it can not be
represented assuming unsigned notation.

• SP (Stack Pointer): It is used to implement the call
stack. It contains the address of the next available
memory location for the stack, and its initial value
is $FF. It is decremented when return address are
stacked. When they are retrieved, SP is
incremented.

2) Instruction set
The SAP assembler instruction set is intended to be a very

small subset of the AVR8 ISP. It does not imply that their
machine code format is similar. In fact, the SAP machine code
formats are far simpler, as shown in table I. Their opcode fields
are always 5 bit width, so there are 32 available operation
codes. They have been assigned in such a way that instruction
decoding is extremely straightforward. Also, the AVR8
assembler mnemonics have been employed so learning to use
the ATmega microcontroller of the following lesson would be
easier.

B. Proposed implementation
In order to implement the processor architecture, it is

necessary to define its internal and external structure. The data
processing unit proposed to the students is depicted in Fig. 1.
The general purpose registers have been implemented a little
synchronous RAM (register file) with two read ports and one
write port. An 8-bit ALU carries out the arithmetic/logic
operations. Most registers are interconnected by a common
data bus. Also, four hidden registers have been introduced: the
16-bit IR register stores the instruction being executed; the 8-
bit MAR register address the data memory; the 8-bit MDR
register is an interface between the data memory bus and the
internal data bus; the 8-bit AC register stores the ALU results.
Respecting the control unit, it has the following input/output
signals:

• WMEM (output): Used to request a data memory
write.

• RMEM (output): Used to request a data memory
read.

• STOP (output): Used to indicate if the processor is
running.

Figure 1. Proposed data processing unit for the SAP processor

• WAC, WREG, WPC, WMAR (output): Used to order a
write operation to AC, the register file, PC or
MAR respectively.

• I/O*MDR (output): When this signal is 1, MDR puts
its content on the internal data bus. When it is 0,
MDR puts its content on the external data memory
bus.

• WMDR (output): Used to order MDR to be written
with the data at the internal data bus (if I/O*MDR is
equal to 1) or with the data at the external data
memory bus (if I/O*MDR is equal to 0).

• WIR (output): Used to order a write operation to
IR.

• WSR (output): Used to order a write operation to
SR.

• ISP, IPC (output): Used to order an increment
operation to SP and PC respectively.

• DSP, CSP (output): Used to order a decrement and
clear operation to SP respectively.

• RAC, RPC, RSP (output): Used to order to put their
content on the internal data bus to AC, PC and SP
respectively.

• INM (output): When this signal is 1, the data input
B of the ALU is fed with the bits from 0 to 7 of IR
(immediate operand). Otherwise it is fed with the
content of the general purpose register labelled
with the number written at the bit 0, 1 and 2 of IR.

• OP3-0 (output): Used to tell the ALU the
arithmetic/logic instruction to be performed.

• I15-8 (input): They are connected to the
corresponding bits of IR and inform about the
operation code as well as the jump condition.

• START (input): Used to start the execution.

Respecting the external structure of the SAP, it includes the
following input/output signals:

• CODE_ADD (output): Used to address the code
memory. It is supposed to have unconditional
output.

• DATA_ADD (output): Used to address the data
memory.

• CODE (input): They are connected to the code
memory output.

• DATA (input/output): They are connected to the
data memory bus.

IV. PROPOSED LAB SESSION

A set of compulsory lab sessions covering several topics of
the subject are carried out. In the proposed lab session students
must implement and program the SAP. This implies learning
many basic topics introduced during the lectures, specifically
the following:

• How a digital system composed of data and
control units works.

• Design and implementation skills.

• How to implement and test in the field a system at
RT and ISP level.

Once the session goals are set, its content must be detailed.
As in the other sessions, the session wording is provided to the
students in advance. The wordings include questions that must
be answered by the students before they carry out each session.
In this way they have to study the topics related to each session
previously. For this proposed session, students must write
simple assembler programs using the original SAP instruction
set, modify the SAP control unit to add new instructions and
rewrite the previous programs using the new instructions. To
do so they have to modify the provided Verilog description.
During the session the students test the modifications executing
the programs they wrote.

Figure 2. Prototyping board to be used during the lab session

V. LAB SESSION SETUP

A. Hardware
The Basys2 [7] FPGA prototyping board shown in Fig. 2

was chosen to implement the SAP since it had already been
used in other lab sessions so professors and students were
already used to it. The board includes a Xilinx [8] Spartan-3E
FPGA. A full system based on the SAP processor was
described in Verilog, that is de HDL thought during the
lectures. The system includes the following components:

• The SAP processor.

• Memory mapped I/O devices.

• The code memory.

• The data memory.

• A debugging unit.

It must be remarked that it is not possible to implement the
chosen platform the data unit exactly as it was described in the
lectures using the chosen platform. For example, the Spartan-
3E FPGA can not implement tri-state buses. This is not
relevant for the students, since they must focus in the control
unit design, and the interface lines with the data processing unit
do not change. Respecting the I/O devices, eight of them
available in the prototyping board were mapped in the SAP
data memory space. The external memories are basically as the
ones described during the lectures, but they have additional
ports to be used by the debugging unit. This unit communicates
with a PC through a serial port so the computer can read and
write both memories. Also, the debugging unit makes it
possible to debug the uploaded programs with the following
options:

• Cycle-by-cycle execution.

• Instruction-by-instruction execution.

• Memory and register inspection.

• Control lines inspection.

• Processor clock enabling/disabling.

B. Software
In addition to a cross-assembler and a cross-disassenmbler

for the SAP, it was necessary to develop a program for the lab
PCs to interact with the debugging unit. Its graphical interface
is shown in Fig. 3. The upper part of the window contains a set
of controls to interact with the CS2010 debug unit:

• “Puerto Serie” field: This field contains the path of
the PC serial port connected to the board. Students
do not need to change the default value.

• “Código (BIN)” field: This field contains the path
of the binary file whose content will be written in
the program memory when the processor is
initialized. After filling it, the code will be
disassembled and shown on the “Desensamblado”
field. Normally there is no need to fill this field
since assembler files are used instead.

• “Código (ASM)” field: This field must contain
the path of the assembler file corresponding to the
program that will be written in the code memory
when the processor is initialized. After filling it,
the front-end assembles the file informing about
possible mistakes and writes the path of the
resulting binary file in the “Código (BIN)” field.

• “Memoria Datos” field: if the data memory has to
be initialized with the content of a binary file, its
path must be written in this field.

• “Conectar” button: when this button is pressed the
software establishes a connection with the debug
unit through the serial port, orders to initialize the
SAP and to write the program and data memories
with the content of the specified files. Only after
this it is possible further interaction with the debug
unit.

• “Mostrar Unidad De Datos” button: when this
button is pressed, a window with a picture of the
SAP data unit appears. During cycle-to-cycle
execution the active (high) signals will be
highlighted in this window.

• “Habilitar Reloj/Deshabilitar Reloj” button: If the
SAP clock is disabled, pressing this button will
enable it so the program can be executed
autonomously. If the clock is enabled, pressing
this button will disable it to make it possible to
inspect the state of the processor and the memory.

• “Activar Start” button: When this button is
pressed, a high pulse is generated in the start
signal of the SAP.

• “Ejecutar Un Ciclo” button: If this button is
pressed, the debug unit will enable the clock for
just a cycle.

• “Ejecutar Una Instrucción” button: If this button is
pressed, the debug unit will enable the clock till
the current instruction finishes or till the wait state
is reached.

Figure 3. Graphic interface of the software to be used to program and debug the SAP processor

When the SAP clock is disabled, the system state is shown
including the code and data memories content, the registers
content, the control lines state and the value of the buses
connected to the ALU. Also, the current instruction will be
highlighted. The content of the data memory can be edited
manually. It is also possible to save the content of the data
memory in a file by pressing the “Guardar Memoria Datos”
button.

VI. LAB SESSION EXECUTION

As mentioned, during the lab session each student must test
his SAP modifications by executing programs he has
previously written. He is given a set of Verilog files that make
it possible to implement the SAP processor in the prototyping
board as well as a detailed guide describing the steps he must
follow. These steps are grouped in the two parts described
bellow:

A. Using the original architecture
In this part students have to configure the board so the
bitstream written in its non-volatile memory will be loaded into
the FPGA at startup. This is the bitstream for the original
implementation of the SAP processor. After feeding the board
and connecting it to the serial port of the PC, students must
write into the code memory their programs for the original
architecture and check if they work as expected.

B. Using the modified architecture
In this part students must implement and check their modified
SAP architecture. To do so they have to use the Xilinx ISE [9]
FPGA development environment. This tool is used in previous
lab sessions. After including their modified version of the
control unit and implementing the system in the FPGA, they
have to write into the code memory the programs that use the
new instructions and check if they work as expected.

VII. CONCLUSIONS

A simple academic processor has been developed to be
used in the in the introductory subject computer structure of
the new grades in Computer Engineering. The objective of this
subject is showing how system based on microprocessors
works, so this contribution covers many of its topics. In order
to complement the lectures, a lab session for implementing,
modifying and programming the processor has been developed
so students can interact with it and analyze its state while
executing instructions. For this session a synthesizable Verilog
description of a system based on this processor has been
developed, as well as a set of software tools to interact with it.
Making it possible for the students to implement the system
described during the lectures and to interact with such
implementation increases remarkably their learning motivation.

ACKNOWLEDGEMENTS
This work has been partially supported by the Ministerio de
Ciencia e Innovación of the Spanish Government under
project TEC2011-27936 (HIPERSYS) and by the European
Regional Development Found (ERDF).

REFERENCES
[1] Sandro Neves Soares and Flávio Rech Wagner. T&D-Bench—

Innovative Combined Support for Education and Research in Computer
Architecture and Embedded Systems . IEEE Transactions on Education.
Vol. 54. No. 4. November 2011.

[2] Antonio Carpeño, Jesús Arriaga, Javier Corredor, and Javier Hernández
.The Key Factors of an Active Learning Method in a Microprocessors
Course. IEEE Transactions on Education. Vol. 54, No.2, May 2011.

[3] Debiec, P.; Byczuk, M.Teaching Discrete and Programmable Logic
Design Techniques Using a Single Laboratory Board. IEEE
Transactions on Education. Vol. 54. No. 4. November 2011.

[4] Kim, J. An Ill-Structured PBL-Based Microprocessor Course Without
Formal Laboratory. IEEE Transactions on Education.Vol. 55, No.1.
February 2012.

[5] Atmel ATmega328P datasheet,
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf

[6] Arduino homepage, http://arduino.cc/

[7] Digilent Basys2 Board Reference Manual,
http://www.digilentinc.com/Data/Products/BASYS2/Basys2_rm.pdf

[8] Spartan-3 Generation FPGA User Guide,
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

[9] Xilinx ISE 11 User Guides,
http://www.xilinx.com/support/documentation/dt_ise11-
1_userguides.htm

Powered by TCPDF (www.tcpdf.org)

