
evercodeML: a formal language for SoC integration

José I. Villar, Jorge Juan, David Guerrero, Manuel J. Bellido, Julián Viejo
Departamento de Tecnología Electrónica

Universidad de Sevilla
Spain

E-mail: {jose, jjchico, guerre, bellido, julian}@dte.us.es

Abstract—Complex SoC design devote a great part of the
developing time to module integration tasks. The necessity of
automating system integration at high-level has yield to the
development of module description languages like IP-XACT.
However, the available options today still lack advanced
parametrization capabilities needed to design complex systems
with very heterogeneous IP-cores and module providers. This
contribution introduces a formal language for SoC integration
that overcomes these limitations.

Keywords.- FPGA, SoC, IP-core, IP-XACT.

I. INTRODUCTION

In the last few years FPGA devices have experienced a
great increment in the level of integration and performance.
This development of configurable devices has brought a
remarkable variant of the SoC [1] (System on Chip) approach
so-called SoPC (System on Programmable Chip) that has
made it necessary the adoption of new methodologies tailored
to the highly increased flexibility of the programmable
platforms and the growing complexity of tackled designs.

On the other hand, the rising success of programmable
devices, has also made hardware development extremely
popular, reaching new target audiences as small/medium
enterprises, academic environments and even individual
developers that until FPGA popularization could not afford
designing in the SoC arena. Some initiatives have brought
successful ideas from Free Software [2] to the hardware area.
The most relevant of these initiatives is the Opencores portal
[3], which offers over 500 ready-to-use projects, including a
variety of CPUs, arithmetic cores, peripheral controllers and
complete SoC systems among others.

Because of these the available hardware core portfolio is
huge but extremely heterogeneous in quality, packaging,
distribution methods, and licensing conditions. It makes
system integration a tough task. In particular, the potential of
many good quality and useful open cores is not exploited not
only because of the absence of publicity but also due to the
fact that they were conceived for a particular application and
later released to the community with little or no
documentation.

Additionally, to build a complete SoC, developers also
have to deal with specific design constrains like clock
frequency, reset generation, interconnection strategies, etc.
which makes it even harder to integrate third party cores even
if the core design is available and can be modified. These
limitations have been identified by the industry in recent years
and some effort have been devoted to create formal core
description and packaging languages like IP-XACT [4] and
CHREC [5].

IP-XACT has become an international standard in 2009
[4]. While IP-XACT does an excellent job at describing the
functional characteristics of a SoC design, it lacks the
flexibility needed by reconfigurable cores, where a complex
parameter interdependencies are common. Another XML
schema named CHREC has been proposed in [5]. CHREC is
more FPGA friendly with strong support for parametrization
including parameter evaluation. However, both formats lack
some characteristics to tackle the increasingly complex
integration problems like repository handling or complex
parametrization found in descriptions intended for core-
generation tools.

This contribution is specifically devoted to the description of
the second iteration over a novel core description markup
language which is part of a larger project aimed at developing
a general strategy to facilitate the reuse and integration of
available hardware cores in complex scenarios.

In section II there is an overview of the type of system the
proposed format is intended to. In section III the core
description's most relevant capabilities are described in some
detail. Section IV comments some sample descriptions that
highlights the potential of the language and section V derives
some conclusion and future work.

II. SYSTEM OVERVIEW

Figure 1 depicts an overview of a fully-automated, high-
level SoC integration system. The platform should be able to
locate the required cores in a set of repositories, fetch them
and produce a HDL source that can be further processed by
conventional vendor-specific tools to produce a final
implementation. A brief description of the main tasks involved
follows.

A. Core Packaging and Distribution

A set of package repositories (either remote or local) plays
the role of a distributed library of cores. Every package
includes the original design of the core that may include HDL
source code, configuration and synthesis scripts, core
generators configuration and/or already compiled netlists.
Every packages also contains machine readable meta-
information about the design to allow for the automatic
acquisition and integration of these components in larger
designs. This meta-information ranges from the semantics of
its interfaces to implementation and functional constraints,
dependencies with other cores, configuration and
parametrization capabilities and any other details needed by
other tools to integrate cores with none or little human
interaction. This may be seen as an analogy to the way that
software components are distributed in several GNU/Linux
distributions using package repositories [6].

B. Automatic system integration

As depicted in Fig. 1, a system integration tool would be
responsible from reading a design specification and producing
a RTL HDL source and/or compiled design that can be fed to
the regular vendor-specific platform in order to produce a final
implementation. The design is mostly a high-level structural
description of the system where very parameterized cores can
be instantiated in many different configurations. The

integration tool would be responsible of rendering the
appropriate instances of the core by not only substituting
design parameters, but also by fetching adequate core
versions, executing available core generators, automating bus
connections and so on.

C. Core meta-information

All the system pivots on the meta-information associated
with the core, so that the integration tasks that can be
automated will directly depend on the capabilities of the
design that can be captured in the meta-information language.
An obvious candidate for core description is IP-XACT, but it
lacks the flexibility needed by the described scenario as
already mentioned in the introduction of this contribution.
Like CHREC, the proposed platform also aims to strong
parametrization support, including not only parameters used
by core generators or specific designer's scripts, but also the
non-functional data required to support the package system.

III. XML CORE DESCRIPTION LANGUAGE

evercodeML (Exchangeable VERsatile COre DEscription
Markup Language) is a XML-based core description language
intended to support the special characteristics of the core
integration system described in Section II. evercodeML
includes basic functional description capabilities that are
similar to those found in IP-XACT like component naming,
port and bus description, parameter definition, etc., but it also
includes some unique and/or improved facilities which are
highlighted in the rest of this section.

A. Javascript

evercodeML can embed Javascript code like it is
commonly found in XML world wide web applications. This
is a powerful aid to support complex parametrization and
other unique features of evercodeML that are detailed below.
This functionality has been implemented by incorporating a
Javascript interpreter into the evercodeML processor.

B. Parametrization

All the parameters from an underneath HDL description
can be incorporated to evercodeML. In the case of Verilog,
both DEFINE macros and in-module parameter definitions
can be captured. In the case of DEFINE macros in Verilog, the
same value is typically applied to all the instances of the
affected modules. evercodeML automatically overcomes this
limitation by replicating the module definition if a different set
of parameters is used in two evercodeML instantiations when
the underlying implementation of the parameters is a DEFINE
macro. However, the use of Verilog's parameter is the
preferred method to parametrize a SoC design.

Additionally, evercodeML can also define the so-called
master parameters which live in the description's name space.
Design parameters or other master parameters can be
calculated from an equation involving other (master)
parameters. Javascript is used to resolve the parameters so all
the power of Javascript is available: mathematical expressions,
control structures and so on. This makes it possible to handle

Figure 1. SoC integration overview.

Repo. 1

?
R

ep
o.

 2

R
e

po
. 3

B
a

ck
-e

n
d

to
o

ls
System Integration

Design
HDL

source

Core 1

Core 2

Core 3

complex parameter relationships where many core parameters
need to be calculated from a few master parameters even using
some algorithmic resolution. Parameter value constrains can
also be specified.

C. Algorithmic labels

Design labels like port names can be described
algorithmically using Javascript control structures. It makes it
possible to describe a core which interface topology varies
depending on design parameters, like typically happens with
cores produced by core generators. This way, the same
description can be used even if the number or even the names
of the input/output ports of the core changes. E.g. a core
generator that generates a variable number n of address buses
named addr_1, addr_2, … addr_n could be described with a
label name of addr_$(i) inside a loop that makes it go from 1
to n.

D. Non-functional meta-data

evercodeML also supports a number of non-functional
information which is not strictly related to the core's
implementation but to various administration tasks like:

• Core's authorship and copyright information.

• Digital signature (planned): in order to authenticate
the core's authorship.

• Version control and dependencies: a core may depend
or use another core with some version restrictions.

• Name spaces: a core can be part of some absolute
name space that identifies specific vendor, project,
library, etc.

• URL (Universal Resource Locator): used to
automatically fetch a core from a repository.

IV. EXAMPLES

Figure 2 shows an evercodeML description of a
parameterizable floating point divider. The corresponding
implementation calculates an approximation of the divisor
inverse in the first stage. Then the inverse is calculated
iteratively with the required precision using the Newton-
Raphson method in the second stage. The quotient is
calculated by multiplying the divined by the divisor inverse in
the third stage. In the last stage the correctly rounded
representation of the result is obtained. One of the parameters
of the module is the maximum latency “max_latency”. Since
the implementation has four stages this parameter must not be
lower than four. This restriction is reflected in the description.
The master parameter max_iterations will be the maximum
number of iterations of the second stage and is calculated just
by subtracting 3 to the max_latency parameters. The
parameters significand_width, exponent_width and
max_iterations of the evercodeML description of the module
correspond to the underlaying HDL parameters
fractional_width, exponent_width and max_iterations of the
implementation respectively.

<parameters>

 <masterparameter datatype="integer()" id="significand_width"
sourcename="fractional_width">

 <description>
Number of bits used to code the significand

 </description>
 <inputvalue><defaultvalue>23</defaultvalue></inputvalue>
 </masterparameter>

 <masterparameter datatype="integer()" id="exponent_width"
sourcename="exponent_width">

 <description>
Number of bits used to code the exponent</description>

 <inputvalue><defaultvalue>8</defaultvalue></inputvalue>
 </masterparameter>

 <masterparameter datatype="integer()" id="max_latency">
 <description>An upper bound on the maximum number of clock
cycles that will be required to calculate the division</description>

 <inputvalue><defaultvalue>8</defaultvalue></inputvalue>
 <constraint
alert="A minumum of four cycles are required to compute a division">

param.max_latency>=4
 </constraint>

 </masterparameter>
 <parameter datatype="integer()" id="max_iterations"

sourcename="max_iterations">
 <value>
 param.max_latency3

 </value>
 </masterparameter>

<parameters>

Figure 2. evercodeML description of a floating point divider.

Figure 3 shows an excerpt of a sample evercodeML
description that corresponds to a Wishbone [7] interconnection
matrix and includes some of the most noteworthy capabilities
of the core description language. The matrix has a
configurable number of slave devices. It is assumed that a
matrix core generator exists that will generate a matrix core
with the desired number of slave ports. The example includes
five code blocks which are commented below:

• First block defines the required_slaves master
parameter. Default value is 8 and this value can be
changed at core's instantiation time. Note that
“instantiation” here is considered at a high level so
every instantiation of the core will trigger the matrix
core generation process to produce a core with the
desired number of slave ports.

• Second block defines the address_width master
parameter corresponding to the desired with of the
address bus. Default value is 32 and a constrain is
defined to force the value to be a multiple of 8.

• Next two blocks define the actual_slaves and
decoding_width parameters that corresponds to the
n_slaves and dec_width parameter definitions in the
underlying HDL code. This is an example of how a
design parameters can be calculated from master
parameters previously defined using a complex
mathematical expression.

• Last block uses a for loop to describe the variable
number of ports of the core as a function of the

number of slaves. Note how the decoding address
and first address is automatically calculated for every
slave port, and how these are linked to the actual
design parameters that will be generated by the code
generator.

<parameters>

 <masterparameter datatype="integer()" id="required_slaves">
 <description>Number of required slave slots</description>

 <inputvalue><defaultvalue>8</defaultvalue></inputvalue>
 </masterparameter>

 <masterparameter datatype="integer()"
 id="address_width" sourcename="aw">
 <description>Address bus width</description>
 <inputvalue><defaultvalue>32</defaultvalue></inputvalue>
 <constraint
 alert="Address bus width must be a multiple of 8">
 param.address_width%8 == 0

 </constraint>
 </masterparameter>

 <parameter datatype="integer()" id="actual_slaves"
 sourcename="n_slaves">
 <value>
 pow(2,(param.address_widthfloor(
 log2(2^param.address_width/param.required_slaves))))

 </value>
 </masterparameter>

 <parameter datatype="integer()" id="decoding_width"
 sourcename="dec_width">

 <value>log2(param.required_slaves)</value>
 </parameter>

 <var name="i" />
 <for pre="i=0" test="lesser(i,param.actual_slaves)" post="i++">
 <parameter datatype="logic_vector(param.decoding_width1,0)"
 id="slave_$(i)_decoding_address" sourcename="s$(i)_dec_addr">
 <value>i</value>

 </parameter>
 <parameter datatype=
 "logic_vector(param.address_widthparam.decoding_width1,0)"
 id="slave_$(i)_first_address" sourcename="s$(i)_first_addr">
 <value>
 pow(2,(param.address_widthparam.decoding_width))*i

 </value>
 </parameter>

 </for>
 ...
<parameters>

Figure 3. evercodeML description of a Wishbone interconnection matrix.

This code not only describes the core independently of the
variations that will be produced by changing the core
parameters, but it also plays a fundamental roll at system
integration time. When used manually, the designer has to
calculate by hand the decoding and first addresses of every
slave in the core as the function of the number of slaves and

the bus width. But the evercodeML description gives the
necessary information to a integration tool to be able to
automatically calculate all these parameters so the designer
only need to specify the number of slaves and the bus width
when using the interconnection matrix from the evercodeML
description.

Since the production of evercodeML descriptions can be
very time-consuming, a tool has been developed to parse
Verilog designs and generate an initial evercodeML
description for all the modules found. This initial description
can be then easily improved to use all the extended
capabilities of the format.

V. CONCLUSIONS

Module integration in state-of-the-art SoC design is a
tough task which is poorly automated, specially in the most
heterogeneous environments. Current formal core description
languages lack the parametrization flexibility and meta-
information capabilities needed in the most complex
scenarios. A novel high-level core description language has
been introduced that overcomes these limitations by
introducing advance capabilities like Javascript automation,
algorithmic signal labeling, advance parametrization and
repository management support.

ACKNOWLEDGMENT

This work has been partially supported by the Ministerio
de Ciencia e Innovación of the Spanish Government under
project TEC2011-27936 (HIPERSYS) and by the European
Regional Development Found (ERDF).

REFERENCES

[1] System-on-Chip Designs: Stategy for Success. Wipro Technologies
White paper (2001).

[2] R. Stallman, Free Software, Free Society: Selected Essays of Richard
M. Stallman. Free Software Foundation, 2002.

[3] Opencores, “Opencores website”. http://www.opencores.org.

[4] IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows. IEEE std. 1685-2009.

[5] A. Arnesen, N. Rollings, M. Wirthlin. A Multi-Layered XML Schema
and Design Tool for Reusing and Integrating FPGA IP. Proc. FPG 2009,
pp. 472-475. Sept. 2009.

[6] I. Murdock, “How package management changed everything”, July
2007. http://ianmurdock.com.

[7] R. Herveille, WISHBONE System-on-Chip (SoC) Interconnection
Architecture for Portable IP Cores. Opencores, 2002.

