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ABSTRACT Stock price forecasting is a relevant and challenging problem that has attracted a lot of interest
from engineers and scientists. In this paper we apply two techniques for stock price and price intervals
forecasting. Both techniques, derived from previous works by the authors, are based on the use of local data
extracted from a database. These data are those that correspond to similar market states to the current one.
The first technique uses these local data to compute a price forecast by finding an optimal combination of
past states that equals the current state. The price forecast is then obtained by combining the past actual
prices associated to the past market states. The second technique can be used to forecast prices but its main
use is to forecast price intervals that will contain the real future price with a guaranteed probability. This
is accomplished by building a probability distribution for the forecasted price and then setting the intervals
by a choice of desired percentiles. Thus, this technique can be used in financial risk management. Both
techniques are purely data driven and do not need a theoretical description or model of the price trend being
forecasted. The proposed techniques adapt very easily to market changes because they use only the subset
of the database that it is closer to the current state. Furthermore, the database can be updated as new data
is available. Finally, both approaches are highly parallelizable, thus making possible to manage large data
sets. As a case study, the proposed approaches have been applied to the k-step forecasting of the Dow Jones
Industrial Average index. The results have been validated in relation with some baseline approaches, such
as martingale and neural network predictors and quantile regression for the interval forecasting.

INDEX TERMS Stock forecasting, probabilistic interval forecasting, direct weight optimization, data driven
methods.

I. INTRODUCTION
Stock price forecasting is a challenging field that has attracted
researchers from different fields including engineers and sci-
entists. It is likely fair to say that there is not yet an approach
for stock forecasting that is accepted as superior, with the
existing approaches having their strengths and weaknesses.
There are two major approaches regarding stock forecast-
ing [1]. In the traditional financial approach, the objective
is to estimate the intrinsic value of a security [2]–[4]. For
instance, in the case of a stock, the intrinsic value from a
financial traditional approach is the time discounted value of
the free cash flow of the company [5], [6]. There are several
issues regarding the intrinsic value approach, such as the need
to forecast the cash flows of the company for several years
into the future [7] which makes estimates rather challenging.
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Another issue, from an investor point of view, is that the
intrinsic value of the stock and the actual value of the stock,
i.e., its price, are not the same.

Another investing approach can be defined as quantita-
tive investment [8]. In this type of investment strategy the
objective is not to estimate the intrinsic value (true value)
of a security but the price (or price trend) that the stock
will follow over a certain time horizon, which tends to be
short to midterm investment [9], [10]. The assumption on this
type of investment strategy is that the price of a security is
dictated by the demand and supply forces and that, as such,
statistical and learning methods can be used to forecast the
price. This approach implicitly assumes that stock prices do
not follow a perfect random walk. If they did, then historical
price information would be useless when trying to determine
future stock prices [11]. This assumption can be related to
the efficient market hypothesis [11] which is a long-standing
topic of debate in the financial academic literature. The strong
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form of this hypothesis assumes that all public information,
both private and public, is already priced in stock levels and
it is therefore impossible to develop any trading strategy even
for company insiders. There are other approaches to financial
theory that suggest that the market are not completely effi-
cient because investors are subject to biases and do not have
access to all the information that can potentially impact the
price of the stock of a company [12]. Thus, forecasting the
stock price using historical data would be a difficult but pos-
sible task. Due to the financial relevance of stock price fore-
casting, many different techniques have been applied to the
problem. The almost random nature of the market has made
Brownian motion [13] and martingale models [14], [15] one
of the first choices. Since the efficient market hypothesis is
not proved, more elaborate techniques have been used trying
to exploit the market inefficiencies. Among these techniques,
in the literature can be found applications with linear models
[16], support vector machines [17], genetic algorithms [18] or
more frequently neural networks [19]–[21] and deep learning
methods [22]–[24] (for a recent survey on this topic see [25]
or [26] for a more general survey).

In this paper, we present two quantitative techniques that as
far as we know have not been covered in the existing literature
in the field of stock forecasting. One is an approach derived
from the predictive control strategy presented by the authors
in [27], [28], which in turn can be related to the direct weight
optimization approach [29]–[31]. Direct weight optimization
uses linear estimators and convex optimization [32] and has
been applied in different fields like predictive control [33],
nonlinear system identification [34] or electron density anal-
ysis [35]. The proposed approach uses local data, that is, only
a subset of the whole data available, chosen among those
past stock market states that are close to the current state.
With such a subset, the approach computes an optimal linear
combination of past states that equals the current state, using
such combination then to compute the price forecast. Unlike
other methods, like neural networks, the proposed approach
does not use a training phase as the subset and the linear
combination is computed each time a forecast is needed. This
allows an easy adaptation to different market situations and
also the updating of the database as new data are available
without having to retrain the estimator. Furthermore, the use
of local data results in a lower computational burden, as the
cardinality of the subset will be much lower than that of the
whole data set.

The other technique proposed in the paper is a probabilistic
price interval strategy previously presented in a more general
context in [36]. This strategy can be used to forecast stock
prices but its main application is to provide price intervals
with a guaranteed probability of containing the real price.
In this sense is complementary to the first approach as it
provides the guarantees that the previous one lacks. On the
other hand, although the algorithm is highly parallelizable,
the computational burden is higher, thus it does not replace
the first approach if no guarantees are required. This approach
uses dissimilarity functions evaluated on local data to build an

TABLE 1. Structure of the database DBk .

empirical probability distribution of the predicted price. Thus
using such distribution it is possible to build price intervals
using the desired percentiles and also predict the forecast
using the median of the distribution. This can be very useful
for risk management purposes [37], a field of increasing
importance in finance.

Finally, as a case study, the techniques have been applied
to the task of predicting future values of the Dow Jones
Industrial Average Index up to 5 days (i.e., a full week),
validating the results in relation to two baseline approaches,
a persistence (martingale) predictor and a neural network
based predictor. Furthermore, quantile regression [38], [39]
has been used as a third baseline approach to validate the
predicted price intervals. The results prove that the proposed
techniques are a valuable tool that can be added to the port-
folio of existing techniques for stock price forecasting.

The paper is organized as follows: section II presents the
first strategy for stock price forecasting using local data. The
probabilistic price interval strategy is shown in section III.
Section IV presents the results of these two strategies when
used to forecast the Dow Jones Average Industrial Index.
Finally, the conclusions are presented in section V.

II. STOCK PRICE FORECASTING USING LOCAL DATA
The first approach used in this paper to forecast stock prices is
based on the technique presented by the authors for predictive
control in [27], [28].

Consider the evolution of the price of a stock as a time
series p(t) ∈ P , being t the time index expressed in the proper
time unit, usually days in the case of the daily market, and P
the possible range of values for the stock price. The state of
the price time series is described as the value at time t of series
of technical indicators, i.e.,

z(t) = (Z1(t),Z2(t), . . . ,Znz(t)) ∈ <nz.

These technical indicators can be past values of p(t), stock
price returns or more complex metrics like moving averages
or the relative strength indicator amongst others [40]. The
objective is to be able to predict k-steps ahead the price of
a stock, that is, to obtain p̂(t + k) at time t in such a way that
it is as close as possible to p(t + k).
The approach presented here uses a database of past values

of z(t) and k-step ahead stock prices. The database DBk for
predicting k-steps ahead the price of p(t) will be implemented
as a table with NDB entries (i.e., rows), in which each entry
contains a past value of z(t) and the corresponding p(t + k),
as shown in table 1.

Note that the time indexes ij of the past states do not have
to be ordered in any way or be consecutive, thus they are not
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required to form a proper time series. The only requisite is
that the price associated with z(ij) is the one corresponding to
k steps after time ij.
The proposed approach does not use the database to train or

fit a predictor, as in the training of a neural network. Thus, the
database is not considered a training set (except for the tuning
of a reduced number of hyperparameters). Instead, it is used
every time a prediction is needed in an oracle fashion [41].
Furthermore, the approach considered in this section uses
only a subset of the database, denoted as �(z(t)), to compute
the prediction p̂(t + k). In this sense, it is also different from
techniques like neural networks in which the estimator is
fitted using the whole training set. More precisely, given a
distance measurement function d(z(t), z(ij)), and cardinality
parameter N , the elements of �(z(t)) are obtained selecting
the N states z(ij) closer to z(t). Thus, the prediction is com-
puted using only local data.

Once the data that are to be included in�(z(t)) are selected,
the proposed approach proceeds to compute an optimal com-
bination of all the z(ij) in �(z(t)) that matches z(t), using
the weights of such combination to compute p̂(t + k) as the
corresponding combination of all the p(ij+k) in�(z(t)). Fur-
thermore, a regularization term, weighted by a scalar γ ≥ 0,
is included in the computation of the optimal combination.
Algorithm 1 gives a formal description of the proposed
approach.
Remark 1: The distance d(·, ·) can be any measure of

how close are the states z(ij) stored in DBk to z(t).
A typical choice would be the Euclidean distance, i.e.,
d(z(t), z(ij)) = ‖z(t)− z(ij)‖, but also could consider other
aspects like the time span between states, i,e.,

d(z(t), z(ij)) = ‖z(t)− z(ij)‖ + ρ|t − ij|,

where the non-negative scalar ρ would be a weighting factor.
In this way, recent data would be prioritized in the selection
process of step 3 in algorithm 1. Other aspects like seasonality
could also be taken into account using the modulus operator,
and, in general, many of the resemblance measures used in
cluster analysis [42].

The optimization problem in step 4 of algorithm 1 can
be easily solved, specially when γ = 0 as it results in a
QP problem with equality constraints whose solution is that
of a system of linear equations. Moreover, steps 1 and 2
can be easily parallelized, thus efficient implementations of
algorithm 1 can be obtained.

Note that the fact that only local data is used to compute
p̂(t + k) makes the strategy adaptive, being the definition
of d(·, ·) the way to change how the strategy adapts to the
current price variations. Finally, the proposed approach does
not require a training phase (except for the possible tuning of
the hyperparameter γ ≥ 0), thus new data can be included in
the database as they are available, without having to retrain
the predictor. As in Lasso approaches [43], larger values of
γ tend to make a larger fraction of the weights equal to zero,
providing an enhanced local approach approximation. Thus,

Algorithm 1 k-Step Ahead Stock Forecasting Using Local
Data
Input: DBk , z(t), N and γ .
Output: p̂(t + k) (estimation of price at t + k).
1: Compute the distance d(z(t), z(ij)) for all z(ij) in the

database DBk .
2: Create a list of the entries in DBk sorted according to the

distances d(z(t), z(ij)). Denote as zl and pl,k the state z(ij)
and k-step ahead price p(ij + k) of the l-th entry in this
ordered list.

3: Build �(z(t)) using the first N entries in the ordered list,
that is,

�(z(t)) ,
{
(zl, pl,k )

}
∀l ∈ {1, . . . ,N }.

4: Solve the following QP problem:

min
λ1, λ2, ..., λN

N∑
l=1

λ2l + γ |λl |

s.t.
N∑
l=1

λl = 1,

N∑
l=1

λlzl = z(t).

5: Compute p̂(t + k) as:

p̂(t + k) =
N∑
l=1

λlpl,k .

γ is an hyperparameter that potentially improves the quality
of the predictions.

III. PROBABILISTIC PRICE INTERVAL FORECASTING
The price forecasting approach presented in the previous
section provides an easy and convenient way of forecasting
stock prices k-steps ahead. However, this approach does not
provide any measure on how the real price could deviate from
the forecasted one and also it does not have any guarantee on
that deviation. In this section, the approach presented by the
authors in [36] is adapted for stock price interval forecasting
with probabilistic guarantees. The proposed methodology
computes an interval prediction for the price p(t + k) in
which the lower and upper bound of the interval are computed
taking into account given probabilistic specifications. The
use of local data is introduced here in the strategy to better
handle large databases. The reader is referred to [36] for a full
description of the procedures involved in the original strategy.
Here it will be shown the main concepts and implementation
details.

The proposed strategy is based on building an empirical
conditional probability distribution for p(t+k) subject to z(t).
Let pα be theα-th percentile and pα theα-th percentile of such
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distribution. Then, the interval [pα, pα] will contain the price
with a probability of α−α100 . Thus, finding the intervals amounts
to compute the lowest and highest percentile that define the
desired interval for a given probability, e.g., for a probability
of 0.8 the desired interval will be [p10, p90]. On the other
hand, if a forecast p̂(t + k) is also needed, it can be chosen as
the 50th percentile of the distribution.

The key concept in this approach is that of dissimilarity
function, a generalization of the optimization problem in
algorithm 1. A dissimilarity function measures how similar
the given pair (z(t), p) is to the set of pairs (zl, pl,k ) of
� ⊆ DBk . The formal definition of dissimilarity function is
given in the following.
Definition 1: Given � ⊆ DBk , a scalar γ ≥ 0, z(t) and

price p then the dissimilarity function Jγ (·, ·, ·) is defined as:

Jγ (z(t), p, �) = min
λ1,λ2,...,λN

N∑
l=1

λ2l + γ |λl |

s.t.
N∑
l=1

λl = 1,

N∑
l=1

λlzl = z(t),

N∑
l=1

λlpl,k = p,

where, as in section II, the N pairs (zl, pl,k ) ∈ � denote the
state z(ij) and k-step ahead price p(ij + k) of the l-th entry
in �.
The dissimilarity function Jγ has a lower value when it is
easy to represent (z(t), p) as a combination of the N pairs
(zl, pl,k ) of� and a higher value otherwise (for further details
see [36]). Notice that given z(t), the value of p that minimizes
the dissimilarity function Jγ (z(t), p, �) is equal to the k-step
ahead forecast of Algorithm 1.

The other key concept in the approach is the empirical
conditional probability density function (ecp) [36], that uses
the dissimilarity function of definition 1, and approximates
the real distribution of p(t + k) conditioned to z(t).
Definition 2: For a given� ⊆ DBk , γ ≥ 0, c > 0, z(t) and

price p, the empirical conditional probability density function
(pdf) ecp is defined as:

ecpγ,c(z(t), p, �) =
e−cJγ (z(t),p,�)∫

P
e−cJγ (z(t),p̆,�)dp̆

,

where P is the set of all possible values of p(t + k) for
all t + k .
Note that according to this definition, given z(t), the prob-

ability of p(t + k) being in a certain interval [pa, pb] is
approximately equal to

pb∫
pa

ecpγ,c(z(t), p, �)dp.

To obtain the interval prediction [pα, pα], the hyperparame-
ters γ and c are chosen to make the approximation as sharp
as possible for pa = pα and pb = pα .

The hyperparameter c affects how the prices are distributed
around its expected values. Higher values of c yield a more
narrow pdf. Lower values of γ are appropriate when the real
pdf is close to a normal distribution whereas higher values of
γ are to be used if the distribution is flat and close to a uni-
form distribution. Thus, the family of empirical distributions
parameterized with c and γ encompasses a broad range of
distributions [36].

Note however that, in practice, the integral in definition 2
should be computed numerically over a finite set of possible
values of p(t+k), denoted as Ps ⊂ P obtained from a grid of
Np values p̄i in the interval [pmin, pmax]1 with p̄1 = pmin and
p̄Np = pmax . Denote the increment between two successive
prices p̄i ∈ Ps as:

1p̄ = p̄i+1 − p̄i

Then, the approximation of the ecp will be computed as

ecpγ,c(z(t), p, �) ≈
e−cJγ (z(t),p,�)

IS
, (1)

where the approximation of the integral can be computed
using the trapezoidal rule2 obtaining

IS = 1p̄
Np−1∑
i=1

e−cJγ (z(t),p̄i+1,�) + e−cJγ (z(t),p̄i,�)

2
.

Once the empirical distribution of p(t + k) is obtained,
computing the desired percentiles requires to find the value
pα for which

pα∫
pmin

ecpγ,c(z(t), p, �)dp =
α

100
.

holds and repeating the operation for α to obtain pα . As in
the previous case, these integrals should be computed numer-
ically. In the case of finding pα and using the trapezoidal
approximation, it reduces to solve:

iα = argmin
i

i

s.t.
i∑

j=1

ϕj+1 + ϕj

2
≥

α

1001p̄
, (2)

where ϕj = ecp(z(t), p̄j, �) is computed as in (1), and then

pα = p̄iα+1 ∈ Ps. (3)

1The choice of pmin and pmax can be done arbitrarily conservative, as the
only requisite is that with a high probability any p(t+k) verifies that p(t+k) ∈
[pmin, pmax ]. However, it is better to use reasonably tight bounds that require
a lower Np to sample the interval correctly.

2More accurate methods can be used instead of the trapezoidal rule, which
has been chosen here because of its simplicity and low requirements on the
function to be integrated.
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On the other hand, finding the lower percentile pα requires to
solve:

iα = argmax
i

i

s.t.
i∑

j=1

ϕj+1 + ϕj

2
≤

α

1001p̄
, (4)

and then

pα = p̄iα+1 ∈ Ps. (5)

The procedure to obtain the empirical distribution and price
intervals can be outlined as follows. First, it is assumed that
some values for γ and c denoted as γ ∗ and c∗ have been
chosen previously. Also, the value of the current market state
z(t) and the desired percentiles α and α are known. The
procedure starts by computing the value of the dissimilarity
function for the given γ ∗ and z(t) for all the possible values
of p(t + k) (i.e., ∀p̄i ∈ Ps). These values of Jγ ∗ are then
used to compute the empirical probability density function
for the given γ ∗, c∗ and z(t) for all the possible values of
p(t + k). Using these computations it is possible to build the
aforementioned empirical distribution of p(t + k), and then
find the desired percentiles to build the price interval, and also
the median to be used as the price forecast. These steps are
formally described in algorithm 2.

Algorithm 2 k-Step Probabilistic Price Interval Forecasting
Input: DBk , Ps, γ ∗, c∗,z(t), α and α.
Output: p̂(t + k) and the price interval [pα, pα].
1: Build �(z(t)) as in Algorithm 1.
2: Compute the dissimilarity function of definition 1
Jγ ∗ (z(t), p̄i, �(z(t)) for all p̄i ∈ Ps.

3: Using the previously computed values of the dissimilarity
function, build the empirical distribution by computing
ecpγ ∗,c∗ (z(t), p̄i, �(z(t)) for all p̄i ∈ Ps using the approx-
imation given in (1).

4: Find the desired upper percentile pα ∈ Ps using the
approximations given in (2) and (3) with z(t), �(z(t)),γ ∗

and c∗. In the same way, find the desired lower percentile
pα ∈ Ps using (4) and (5). Finally, using both methods
with α = α = 50 obtain p50 and p50 and compute the
median as p50 =

p50+p50
2 .

5: Return the desired interval [pα, pα] and the price forecast
p̂(t + k) = p50.

Note that the database can be updated as new market data
is available. This, together with the use of local data, makes
this strategy adaptive as in section II.

There are different ways of choosing the values γ ∗ and
c∗. A possibility could be to implement some form of local
search that would find the values of c and γ that minimize
the prediction error in a validation set or even maximize
the revenue when using the forecast and price intervals in
a trading strategy. However, these strategies would not give
the desired probabilistic guarantees on the computed price

intervals. Thus here it is proposed to use a maximum like-
lihood estimation procedure presented by the authors in [36]
and modified to use local data.

The algorithm needs the sets of possible values of γ and
c, denoted as 0 and C . The sets can be chosen as sets of Nγ
and Nc numbers from a grid in the intervals [γmin, γmax] and
[cmin, cmax] where the extreme points of these intervals can
be chosen directly as tuning parameters (e.g, they could be
chosen using cross-validation with a test set). On the other
hand, Nγ and Nc should be set in relation to the computing
power available.

The procedure starts by computing the dissimilarity func-
tion for all the possible combinations of values of 0 and Ps
and for every entry in the database using local data. Then,
with these values of the dissimilarity function, the ecp is used
to compute the empirical distribution for all the combinations
of γ , c and market states in DBk . After this, the desired
percentiles are computed for each of the previously built dis-
tributions. Then, for every combination of γ ∈ 0 and c ∈ C ,
the number of prices in DBk that fall outside the quantiles
of its distribution (that is, the number of quantile violations)
are computed. These numbers are used to associate to every
γ ∈ 0 the greatest cγ ∈ C for which the percentage of
violations of both lower and upper quantile is less than α
and greater than α respectively. Finally, the optimal γ ∗, c∗

are chosen as the one combination among all the previously
computed (γ, cγ ) that maximizes the likelihood ratio. Algo-
rithm 3 describes formally this procedure.

There are other ways to compute the optimal γ ∗ and c∗ with
probabilistic guarantees, such as algorithm 2 in [36] in which
the interval length is penalized aiming to smaller intervals.

Finally, note that although algorithms 2 and 3 have a higher
computational burden than algorithm 1, both are highly par-
allelizable as many of the operations performed on every
combination of data and parameters are independent of each
other. In this way, large data sets, which are readily avail-
able by the stock market data providers, can be used. Fur-
thermore, the computation of the optimal γ ∗ and c∗ does
not have to be repeated if the database is updated until the
amount of updated data becomes a significant fraction of the
database.

IV. CASE STUDY: FORECASTING THE DOW JONES
INDUSTRIAL AVERAGE INDEX
The proposed approaches have been used in the problem
of predicting the daily closing prices and price intervals for
the Dow Jones Industrial Average index. The dataset was
obtained from the data provider Bloomberg and is com-
posed of the daily closing price of the Dow Jones Index
from 2005 to mid-2016. The data was divided into a database
DB, from 2005 to 2014, and a testing dataset, from 2015 to
mid-2016. This latter period has been chosen because there is
not a clear market trend (bullish or bearish) that would make
forecasting easier. To lower the noise, all the raw prices in
the database have been smoothed using a 5-day Exponential
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Algorithm 3 Computation of γ ∗ and c∗

Input: DBk , Ps, 0, C , α, α.
Output: γ ∗, c∗.
1: For all the possible combinations of γ ∈ 0, zl ∈
DBk and p̄i ∈ Ps compute the dissimilarity function
Jγ (zl, p̄i, �(zl)).

2: For all possible combinations of γ ∈ 0, c ∈ C and
zl ∈ DBk build its associated empirical distribution
computing ecpγ,c(zl, p̄i, �(zl)) for all p̄i ∈ Ps using the
approximation given in (1).

3: For all γ ∈ 0, c ∈ C , zl ∈ DBk and their associated
empirical distribution find the desired percentiles as in
algorithm 2, i.e, for every combination find pα ∈ Ps
using (2) and (3) and pα ∈ Ps using (4) and (5). Save
the pα values in a vector denoted as φγ,c ∈ <

NDB and the

values pα in a vector denoted φγ,c ∈ <
NDB .

4: For every γ, c compute the number of prices pl ∈ DBk
falling outside the interval defined by [φ

γ,c
(l), φγ,c(l)].

Denote such numbers as vγ,c and vγ,c.
5: For each γ ∈ 0, select the greatest cγ ∈ C for which

100vγ,cγ
NDB

≤ α and
100vγ,cγ
NDB

≥ α.

6: Compute

γ ∗ = argmax
γ

NDB∑
l=1

log
(
ecpγ,cγ (zl, pl, �(zl))

)
.

using for every γ considered the cγ selected in the pre-
vious step. The optimal value of c∗ is the cγ selected in
step 3 for γ ∗.

Moving Average (EMA), which can be computed as:

pdEMA(t) =
2

d + 1
p(t)+ (1−

2
d + 1

)pdEMA(t − 1),

with EMAD(0) = p(0) and being d = 5 in this case. Note that
the smoothing applied here is very light as the usual values of
d for short-term forecasting are the 12 and 26 day EMA [44].
This would preserve fast price fluctuations although makes
forecasting more difficult.

The market state z(t) has been chosen to be composed
of the last ten days prices smoothed using the 5-day EMA
approach, as well as the 5-day and 10-day relative difference
percentage of unsmoothed prices (RDP) [45] i.e.,

RDPd (t) = 100
p(t)− p(t − d)

p(t)
,

being d equal to 5 and 10 respectively.
The approach of section II has been applied to the case

study to forecast the closing prices for up to 5 days, that
is a full week of market sessions. The size of �(z(t)) was
N = 250 and γ = 0. The forecast and real prices are seen
in figures 1 and 2. It can be seen that the forecast is quite
accurate for the first sessions and, as expected, it becomes
worse as k grows.

FIGURE 1. Forecasted and real prices (5-day EMA) for 1 day and 2 days
forecasting.

The approach for price interval forecasting has been also
applied to the case study. The parameters have beenN = 250,
Np = 1000, pmin = 6684.3, pmax = 19445, Nγ = 10, γmin =
0, γmax = 5,Nc = 60, cmin = 0.25, cmax = 15. The 10-th and
90-th percentiles were chosen for the price intervals, thus the
probabilistic specification is that the intervals contain the real
price is 0.8. The results obtained are shown in figures 3 and 4
in which the price intervals are represented as envelopes.
It can be seen that although the price intervals are quite tight
for k = 1, they grow as k rises. This is congruent with the
fact that for farther prediction horizons the uncertainty on
the forecasting is greater. Note also that sometimes the real
price is not inside the computed price interval. This is also
congruent to the fact that it should fall outside of the interval
about 20% of the times.

Even if the results obtained seem correct at a glance,
it is necessary some form of validation. Thus, the results
have been validated in relation to a persistence predictor,
i.e., martingale, that has been used as a baseline approach
forecasting the prices as p̂(t+k) = p(t). Furthermore, amulti-
layer perceptron (MLP) with 20 neurons in the hidden layer
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FIGURE 2. Forecasted and real prices (5-day EMA) for 3 to 5 days
forecasting.

and trained with the Levenberg-Marquardt rule has been also
used as a baseline approach. Table 2 shows the mean squared
errors (MSE) for proposed and baseline approaches. It can
be seen that the approach proposed in section II presents
the lower MSE of all approaches and that the forecast using

FIGURE 3. Price intervals for 1 to 3 days (5-day EMA).

the strategy of section III is the second best for k up to 4.
Another parameter to be studied is the dispersion of errors.
Table 3 shows the standard deviations of the errors for all
approaches. It can be seen that, as in the case of the MSE, the
approach of section II has the tighter errors in all cases and

9340 VOLUME 9, 2021



G. Alfonso et al.: Stock Forecasting Using Local Data

FIGURE 4. Price intervals for 4 and 5 days (5-day EMA).

that the forecasting using the median of the price distribution
is the second best for k up to 4. Thus, the errors are expected
to be smaller with the proposed strategies and more close to
their mean values. This also results in lower uncertainty on
the quality of the prediction. Furthermore, the results show
that the approach of section II is complementary to that of
section III producing better forecasts with a much lower
computational burden. In fact, when implemented in Matlab
on an Intel Core i7-4790 CPU computer, the computation
time for the strategy of section II was 0.0037 seconds. On the
other hand, the implementation of Algorithm 2 took 0.3997
seconds on the same computer, whereas the implementation
of algorithm 3 required 4.5 hours to find γ ∗ and c∗. Note,
however, that γ ∗ and c∗ are computed only once provided
that the database does not suffer major changes.

Although the MSE and standard deviation is better for the
approach of section II, it is practically equal to theMSE of the
persistence predictor for k = 5. The reason for this is that as
the prediction horizon k grows, the price time series becomes
more similar to a randomwalk, making persistence predictors
a good choice for price forecasting. This is more evident when

TABLE 2. MSE obtained using the proposed and baseline approaches
(5-day EMA).

TABLE 3. Standard deviation of the errors (σ ); 5-day EMA.

TABLE 4. MSE obtained using the proposed and baseline approaches
(15-day EMA).

TABLE 5. Standard deviation of the errors (σ ); 15-day EMA.

the smoothing of the prices is quite light, like in the previous
simulations. More typical periods in the EMA smoothing
(12 and 26 days are common in stock trading for short term
forecasting) show how the proposed approachesmake a better
job predicting the price trend than persistence predictors.
Tables 4 and 5 show the MSE and standard deviations for all
the approaches when using a 15-day EMA smoothing. These
tables show that in this case the proposed approaches have
always lower MSE and tighter errors. Furthermore, the MLP
is also better than the persistence for all k , whereas in the case
of the lighter smoothing it was worse for k equal to 4 and 5.

The proposed strategies can also be used to forecast intra-
day stock prices. The Dow Jones Industrial Average prices
from 06/03/2020 to 11/03/2020 have been considered as an
example. Tables 6 and 7 show the MSE and standard devi-
ation values when forecasting half-hourly prices from this
period. In these tests the longest forecasting horizon was 3.5
hours, thus k varies from 1 to 7. A 2.5-hour EMA has been
used to smooth the prices and the structure of market state z(t)
is the same as before but changing daily prices and RDP for
their half-hourly counterparts. It can be seen that the strategy
of section II performs as expected and that, in this case, there
is no need for further smoothing to keep the performance
better than the persistence predictor. On the other hand, the
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TABLE 6. MSE obtained using the proposed and baseline approaches
with intraday half-hourly prices (2.5-hour EMA).

TABLE 7. Standard deviation of the errors (σ ); 2.5-hour EMA.

TABLE 8. Empirical probability of the real price to be contained in the
computed intervals (the theoretical one is 0.8) and average width of the
price intervals using the proposed approach and quantile regression.

strategy of section III has a higher MSE than the MLP (but
lower than the persistence predictor). Note, however, that the
strategy of section III is used to produce interval forecasts
rather than price forecasts.

On the other hand, the previous results and baseline
approaches are not useful to validate the price interval fore-
casting obtained using the strategy of section III. In order to
do so, the well-known quantile regression has been chosen
as a baseline approach to validate the interval forecasting.
Table 8 shows the empirical probabilities and interval width
of the proposed strategy and quantile regression using the
same data and theoretical probability (0.8). It can be seen that
the intervals computed using the proposed approach contains
the real price with a higher probability than the specified one,
whereas the quantile regression produces tighter intervals that
do not meet the specified probability for any k . Thus, the
quantile regression fails in this case. However, in the case of
the intraday dataset both strategies work well (see table 9),
being the proposed strategy a bit more conservative. Note
that some form of tightening could be used with the proposed
approach to make the intervals narrower while meeting the
probability in practice, but the resulting intervals will not have
the probabilistic guarantee of the approach.

Finally, the growing values of the forecasting error and its
dispersion together with the effect of smoothing the prices
suggest, that although not a perfect random walk for very

TABLE 9. Empirical probability and average width of the price intervals
using the proposed approach and quantile regression (intraday dataset).

short term forecasting, as the prediction horizon grows, the
price time series becomesmore difficult to forecast, gradually
approaching to a random walk.

V. CONCLUSION
Two strategies have been proposed to be used in the open
problems of stock price and price interval forecasting. The
first is related to direct weight optimization techniques and
obtains the forecast by using local data close to the current
market state. The computational burden is quite low and does
not require a training phase, except for the tuning of γ . More-
over, its results when applied to a well known case study have
been validated in relation to two well-known techniques. The
second approach computes the price intervals using a proba-
bilistic approach in which the empirical conditional probabil-
ity density function of the forecasted price is computed using
local data. The algorithm for doing this is easily parallelizable
making its computational burden manageable. This approach
has been also validated and compared favourably to the
well-known quantile regression approach. Both techniques
have been proved to be useful for the investors in terms of
accuracy, and have other advantages like adaptation to the
current market situation. Thus, the proposed techniques have
proved that they can be added to the toolbox of stock market
traders.

Among the open questions that could be considered as
future work, one would be the study of which technical
indicators work best as market state, i.e., a feature selection
study tailored for the proposed approaches. In this regard,
the number of possible technical indicators is quite high, and
clearly, some of them are redundant. From the results of [40]
it can be inferred that among the most promising technical
indicators would be moving averages, either simple or expo-
nential, the daily return on capital, the traded volume and the
proprietary JKHL index. Nevertheless, the suitability of these
technical indicators with the proposed techniques is some-
thing that needs to be studied in future works. Finally, the
proposed techniques could be used to devise a trading strat-
egy based on forecasting prices and intervals that could be
validated against well-known trading strategies like buy-and-
hold or those based on time-weighted average price (TWAP)
or volume-weighted average price (VWAP).

REFERENCES
[1] E. F. Fama, ‘‘Random walks in stock market prices,’’ Financial Analysts

J., vol. 51, no. 1, pp. 75–80, Jan. 1995.

9342 VOLUME 9, 2021



G. Alfonso et al.: Stock Forecasting Using Local Data

[2] C. M. C. Lee, J. Myers, and B. Swaminathan, ‘‘What is the intrinsic value
of the dow?’’ J. Finance, vol. 54, no. 5, pp. 1693–1741, Oct. 1999.

[3] P.-F. B. Lai and W. K. Wong, ‘‘An empirical study of relationship between
share price and intrinsic value of company,’’ Financial Stud., vol. 19, no. 4,
pp. 1–28, 2015.

[4] R. Tiwari, ‘‘Intrinsic value estimates and its accuracy: Evidence from
Indian manufacturing industry,’’ Future Bus. J., vol. 2, no. 2, pp. 138–151,
Dec. 2016.

[5] R. E. Shrieves and J. M. Wachowicz, ‘‘Free cash flow (FCF), economic
value added (EVATM ), and net present value (NPV): A reconciliation
of variations of discounted-cash-flow (DCF) valuation,’’ Eng. Economist,
vol. 46, no. 1, pp. 33–52, Jan. 2001.

[6] R. Lundholm and T. O’keefe, ‘‘Reconciling value estimates from the
discounted cash flow model and the residual income model,’’ Contemp.
Accounting Res., vol. 18, no. 2, pp. 311–335, 2001.

[7] T. Sougiannis and T. Yaekura, ‘‘The accuracy and bias of equity val-
ues inferred from Analysts’ earnings forecasts,’’ J. Accounting, Auditing
Finance, vol. 16, no. 4, pp. 331–362, Oct. 2001.

[8] R. A. DeFusco, D. W. McLeavey, J. E. Pinto, and D. E. Runkle, Quantita-
tive Investment Analysis Workbook. Hoboken, NJ, USA: Wiley, 2015.

[9] G. S. Atsalakis and K. P. Valavanis, ‘‘Forecasting stock market short-term
trends using a neuro-fuzzy basedmethodology,’’Expert Syst. Appl., vol. 36,
no. 7, pp. 10696–10707, Sep. 2009.

[10] H. Ince and T. B. Trafalis, ‘‘Short term forecasting with support vector
machines and application to stock price prediction,’’ Int. J. Gen. Syst.,
vol. 37, no. 6, pp. 677–687, Dec. 2008.

[11] E. F. Fama, ‘‘The behavior of stock-market prices,’’ J. Bus., vol. 38, no. 1,
pp. 34–105, 1965.

[12] R. C. Shiller, ‘‘Irrational exuberance,’’ Philosophy Public Policy Quart.,
vol. 20, no. 1, pp. 18–23, 2000.

[13] M. F. M. Osborne, ‘‘Brownian motion in the stock market,’’ Oper. Res.,
vol. 7, no. 2, pp. 145–173, Apr. 1959.

[14] J.-P. Danthine, ‘‘Martingale, market efficiency and commodity prices,’’
Eur. Econ. Rev., vol. 10, no. 1, pp. 1–17, Jan. 1977.

[15] W. A. Barnett and A. Serletis, ‘‘Martingales, nonlinearity, and chaos,’’
J. Econ. Dyn. Control, vol. 24, nos. 5–7, pp. 703–724, Jun. 2000.

[16] C. Zheng and J. Zhu, ‘‘Research on stock price forecast based on gray
relational analysis and ARMAX model,’’ in Proc. Int. Conf. Grey Syst.
Intell. Services (GSIS), Aug. 2017, pp. 145–148.

[17] Y. Lin, H. Guo, and J. Hu, ‘‘An SVM-based approach for stockmarket trend
prediction,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Aug. 2013,
pp. 1–7.

[18] S. Mahfoud and G. Mani, ‘‘Financial forecasting using genetic algo-
rithms,’’ Appl. Artif. Intell., vol. 10, no. 6, pp. 543–566, Dec. 1996.

[19] N. Baba and M. Kozaki, ‘‘An intelligent forecasting system of stock price
using neural networks,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
vol. 1, 1992, pp. 371–377.

[20] H. White, ‘‘Economic prediction using neural networks: The case of IBM
daily stock returns,’’ in Proc. ICNN, vol. 2, 1988, pp. 451–458.

[21] E. Guresen, G. Kayakutlu, and T. U.Daim, ‘‘Using artificial neural network
models in stock market index prediction,’’ Expert Syst. Appl., vol. 38, no. 8,
pp. 10389–10397, Aug. 2011.

[22] J. Cao and J. Wang, ‘‘Stock price forecasting model based on modified
convolution neural network and financial time series analysis,’’ Int. J.
Commun. Syst., vol. 32, no. 12, p. e3987, Aug. 2019.

[23] P. Yu and X. Yan, ‘‘Stock price prediction based on deep neural networks,’’
Neural Comput. Appl., vol. 32, no. 6, pp. 1609–1628, Mar. 2020.

[24] Q. Chen, W. Zhang, and Y. Lou, ‘‘Forecasting stock prices using a hybrid
deep learning model integrating attention mechanism, multi-layer percep-
tron, and bidirectional long-short term memory neural network,’’ IEEE
Access, vol. 8, pp. 117365–117376, 2020.

[25] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, ‘‘Financial time
series forecastingwith deep learning: A systematic literature review: 2005–
2019,’’ Appl. Soft Comput., vol. 90, May 2020, Art. no. 106181.

[26] P. S. Rao, K. Srinivas, and A. K.Mohan, ‘‘A survey on stock market predic-
tion using machine learning techniques,’’ in Proc. ICDSMLA. Singapore:
Springer, 2020, pp. 923–931.

[27] J. R. Salvador, D. Muñoz de la Peña, D. R. Ramirez, and T. Alamo,
‘‘Predictive control of a water distribution system based on process his-
torian data,’’ Optim. Control Appl. Methods, vol. 41, no. 2, pp. 571–586,
Mar. 2020.

[28] J. R. Salvador, D. M. de la Peña, T. Alamo, and A. Bemporad, ‘‘Data-based
predictive control via direct weight optimization,’’ IFAC-PapersOnLine,
vol. 51, no. 20, pp. 356–361, 2018.

[29] J. M. Bravo, T. Alamo, M. Vasallo, and M. E. Gegundez, ‘‘A general
framework for predictors based on bounding techniques and local approx-
imation,’’ IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3430–3435,
Jul. 2017.

[30] J. Roll, A. Nazin, and L. Ljung, ‘‘Nonlinear system identification via direct
weight optimization,’’ Automatica, vol. 41, no. 3, pp. 475–490, Mar. 2005.

[31] W. Jian-hong, ‘‘Improvement on direct weight optimization identifica-
tion,’’ J. Control Syst. Eng., vol. 3, no. 1, pp. 1–9, Mar. 2015.

[32] J. Roll, A. Nazin, and L. Ljung, ‘‘A general direct weight optimization
framework for nonlinear system identification,’’ IFAC Proc. Volumes,
vol. 38, no. 1, pp. 178–183, 2005.

[33] Q. He, S. Tan, and D. Wanshan, ‘‘DWO based predictive control for
nonlinear systems,’’ in Proc. Int. Conf. Measuring Technol. Mechatronics
Autom., vol. 2, Mar. 2010, pp. 38–41.

[34] E.-W. Bai and Y. Liu, ‘‘Recursive direct weight optimization in nonlin-
ear system identification: A minimal probability approach,’’ IEEE Trans.
Autom. Control, vol. 52, no. 7, pp. 1218–1231, Jul. 2007.

[35] Q. Wu and T. Van Voorhis, ‘‘Direct optimization method to study con-
strained systems within density-functional theory,’’ Phys. Rev. A, Gen.
Phys., vol. 72, no. 2, Aug. 2005, Art. no. 024502.

[36] A. Daniel Carnerero, D. R. Ramirez, and T. Alamo, ‘‘Probabilistic interval
predictor based on dissimilarity functions,’’ Oct. 2020, arXiv:2010.15530.
[Online]. Available: http://arxiv.org/abs/2010.15530

[37] J. Berkowitz, ‘‘Testing density forecasts, with applications to risk manage-
ment,’’ J. Bus. Econ. Statist., vol. 19, no. 4, pp. 465–474, Oct. 2001.

[38] R. Koenker and K. Hallock, ‘‘Quantile regression,’’ J. Econ. Perspect.,
vol. 15, no. 4, pp. 143–156, 2001.

[39] D. Pradeepkumar and V. Ravi, ‘‘Forecasting financial time series volatility
using particle swarm optimization trained quantile regression neural net-
work,’’ Appl. Soft Comput., vol. 58, pp. 35–52, Sep. 2017.

[40] G. Alfonso and D. R. Ramirez, ‘‘A nonlinear technical indicator selection
approach for stock Markets. Application to the Chinese stock market,’’
Mathematics, vol. 8, no. 8, p. 1301, Aug. 2020.

[41] J. M. Manzano, J. M. Nadales, D. M. de la Pena, and D. Limon, ‘‘Oracle-
based economic predictive control,’’ in Proc. IEEE 58th Conf. Decis.
Control (CDC), Dec. 2019, pp. 4246–4251.

[42] M. R. Anderberg, Cluster Analysis for Applications. New York, NY, USA:
Academic, 1973.

[43] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’ J. Roy.
Stat. Soc. B, Methodol., vol. 58, no. 1, pp. 267–288, Jan. 1996.

[44] V. P. Upadhyay, S. Panwar, R. Merugu, and R. Panchariya, ‘‘Forecasting
stock market movements using various kernel functions in support vec-
tor machine,’’ in Proc. Int. Conf. Adv. Inf. Commun. Technol. Comput.
(AICTC). New York, NY, USA: Association for Computing Machinery,
2016.

[45] M. Thomason, ‘‘The practitioner methods and tool,’’ J. Comput. Intell.
Finance, vol. 7, no. 3, pp. 36–45, 1999.

GERARDO ALFONSO received the B.Eng.
degree in electrical and electronics engineering
from the University of Leicester, U.K., the M.B.A.
degree from the University of Cambridge, U.K.,
and the Ph.D. degree in finance from the Uni-
versity Complutense de Madrid, Spain. He was
a Postdoctoral Researcher with the University of
Cambridge. He has more than a decade of experi-
ence in trading in capital markets in USA, Europe,
and Asia. He is currently an Executive Director

with Shenwan Hongyuan Securities, Shanghai.

A. DANIEL CARNERERO received the M.Eng.
degree in industrial engineering from the Univer-
sity of Seville, in 2019, where he is currently
pursuing the Ph.D. degree with the Department of
Systems Engineering and Automation. His current
research interests include GPU computing, meta-
heuristic optimization, model predictive control,
randomized algorithms, and data-driven methods.

VOLUME 9, 2021 9343



G. Alfonso et al.: Stock Forecasting Using Local Data

DANIEL R. RAMIREZ was born in Spain, in 1972.
He received the M.Eng. and Ph.D. degrees in
computer engineering from the University of
Seville, Spain, in 1996 and 2002, respectively.
From 1997 to 1999, he was a Research Assistant
with the Department of System Engineering and
Automatic Control. Since 1999, he has been an
Assistant Professor and an Associate Professor
with the Department of System Engineering and
Automatic Control, University of Seville. He has

authored or coauthored more than 70 technical articles in international
journals and conference proceedings. His current research interests include
randomized algorithms, model predictive control, data-based forecasting,
and soft computing techniques.

TEODORO ALAMO was born in Spain, in 1968.
He received the M.Eng. degree in telecommunica-
tions engineering from the Polytechnic University
of Madrid, Madrid, Spain, in 1993, and the Ph.D.
degree in telecommunications engineering from
the University of Seville, Seville, Spain, in 1998.
From September 1991 to May 1993, he was
with the Ecole Nationale Superieure des Télé-
communications (Télécom Paris), Paris, France.
From 1993 to 2000, he was an Assistant Professor

with the Department of System Engineering and Automatic Control, Uni-
versity of Seville, where he was an Associate Professor, from 2001 to 2010,
where he has been a Full Professor, sinceMarch 2010. Part of his Ph.D. work
was done with RWTH Aachen, Aachen, Germany, from June to September
1995. He has co-founded the spin-off company Optimal Performance (Uni-
versity of Seville). He is the author or coauthor ofmore than 200 publications,
including books, book chapters, journal articles, conference proceedings, and
educational books. His current research interests include decision-making,
model predictive control, data-driven methods, randomized algorithms, and
optimization strategies.

9344 VOLUME 9, 2021


