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Abstract— This paper presents a method to analyze the
stability of the feedback interconnection of a class of dissipative
linear systems when the sampling associated to the feedback
interconnection is asynchronous. We consider systems that
are either Input/Output Strictly passive (IOSP), or systems
which have boundedL2-gains less than one. The analysis is
performed by using the concept of MAximum Sampling time
preserving Dissipation (MASD), for each interconnected system.
We investigate the impact of using the scattering transformation
in the computation of the MASD, and we provide a numerical
algorithm (based on a set of LMI’s) that allows to choose the
most suitable configuration for the interconnection.

I. I NTRODUCTION

This paper presents a method to analyze the stability
of the feedback interconnection of a class of dissipative
linear systems when the sampling associated to the feedback
interconnection is asynchronous. The considered scenario
is shown in Fig. 1. These types of interconnections are
present in many application fields such as remotely-operated
systems [1], interconnected vehicle control sub-systems,and
more generally in component-based control design where
synchronous exchange of information is not feasible.
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Fig. 1. Asynchronous Feedback Interconnection. SystemΣ1 and system
Σ2 are feedback interconnected throughout the asynchronous,and possible
time-varying, samplingT1,k , andT2,k.

It is well known that, the continuous time interconnection
of two systems in feedback form is stable when each system
posses certain passivity property, or satisfies the small gain
condition (see [2], [3], [4]). As these two properties are
fundamentally different (the first is phase shift sensible,while
the second depends on its gain characteristics), it is expected
that these conditions may behave differently when the output
signals are sampled as shown in Fig. 1. In the framework
of this work, the maximum sampling time preserving the
stability of its original interconnection, may be different to
each case.

Scattering transformation is a well known method whose
change of variables is used to improve and/or to preserve the
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system original stability properties when the interconnecting
signals are subject to delays. In addition, this transformation
has been shown, in the continuous-time case [5], [6], [7],
to imply a certain duality between passivity (IOSP) andL2-
gain (with γ < 1) property. In these works, [5], [6], [7],
the scattering transformation has been used in the context of
continuous time system with fix or variable delays induced
by the network, but the potential impact of an asynchronous
sampling in the scenario shown in Fig. 2 has been scarcely
studied. One of the objectives of this paper is to study how
the scattering transformation impacts the maximum sampling
time preserving the stability of its original interconnection.
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Fig. 2. Interconnection by means of scattering. Scatteringmay be used
as a mean to improve the system stability under asynchronoussampled
interconnection.

The lost of the original system properties such as dissi-
pation and small gain, under the sampling process has been
studied before. In [8], [9], [10], [11] it has been shown that
positive realness can be lost in the process of discretization,
and that in order to preserve the property of passivity in
sampled systems, it is necessary that the outputs of these
systems depends on their inputs, forcing the system relative
degree to be zero. In [12] the authors have introduced
a Lyapunov-based theory for asynchronous linear systems
and shows how Lyapunov functions and controllers can be
constructed by solving linear matrix inequalities (LMI). This
theory was extended to nonlinear systems in [13]. In [14],
the interconnection of passive asynchronous systems was
studied, and control design method (based in a set of LMI’s)
was introduced. The LMI’s were constructed using an Euler
approximation of the derivative of the Lyapunov function,
being the approach different from [15], [16], [17], where the
approximation is introduced in the model.

This paper extends the results in [14], dealing only with
passive system, to a more general dissipative systems, includ-
ing L2-gain stable systems. The objective is also to devise a
general method to find an optimal way to interconnect a dis-
sipative system that tolerates the maximum possible sampled
time intervals. The method includes the possibility to use or
not the scattering transformation, and allows us to devise a
numerical algorithm able to compute the Maximum sampling
time preserving stability of such an interconnection.
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The paper is organized as follows. In section II, we
present the problem formulation for asynchronous feedback-
interconnected dissipative systems, and we also introduce
some background on scattering theory with application to the
interconnection of dissipative systems. The main results are
given in Section III and IV. In Section III, we characterize the
conditions required to preserve dissipation for asynchronous
sampled systems, and in section IV, we provide necessary
conditions to guarantee the stability of the interconnection.
Our results are summarize in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the feedback interconnection of two linear sys-
temsΣ1 andΣ2, as shown in Fig. 1, with each systemΣi,
of the following form:

Σi : ẋi = Aixi + Biui (1)

yi = Cixi + Diui. (2)

subject to a general dissipative condition given by

V̇i(x, u) ≤ −
(

y⊤
i Qiyi + u⊤

i Riui + 2y⊤
i Siui

)

− ρiVi(x) (3)

whereVi(x) is a positive definite function, that can be chosen
for linear systems asVi(x) = x⊤

i Pixi.
We consider here two specific classes of systems charac-

terized by the properties of matricesQi, Ri andSi (see [18],
[19]):

C1 : Input/Output Strictly Passive systems (IOSP);Q = δI >
0, S = − 1

2
I andR = ǫI > 0

C2 : Finite smallL2-gain systems (γ < 1); Q = I, S = 0
andR = −γ2I

The problem considered in this paper is to find, for each
system classC1, andC2 the maximum sampling times, such
that their dissipative and finite small gain original properties
are preserved, and thus to ensure that the interconnection
is stable. To this aim, we also consider the the possibility
to use the scattering transformation in the setup shown in
Fig. 2, and compare this possibility to the one without the
transformation. This combination leads to four cases; A, B,
C and D shown in Table I.

TABLE I

DIFFERENT CASES TO BE STUDIED IN THE PAPER.

System class System class
C1 C2

without scattering A B
with scattering C D

There is a certain duality between these cases; a system
that is IOSP (classC1) has its L2-gain small than one
after using the scattering transformation,S, and viceversa,
a system withL2-gain small than one (classC2) becomes
IOSP after using the transformationS. This is discussed in
detail next.

A. Passivity and L2-gain duality throughout scattering trans-
formation

A way to analyze the stability of the interconnection of
two systems is via Passivity orL2-gain. If both systems are
passive or have their respectiveL2-gain equal or less than
one, then the interconnection is stable. However, the two
properties are fundamentally different; a system can preserve
its passivity property while isL2-gain varies, while another
can preserve its small gain property while the passivity is
lost. This is illustrated by Fig.3.
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Fig. 3. Output passive system with differentL2-gains (left). System with
different passivity properties preserving itsL2-gain (right).

Nevertheless, if the scattering transformation is used to
interconnect the two sub-systems as in Fig. 2, i.e.

u =
1√
2
(U + J ), y =

1√
2
(U − J ) (4)

whereu and y are respectively the input and the output of
each system, andU andJ are the ones resulting from this
transformation, it has been shown (see Proposition 2.3.4 in
[2]) that: if and only if a system is IOSP fromu to y, then
the resulting transformed system has aL2-gain less than
one from U to J . This result can be easily understood
following the next reasoning which will be useful for our
next development.

Assume that we want the transformed system,Σ, to have
L2-gain less than one. Therefore, it should hold that

V̇ + ρV <
1

2
(U⊤U − J ⊤J ) (5)

with ρ ≥ 0. After substitution of (4) in (5), we get

V̇ + ρV − uy < 0.

This inequality is equivalent to say that there exists,for the
systemΣ, a positive definite function,wD(u, y),

wD(u, y) = y⊤Qy + u⊤Ru + 2y⊤Su > 0 (6)

whereQ > 0 andR > 0, such that

V̇ + ρV − uy ≤ −wD(u, y). (7)

To prove this, we substitutey = Cx + Du and define
ξT = [xT , uT ] in the above inequality, where

−wD(u, y) = −ξ⊤Mξ ≤ −εξ⊤ξ (8)

with

M =

(

C⊤QC C⊤QD + C⊤S

D⊤QC + S⊤C R + D⊤QD + D⊤S + S⊤D

)

> 0,
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and ε = λmin(M) > 0 ⇔ Q > 0, R > 0. Finally, It is
important to remark that always it is posible to findQ > 0
and R > 0 such thatε > 0 is small enough, which means
that Σ must be an Input and Output Strictly Passive (IOSP)
system.

B. Symmetry and modularity design in the scattering trans-
formation

As there are many possibilities to define the scattering
transformation, we wish to select one that make the transfor-
mation of one side independent to the other (modular design).
In addition, and from the original problem, as defined in
Fig. 1, the original system inter-connection requires that
y1 = u2 and u1 = −y2. Then, any possible transformation
should then preserve this relation.

A good choice fulfilling such requirements is to define

U1 =
1√
2
(u1 + y1), J1 =

1√
2
(u1 − y1). (9)

for systemΣ1, and

U2 = − 1√
2
(u2 + y2), J2 = − 1√

2
(u2 − y2) (10)

for systemΣ2. It can be easily checked that this transforma-
tion give rise to the same transfer function,

Σi : Gi(s) =
Ji

Ui

=
ui − yi

ui + yi

=
1 − Gi(s)

1 + Gi(s)
, (11)

in any of the two possible system coordinates.
Note that the transformed systemΣi in terms of the new

input U and the new outputJ can be written as

Σi : ẋ = Āx + B̄U
J = C̄x + D̄U (12)

where Ā
.
= A + BC̄, B̄

.
= B

(

1√
2
I + D̄

)

,

C̄
.
= −

√
2(I + D)−1C andD̄

.
= (I + D)−1(I − D).

The dissipative properties of the transform system can be
expressed, using (3), as

V̇ ≤ −
(

J ⊤Q̄J + U⊤R̄U + 2J⊤S̄U
)

− ρV, (13)

where the new dissipative matrixes are defined as

Q̄
.
=

1

2
(Q + R − 2S)

R̄
.
=

1

2
(Q + R + 2S)

S̄
.
=

1

2

(

R⊤ − Q⊤)

. (14)

III. C HARACTERIZATION OF THE MAXIMUM SAMPLING

TIME PRESERVING DISSIPATION: MASD

In this section we aim to characterize the maximum
sampling time that preserve the system original dissipation
properties. We will treat the general case of the dissipation
property including the two class of systemsC1, andC2, with
and without the scattering transformation described in the
previous section. The results will be presented as the solution
of a LMIs guaranteing that the sampled system will satisfy
the corresponding dissipative condition.

A. Discrete-time system description

We have to re-formulate our problem in the discrete time
framework starting with the discrete time representation of
the systemΣi in (1),

Σi,k : xk+1 = Akxk + Bkuk (15)

yk = Cxk + Duk, (16)

whereAk = eATk andBk = A−1(Ak−I)B. and the system
Σi in (12),

Σi,k : xk+1 = Ākxk + B̄kUk

Jk = C̄xk + D̄Uk. (17)

Next, the equivalent definition of the dissipative prop-
erty needs to be reformulated also in this discrete-time
framework. One possible way is to make a discrete-time
approximation of (3), or (13) according to the considered
case, by using the approximation

V̇ ≈ Vk+1 − Vk

Tk

,

whereVk = x⊤
k Pxk, and proceeding as in previous section

to write the associated discrete-time LMI, which can be used
to find the maximum value forTk, preserving its dissipative
property.

Note that each of the two considered classes of system can
be then evaluated by the proper substitution of the associated
(Q, R, S, ρ) values.

B. Original system coordinates

The dissipation inequality (3) evaluated in the setup shown
in Fig. 1, gives the following LMI

(

A⊤
k

P
Tk

Ak − P
Tk

A⊤
k

P
Tk

Bk

B⊤
k

P
Tk

Ak B⊤
k

P
Tk

Bk

)

+

+

(

C⊤QC + ρP C⊤(QD + S)
(D⊤Q + S⊤)C R + D⊤QD + D⊤S + S⊤D

)

≤ 0.

(18)

which in a compact notation writes asW (Tk) + Z ≤ 0,
with W (Tk) being the first matrix sampling dependent, and
Z the matrix capturing the particular dissipative property of
the original system. Note that here the values of(Q, R, S, ρ)
, andP are given from the original system properties, and
then we only need to search for the maximum value of
Tk that verifies the LMI. Note also that from continuity
of the solution, (there exist always a solution for infinitely
small Tk), a limit solution for T ∗

k > 0 will always exist.
The definition of MASD,T ∗

k > 0, follows then from this
observation, i.e.

T ∗
k = max

Tk>0
{Tk : W (Tk) + Z ≤ 0} (19)
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C. Using the Scattering transformation

Our second option will be to perform a similar analysis
in the transformed system coordinates after applying the
previously presented scattering transformation, in the setup
given by Fig. 2. Proceeding as before, but now using (13),
we get

(

Ā⊤
k

P
Tk

Āk − P
Tk

Ā⊤
k

P
Tk

B̄k

B̄⊤
k

P
Tk

Āk B̄⊤
k

P
Tk

B̄k

)

+

+

(

C̄⊤Q̄C̄ + ρP C̄⊤(Q̄D̄ + S̄)
(D̄⊤Q̄ + S̄⊤)C̄ R̄ + D̄⊤Q̄D̄ + D̄⊤S̄ + S̄⊤D̄

)

≤ 0.

(20)

which in a compact notation writes as̄W (Tk)+ Z̄ ≤ 0. The
definition of MASD T̄ ∗

k > 0, follows as before, i.e.

T̄ ∗
k = max

Tk>0

{

Tk : W̄ (Tk) + Z̄ ≤ 0
}

(21)

Remark 1: Note that both formulations (18) and (20) yield
similar forms of the LMIs, but with matrices that inside have
different values. Therefore, the expected values for each of
the MASD; T ∗

k , andT̄ ∗
k will be different.

D. Examples

1) First-order IOSP system: This example compares the
MASD obtained for a dissipative systemΣ of classC1 (Case
A in Tab. I), with and without the scattering transformation.
For this, consider the following input-output strictly passive
(IOSP) system,

G(s) =
1

s + 1
+ d

and recall that the use of the scattering transformation, makes
the transformed system̄Σ haveL2-gain less than one (Case
D in table I). Figure 4 shows the evolution of theT ∗

k and
the T̄ ∗

k for different values of the parameterd. It can be
noticed that the resulting MASD is larger when the scattering
transformation is used (̄T ∗

k > T ∗
k ). The example reveals how

the use of the scattering transformation improves over the
one without transformation.
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Fig. 4. Comparison of MASD for a first-order IOSP system with and
without scattering transformation

2) Underdamped Second Order System: This example
compares the MASD obtained for a dissipative systemΣ of
classC2 (Case B in Tab. I), with and without the scattering
transformation. Consider the system

G(s) =
Kω2

n

s2 + 2δωns + ω2
n

(22)

with parametersK = 0.865, ωn = 6 and δ = 0.5. This
systemΣ is not passive, but hasL2-gain equal to0.999.

Figure 5-(a) shows theL2-gain versus the sampling time. It
can be observed that the gain over-exceeds one atT ∗ = 0.46.

The second option is to use the transform system using the
scattering matrix. Because the duality indicated in previous
section, the transform systemΣ belongs to classC2 (Case
C in Tab. I). Figure 5-(b) shows theλ = min(Re{G(jω)})
as a function of the sampling time. It can be observed that
λ > 0 for all sampling time, which shows that the best option
(in terms of stability) to interconnect this system is by the
scattering transformation.
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λ

Fig. 5. Evolution of dissipative properties. (a)- Evolution of theL2-gain
γ of G(s) as a function of the sampling time, and (b)- Evolution ofλ =
min(Re{G(jω)}) as a function of the sampling time.

One of the paper goal is to select the formulation that
gives the larger MASD, while preserving the stability of the
interconnection. Stability issues under such interconnection
framework are studied next.

IV. STABILITY PROPERTIES OF ASYNCHRONOUS

SAMPLED SYSTEMS

Let us assume that each system1 is sampled using a zero
order hold, and as before, that the sampling time-intervals
T2,k, andT1,k are not constant but are multiple-integers. For
simplicity we consider the case in whichT2,k = nkT1,k,
with nk ∈ {1, 2, . . . , nmax}, but similar results hold ifnk is
of the formnk ∈ {1, 1/2, . . . , 1/nmax}.

1The notion of system here designs, eitherΣi, or Σ̄i, according with the
considered case.
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A. Stability conditions in the original system coordinates

Proposition 1: Consider two dissipative systems2 Σi, ful-
filling each one its respective dissipative inequality (18), and
interconnected asynchronously as shown in Fig. 1. Assume
that there exists for each system,Σi, a MASD T ∗

i , i = 1, 2,
verifying

T2,k = nkT1,k ≤ min{T ∗
1 , T ∗

2 },

Then, the following holds:
• the feedback asynchronous interconnection of two dissi-

pative systems is asymptotically stable if the following
LMI is satisfied

(

Q1 + R2 S1 − S⊤
2

S⊤
1 − S2 R1 + Q2

)

> 0, (23)

• If ρi > 0, i = 1, 2, then the feedback interconnection
is also exponentially stable,

• For the two classesC1, andC2 of considered systems,
the condition (23) holds, and hence the interconnection
is asymptotically stable.

Proof: Assuming that there existT ∗
i , i = 1, 2, verifying

T2,k = nkT1,k ≤ min{T ∗
1 , T ∗

2 }, such that each sub-system
Σi fulfills its respective dissipative inequality, implies that
that both systems must verify a dissipative property for the
smaller sampling time,T1,k, that is

Σ1 : V1,k+1 − V1,k ≤
≤ −T1,k(y⊤

1,kQ1y1,k + u⊤
1,kR1u1,k + 2y⊤

1,kS1u1,k + ρ1V1,k)

Σ2 : V2,k+1 − V2,k ≤
≤ −T1,k(y⊤

2,kQ2y2,k + u⊤
2,kR2u2,k + 2y⊤

2,kS2u2,k + ρ2V2,k)

As both systems are feedback interconnected it follows that
u2,k = y1,k and y2,k = −u1,k. Taking as a Lyapunov
function candidate,Vk = V1,k + V2,k, the rate of change
of this function∆Vk = Vk+1 − Vk is given as

∆Vk = V1,k+1 − V1,k + V2,k+1 − V2,k ≤ (24)

−T1,k(y
⊤
1,kQ1y1,k + u⊤

1,kR1u1,k + 2y⊤
1,kS1u1,k + ρ1V1,k +

+u⊤
1,kQ2u1,k + y⊤

1,kR2y1,k − 2u⊤
1,kS2y1,k + ρ2V2,k) < 0

introducingρ̄
.
=min(ρ1, ρ2) yields,

∆Vk ≤ −T1,k

[

y⊤
1,k(Q1 + R2)y1,k

+ u⊤
1,k(R1 + Q2)u1,k

+ 2y⊤
1,k(S1 − S⊤

2 )u1,k + ρ̄Vk

]

< 0

It follows straightforward that ifρ̄ = 0 asymptotic stability
can be reached if the two systems are ZSD, and the condition
(23) hold, insuring that∆Vk ≤ 0.

The second item in the proposition is simple to check by
observing that ifρ̄ > 0, then∆Vk is an strictly decreasing
function, and hence the interconnection become exponen-
tially stable.

Finally, the last item is easy to check by simple substitu-
tion of the definition of the(Qi, Ri, Si, ρi) in the equation
(23).

2For completeness we also assume that both systems are zero state
detectable (ZSD).

The proposition can be particularized for every kind of
dissipative systems, i.e. in terms of passivity or in terms of
L2-gain. The proposition is also valid for systems intercon-
nected with the scattering transformation, as shown next.

B. Stability conditions using scattering transformation

Proposition 2: Consider two dissipative systems3 Σ̄i, ful-
filling each one its respective dissipative inequality (20),
and interconnected asynchronously by means of a scattering
transformation as shown in Fig. 2. Assume that there exists
for each system,̄Σi, a MASD T̄ ∗

i , i = 1, 2, verifying

T̄2,k = nkT̄1,k ≤ min{T̄ ∗
1 , T̄ ∗

2 },

Then, the following holds:

• the feedback asynchronous interconnection of two dissi-
pative systems is asymptotically stable if the following
LMI is satisfied

(

Q̄1 + R̄2 S̄1 − S̄⊤
2

S̄⊤
1 − S̄2 R̄1 + Q̄2

)

> 0, (25)

• If ρi > 0, i = 1, 2, then the feedback interconnection
is also exponentially stable,

• For the two classesC1, andC2 of considered systems,
the condition (25) holds, and hence the interconnection
is asymptotically stable.

Proof: The proof is similar to the one in Proposition 1,
and then it is omitted.

Remark 2: Substituting (14) in (25) the LMI can be
expressed in terms of the original dissipative properties of
the systems with no scattering transformation.

Remark 3: The condition given by the two previous
propositions, can be also used in an inverse manner to find
for the most appropriate maximum sampling time ensuring
stability. Besides, it may be possible also to use this analysis
for control design along the same lines than in the works of
[14].

C. Example

Consider the interconnections of two systems of the form
(22) as described in the Example III-D.2. The goal of this
example is to evaluate by simulation the interconnection
behavior for the two possible scenarios shown in Fig. 1 and
Fig. 2, with the addition of a reference step signal applied
to the systemΣ1 to better visualize the system transient
responses.

The first simulation tests are done by the proper selection
of the sampling time validating the stability conditions:
Tk=0.3 s, which implies thatTk < T ∗

k < T̄ ∗
k . Figure 6-(a)

shows the system outputs corresponding to the interconnec-
tion in Figure. 1 (Case B in Tab. I), and Figure 6-(b) the
system output using the scenario shown in Figure 2 (Case
C in Tab. I), including the scattering transformation. It can
be seen how the inclusion of the scattering transformation
increases the achieved performance.

3Both systems are assumed to be zero state detectable (ZSD).
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Fig. 6. Time-evolution of the system outputy1(t). Sampling time fulfilling
the stability conditions for both cases:(a) without the use of the scattering
transformation, and(b) using the scattering transformation.
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Fig. 7. Time-evolution of the system outputy1(t) with T ∗

k
< Tk < T̄ ∗

k
.

The case of sampling time not fulfilling the stability conditions is shown in
(a) which does not the use of the scattering transformation. Thecase(b)
using the scattering transformation is stable and has a goodperformance.

The second example, shown in Figure 7, repeat the previ-
ous simulation but now withTk = 0.55 s. This sample time
selection implies that (T ∗

k < Tk < T̄ ∗
k ). As the computation

in the Example III-D.2 have shown, the use of the scattering
matrices allows for larger sampling interval for stability, but
also an improvement in the system transient behavior.

V. CONCLUSIONS

In this paper we have presented a method to analyze the
stability of the feedback interconnection of a class of linear
systems when the sampling is asynchronous. The analysis
has been made taking into account dissipatedness properties
of the original continuous-time system.

We have characterized specific conditions in terms of
LMIs allowing to compute the larger sampling time interval
preserving the original system dissipative properties. For that,
we have also considered the possibility of using the scattering
transformation. This transformation allows, in some cases,
to improve the system stability over the situation where it is

not used, because longer sampling time intervals can thus be
tolerated.

We have presented stability conditions for the asyn-
chronous interconnection of two general dissipative systems.
The conclusions are extended to the case of using the
scattering transformation in the interconnection. Finally, we
have introduced a numeric procedure for choosing an optimal
way to interconnect a dissipative system.
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