
tskew a)tskew b)

CLK1

t<thold

CL
tflip−flop

tlogic

tskew

Q0

D1

CLK2

K1 K2CL

LK1C

LOGIC

CIRCUIT

flip−flop 1
D0

D Q

tflip−flop

flip−flop 2
D1

Q
Q1

∆ C

Automatic logic synthesis for parallel alternating latches clocking
schemes

D. Guerrero, M. Bellido, J. Juan, A. Millan, P. Ruiz, E. Ostua, J. Viejo
Dept. of Electronic Technology, University of Seville, Escuela Técnica Superior de Ingeniería

Informática, Avda. de Reina Mercedes S/N, 41012 Sevilla, Spain

ABSTRACT

This paper proposes a VHDL coding technique that allows for the automatic synthesis of digital circuits using the so
called Parallel Alternating Latches Clocking Schemes (PALACS). The proposed method greatly improves the
applicability of PALACS and its benefits. This technique is verified through design examples in three different CMOS
processes and using logic level simulation, with successful results in all the cases.

Keywords: Clock skew tolerance, high speed CMOS design, CAD circuit design

1. INTRODUCTION
VLSI digital systems have evolved to big and more complex systems being clocked at very high frequency. This
evolution has reached a point that the overhead of the clock in the form of power consumption has become unacceptable.
This is confirmed by what is observed in high-performance microprocessors1. So, reducing the power due to clock signal
distribution is a mandatory issue in digital design. On the other hand, while the gate size and, as a consequence, the gate
delay is getting smaller, the die size is rising. Since the delay in interconnection lines increases quadratically with the
line length, it becomes longer than gate delay. Because of that the skew increases significantly. So, the simplest clocking
scheme based on edge-triggered flip-flops should not be used for high-speed designs2,3,4 as illustrated in Figure 1a: As
we can see, if the clock skew is very long and the logic circuit is fast enough, the active edge of the clock can reach flip-
flop 2 too late, i.e. near the instant when its input is going to change. Note that this problem can not be solved by
enlarging the clock cycle5. To solve this problem, it has been suggested that the clock signal should reach first the
registers at the end of the data path. Clock skew could cause malfunction anyway, as we can see in Figure 1b: If the
clock skew is very long, flip-flop 2 could be triggered too early. This could be solved by enlarging the clock cycle, but
re-routing the clock path is not a solution if feedback exists in the data path.

tlogic

Q0
D

LK2

b)

t<tsetup

tflip−flop

tlogic

tskew

Q0

D1

a)

Fig. 1. Skew related problems in a single-phase system with flip-flops.

In order to prevent the clock skew from causing malfunction, a two-phase clocking scheme may be used. Two-phase
clocking systems use two distinct clocks generated from the main clock at the last buffering stage. An example of two-
phase clocking scheme is the two-phase Master-Slave clocking scheme (MSCS), which uses Master-Slave structures to
implement the register block. A Master-Slave register working and its chronogram is shown in Figure 2, where it is
assumed that the registers are transparent at the high level of the load signal.

tskew

tskew

0

0 1 0 1

0CLK

CLK1

0CLK

Q1

0D´

separationt

tslave

a)

0 1 0 0 1

t hold

tlogic

LATCH
MASTER SLAVE

LATCH LATCH
MASTER SLAVE

LATCH
D

CLK CLK CLK´ CLK´

LOGIC

load load load load

CIRCUIT
Q Q D’ Q’ Q’

b)

Fig. 2. Master-Slave clocking scheme a) Circuit b) Chronogram.

An alternative to MSCS are the Parallel Alternating Latches Clocking Schemes (PALACS)6,7. Like MSCS, PALACS
provides skew tolerance by using multiple clock signals, but have remarkable advantages in power consumption and
operation speed6,7.

Besides, hardware description languages (HDL) are very convenient tools to design digital circuits, and logic synthesis
software is commonly used to produce logic-level descriptions from high level HDL code. When coding a design in a
HDL, the designer must follow a set of rules to ensure the description can be properly handled by the automatic synthesis
tool. Thus, so-called canonical coding styles where combinational and sequential behaviour are clearly defined are
preferred by logic synthesis tools, that usually deal with implementation details like the election of flip-flops and other
logic blocks from the standard library provided by the technology files. In a full synchronous design, the usual coding
techniques will typically produce single-edge-triggered flip-flops controlled by the same clock signal. In order to make
use of PALACS in HDL descriptions, the sequential elements must be coded in a way that the logic synthesis tools can
manage.

In this paper the authors describe VHDL coding techniques to automatically synthesise arbitrary circuits employing two-
phase PALACS and four-phase PALACS. Targeting this objective, this paper is organised as follows: In the next section
the PALACS clocking schemes will be summarised. In the following section a VHDL coding technique to describe
circuits employing PALACS will be introduced. In the fourth section the correctness of these descriptions will be
checked through automatic logic synthesis and logic-level simulation. Finally the conclusions summarised.

2. PARALLEL ALTERNATING LATCHES CLOCKING SCHEME
2.1 Two-phase PALACS

A remarkable alternative to the one-phase single-edge triggered flip-flop clocking scheme is the one-phase double-edge
triggered flip-flop clocking scheme8,9. This scheme uses the flip-flop shown in Figure 3, that is triggered by both, falling
and rising transitions of the clock signal. The power consumption of the clock distribution network in this scheme is
smaller than using single-edge triggered flip-flops since there is an only clock transition per computation cycle.

D

load

LATCH 0

load

LATCH 1

D

QD

clk

clk

0

Q 1
s

QMUX

Fig. 3. Double-edge triggered flip-flop.

We could say that the one-phase single-edge-triggered flip-flop clocking scheme is a particular case of the MSCS where
the slave clock signal is obtained by inverting the master clock signal, i.e. a particular case where the non-overlapping
time between the clock signals is zero. The advantage of the general MSCS is that it provides tolerance to an arbitrary
skew by enlarging the non-overlapping region.

In a similar way, the two-phase Parallel Alternating Latches Clocking Scheme (two-phase PALACS)6 depicted in Figure
4 is a generalisation of the one-phase double-edge-triggered flip-flop clocking scheme. The memory element used in this
scheme consists of two latches connected in parallel sharing the same input, and a switch at the output of each latch
whose outputs are connected. The load terminals of both latches are controlled by separate phases, and the switches are
also controlled by opposite phases. This scheme, unlike the Master-Slave scheme, allows reading and writing the register
block simultaneously during the active level of each clock phase. When clock signal CLK0 is active, latch 0 loads the
current input while latch 1 holds the previous input. The latch 1 data is read in the active phase of CLK0, since its switch
is controlled by CLK0. When CLK0 becomes inactive, latch 0 stops being transparent. Then both phases remain inactive
a time interval long enough to avoid clock-skew related problems. During this interval both switches are in high
impedance (H.I.) state, but the previous data value remains loaded at the switches output due to parasitic capacitances.
When CLK1 activates, the read-write mechanism works again, but both latches alternate their function, i.e. latch 1 loads
a new value while latch 0 is read. We could say that this clocking scheme is the two-phase counterpart of the one-phase
double-edge triggered flip-flop clocking scheme6,7.

a)
CLK1 CLK0

CLK1CLK0 CLK1CLK0

CLK0

D

Q0

Q1

Q

CLK1

S0 S2

S0 S1 S2 S3

S1 S3S−1

S−1 S0 S1 S2

Q’LOGIC

Q0

Q D’D

load

Q1

load

Q’0

load

Q’1

load

LATCH 0

LATCH 1

LATCH 0

LATCH 1

CIRCUIT

CLK1 CLK0

b)
Fig. 4. Two-phase PALACS. a) Circuit b) Chronogram.

The most important advantage of PALACS versus MSCS is that the clock frequency is reduced by 50% for the same
data rate. This has considerable benefits, mainly in the reduction of the power consumed by the clock distribution
network. In PALACS, the number of clock transitions is two per computation cycle whereas in MSCS it is four. This
means that their power dissipation can be reduced up to 50%. Another interesting advantage is that, for some
implementations, the propagation delay of the PALACS structure is smaller than the propagation delay of the Master-
Slave since with the MSCS the input signal has to propagate through two latches whereas in PALACS it has to propagate
through one latch and a switch (whose delay is usually smaller than the delay of a latch). This produces an improvement
in the operation speed of the system.

2.2 Four-phase PALACS

A drawback of the two phase PALACS is that the raising edges of the load control signals are hard edges10. This means
that, regardless of the instant when a data item reaches a latch output, it will not keep propagating through the circuit
until the load control signal of the opposite latch receive the next raising edge. In four-phase PALACS (Figure 5), the
load control signals and the output enable control signals are not the same. So, a data item at the output of a latch can
begin to propagate through the circuit even if that item has not been latched yet provided that the contamination delay of
the logic circuit is long enough. So, the performance of the system can be improved by using time borrowing
techniques10 at the expense of using additional clock phases.

a)

b)

OE0

Q0

Q1

Q

D

CLK1

CLK0

S0 S1 S2 S3

S1 S2 S3 S4

S0 S2

S1 S3

OE1

Q’LOGIC

CIRCUIT

Q0

Q D’D

load

LATCH 0

Q1

OE1

load

LATCH 1

Q’0

OE0

load

LATCH 0

Q’1

OE1

load

LATCH 1

OE0CLK0

CLK1

CLK0

CLK1

Fig. 5. Four-phase PALACS. a) Circuit b) Chronogram.

3. VHDL CODING TECHNIQUES FOR PALACS
As it was stated in the introduction, the possibility to describe digital circuits using PALACS using hardware description
languages is essential to apply this clocking scheme in an extensive manner. The objective of this section is to present a
VHDL coding technique for PALACS that is fully synthesizable by common logic synthesis tools, so that PALACS can
be easily included in the standard digital design process. The process to code a design using PALACS can be divided in
three steps:

• Description of a latch with tri-state output

• Description of the PALACS structure

• Coding the combinational part and instantiation of the PALACS structures

The first step, shown in Figure 6, is common to any design using PALACS and describes a single latch followed by a tri-
state buffer, which is the basic building block for PALACS. Logic synthesis tools will typically render the structure in a
single library latch with an output-enable controlling signal, or a latch plus a tri-state buffer, depending on what is
available in the standard library.

Fig. 6. VHDL description of a tri-state output latch.

In The second step, which is also common to any design, two instances of the previous description are used to build up
the PALACS structure using the structural VHDL description of Figure 7. The use of a structural description makes it
possible to have better control over the automatic synthesis process and prevent the synthesis tools from changing the
desired topology.

entity palacs4 is
port (d, noe0, noe1, clk0, clk1, nclr : in std_logic;q : out std_logic);

end palacs4;
architecture mystruct of palacs4 is

component latchOEclr
port (d, noe, ld, nclr : in std_logic; q : out std_logic);

end component;
begin

latch0 : latchOEclr port map (d=>d,noe=>noe0,ld=>clk0,nclr=>nclr,q=>q);

entity latchOEclr is
generic(n: integer:= 1);
port (d,noe, ld, nclr: in std_logic;q: out std_logic);

end latchOEclr;
architecture behaviour of latchOEclr is

signal qi: std_logic;
begin

assign: process(ld, d, nclr)
begin

if ld='1' then
qi<=d;

end if;
if nclr='0' then

qi<='0';
end if;

end process;
myoutput: process(qi,noe)
begin

q<='Z';
if noe='0' then

Fig. 7. VHDL description of the PALACS structure.

In the third step, instances of the PALACS structure are added to the design in order to implement the sequential part. As
an example, a rising four-bit counter is described in Figure 8. This description is similar to the canonical state machine
coding style, where the process controlling the evolution to the next state has been substituted by the placement of a set
of PALACS cells using a generate statement. Note that both, two-phase PALACS and four-phase PALACS can be
implemented in this way, since two-phase PALACS is a particular case of four-phase PALACS where the output enable
signals are the same that the load control signals.

Fig. 8. VHDL description of a four bit counter.

4. VERIFICATION OF THE VHDL DESCRIPTION STYLE FOR PALACS
In order to verify this VHDL coding technique, the description of the four-bit counter of Figure 8 has been used. Two-
phase PALACS has been employed. To check the functionality, the circuit has been simulated at the logic level. The
result is shown in Figure 9. As we can see, the counter works properly. Remarkably, the state signals are in high
impedance when both output enable signals are disabled. This will not really occur due to parasitic capacitances6,7.

entity cntMod16 is
port (noe0,noe1,clk0,clk1,nclr: in std_logic;

myoutput: out std_logic_vector (3 downto 0));
end cntMod16;
architecture mystruc of cntMod16 is

signal std_cnt,nxt_std: unsigned (3 downto 0);
component palacs4

port (d,noe0,noe1,clk0,clk1,nclr: in std_logic;q: out std_logic);
end component;

begin
my_logic: process(std_cnt)
begin

myoutput<=std_logic_vector(std_cnt);
nxt_std<=std_cnt+1;

end process;
generate_registers: for i in 3 downto 0 generate

Fig. 9. Logic simulation of the four-bit counter.

Also, in order to check that the code can be synthesized in any technology, the code has been compiled using the Design
Analyser tool from Synopsis11. The components were successfully synthesized in a 0.35 µm CMOS process from Austria
Micro Systems12, as well as in a 0.18 µm and 0.13 µm processes from United Microelectronics Corporation13, giving
similar results. As an example, Figure 10 shows the resulting implementation of the latch-buffer block (Figure 10a), and
the PALACS structure (Figure 10b) for the 0.18 µm technology. It can be easily observed how the logic synthesis tool
has selected appropriate components from the standard library provided by the foundry while keeping the desired
functionality and topology for the PALACS structure. The netlist generated for the four-bit counter is depicted in Figure
11. Four PALACS structures has been placed as indicated in the VHDL description (Figure 8) and additional logic has
been automatically synthesized to achieve the desired functionality.

d

ld

nclr

noe

d

clk0

clr

noe0

clk1

noe1

b)a)

q

LATRNB4
INVTD12

latchOEclr

latchOEclr

q

Fig. 10. Circuits synthesized by the tool a) Tri-state output latch b) PALACS structure.

clk0

clk1

nclr

noe0
noe1

INVD1

NAND2D1

NOR2M1D1
EXOR2D1

EXNOR2D1

EXNOR2D1

myoutput{3:0}

palacs4_0

palacs4_1

palacs4_2

palacs4_3Fig. 11. The netlist generated by the tool for the four-bit counter.

5. CONCLUSIONS
In previous works, new clocking schemes called PALACS were introduced in order to solve clock skew related
problems. In this paper, a VHDL coding technique is explored so that arbitrary sequential circuits can be automatically
synthesized using PALACS. This technique is easily applied by re-defining the register block of the design. A sample
VHDL design has been successfully implemented in three CMOS processes from two different foundries showing that
the proposed VHDL descriptions are fully synthesizable and produce the right structures and behaviour, which has been
checked through logic-level simulation. This result allow for a much wider and easier application of PALACS to general
digital design.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish Government’s MEC META project TEC-2004-00840-MIC and
the Andalusian Regional Government’s CICE DHPMNDS projects EXC-TIC-1023 and EXC-TIC-635.

REFERENCES

1. V. Tiwari et al, “Reducing Power in High-Performance Microprocessors”, 35th Design Automation Conference,
1998, pp. 732-737
2. H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Ed. Add-Wesley Publishing Company, 1990,
ISBN 0-201-06008-6
3. K. Bernstein, High Speed CMOS Design Styles, Kluwer Academic Publishers, 1998, ISBN 0-7923-8220-X
4. S. H. Unger and CH. Tan, Clocking Schemes for High-Speed Digital Systems, IEEE transactions on computers ,
1986, Vol. C-35. Nº10, pp. 880-895
5. M. Horowitz, “Clocking Strategies in High Performance Processors”, Symposium on VLSI Circuits Digest of
technical Pagers, 1992, pp. 50-53
6. D. Guerrero, M. J. Bellido, J. J. Chico, P. Ruiz, A. Millan, “Two phase alternating latches clocking scheme for
CMOS sequential circuits”, XVII Conference on Design of Circuits and Integrated Systems, November 2002, Santander,
pp. 159-162
7. D. Guerrero, M. J. Bellido, J. J. Chico, P. Ruiz, A. Millan, E. Ostua, “Four phase alternating latches clocking
scheme for CMOS sequential circuits”, XIX Conference on Design of Circuits and Integrated Systems, November 2004,
Bordeaux
8. M. Afghahi and J. Yuan, “Double Edge-triggered D-flip-flops for High-speed CMOS circuits”, IEEE Journal of
Solid-State Circuits, 1991, Vol. 26 Nº8, pp. 1168-1170
9. V. G. Oklobdzija, “Clocking and Clocked Storage Elements in Multi-GHz Environment”, 12th International
Workshop PATMOS, 2002, pp. 128-145
10. D. Harris, Skew-Tolerant Circuit Design, Morgan Kaufmann Publishers, 2001, ISBN 1-55860-636-X, pp. 14-20
11. Synopsys Inc. http://www.synopsys.com/
12. Austria Micro Systems, http://www.austriamicrosystems.com
13. United Microelectronics Corporation, http://www.umc.com/

