Application of Virtualization technology to the study
of Quality of Service techniques.

Juan Quiros*, Paulino Ruiz-de-Clavijo®, Alejandro Carrasco?, Julian Viejo® and Alejandro Millan¥
*159 Group ID2 (Research and Digital Development)
School of Computer Science (Electronic Technology)
University of Seville, Seville 41012, Spain
www.dte.us.es/id2
! Electronic Technology and Industrial Informatics
School of Computer Science (Electronic Technology)
University of Seville, Seville 41012, Spain
www.dte.us.es/id2
*jquiros @dte.us.es, Tpaulino@dte.us.es, facarrasco@us.es, Sjulian@dte.us.es, Yamillan@us.es

Abstract—In this article, the teaching of quality of service
mechanisms in packet-switched networks is presented. To this
end, a methodology based on virtualization technology is in-
troduced. As a result, a truly practical approach is offered to
students, in an accessible environment, and from a point of view
suitable for the Bachelor’s degree in Information Technology -
Computer Science.

Keywords—Virtualization, quality of service, qos, linux.

I. INTRODUCTION

This paper introduces the methodology in the practical part
of the subject titled ”Advanced Technologies in Informatics”,
in the third year course of the Bachelor’s degree in Information
Technology - Computer Science, at the University of Seville.

The teaching experience of applying a new laboratory pro-
gram parallel to the theoretical program, is described. This
program not only maintains the coherence with the theoretical
program, but also introduces on-trend technologies, such as the
virtualization, cloud computing and QoS.

The laboratory sessions are incremental. Although each
session has specific goals, it also depends on the previous
sessions. Alltogether, these sessions constitute a complete
network architecture that combines virtual and real resources.
Finally, a set of services, such as HTTP and FTP, is included
and some QOS mechanisms are applied to assure the proper
operation of the system.

This paper is organized as follows. First, in Section 2, the
goals and methodology are given. In Section 3, the QoS session
is explained and, finally, the results and conclusions obtained
are presented in Sections 4 and 5.

II. GOALS AND METHODOLOGY

The main aim of the laboratory program is to provide all
graduates with sufficient knowledge of information technology
infrastructures, required by any public or private organization,
while focusing on networking and its security. Students are

supposed to have basic knowledge of networking, computer ar-
chitecture, software engineering and operative systems. Specif-
ically, the laboratory program enables graduates to:

e Deploy network infrastructures at both logical and ap-
plication layers.

e Design and adopt security policies in computer net-
works.

e Configure advanced network services.

o Implement traffic classifications using QoS techniques.

In addition to these areas, certain concepts of Unix System
administration, virtualization technologies, computer hardware
and networks, are introduced throughout the course. This
subject therefore provides students width a basic vision of the
state of virtualization technology, as well as the deployment of
IT infrastructures in flexible environments with few resources.

In order to achieve all these goals, the subject has been
divided into four sections. Firstly, basic notions about network
security are provided: general concepts, main network attacks,
security threats, and perimeter security [1], [2]. Secondly,
Virtual Protect Networks (VPN) [3] are introduced, which
have OPENVPN as the reference implementation. Network
traffic control and techniques of Quality of Service (QoS) [4],
[5], [6] are explained in the third section, by focusing on
managing bandwidth and marking network packets. Finally,
some advanced network services, located in the Application
layer of the OSI model, are introduced in order to enable
students to choose one for in-depth analysis and deploy it in
laboratory sessions.

A. Overall description of the laboratory sessions

The laboratory sessions have been designed as a complement
to the theoretical part of the subject. Despite their similar
structure, they are divided into five sessions that have to
be completed in the order provided. The structure of each
is similar: an introduction gives students an overall vision
about state, methodology and goals of the session, and specific

¢th0:192.168.0.100/24
tun0:10.9.0.5/24

vbox1
HTTP, HTTPS services

¢th0:192.168.0.1/24 //\‘ ethl:192.168.20.X/24

¢th0:192.168.20.1/24 (%

(4

VPN client
tun0:10.9.0.1/24| ©

%/// /4

Fig. 1. Diagram of the virtual network.

knowledge of the technologies used in laboratories is provided.
Secondly, students familiarize themselves with tools in a step-
by-step section. Finally, the session ends with a non-guided
section, thereby giving students the opportunity to students
go further in depth and to put the acquired knowledge into
practice.

All sessions take place in the context of the network diagram
shown in Fig. 1, in which there are two computer networks:
the network 792.168.0.0/24 is private for each student, but
192.168.20.0/24 is common to everybody. The latter is a
virtual network deployed over the physical network of the
laboratories. It has internet access through classroom-gw,
which is configured as a gateway. Two addresses of this
network are reserved for each student, one for the virtual
gateway and another for the host machine,anfitrion-alumno.
Hence, it is possible to deploy the IT infrastructure required by
laboratory sessions, by reusing the current infrastructure and
minimizing changes. VboxI, vbox2 and gateway are located
on the private network. Regarding the virtualization software,
ORACLE VIRTUALBOX [7] has been chosen.

The first session is seen as an introduction. The goal is
to deploy the basic virtual IT infrastructure, (see Fig. 1), so
that more services can be added in the following sessions.
Thus, three virtual machines with the Operative System (OS)
UBUNTU SERVER 12.04 [8] are created and configured in
accordance with the diagram network.

The next session complements the security concepts of the
theoretical part of the subject. Its objective is to implement
a firewall in the virtual machine gateway, using IPTABLES,
a component of the framework NETFILTER, inside the Linux
kernel [9], [10]. Therefore, some basic concepts and usage
of iptables are introduced, while filtering, Network Address
Translation (NAT), and log creation are explained in greater

tun0:10.9.0.9/24| gateway
eth0:192.168.0.101/24 Router, NAT, Firewall
VPN server
vbox2
FTP, FTPS services Fommmmmm—— =)
L VPNclient _ __________ | Mirtual environment |

_EJ

///a

classroom-gw
Router, NAT, Firewall

eth0:192.168.20.Y/24

student-host

detail.

The third session is related to the second theoretical topic.
Its purpose is to create and configure a VPN [3] in the virtual
network 792.168.0.0/24. To this end, the interfaces run0O are
created in the virtual machines (Fig. 1), and the network is
built with the software OPENVPN [11].

In the following block, the services HTTP and HTTPS are
added to the virtual machine vboxI, while FTP and FTPS are
added to vbox2. Students have to compare, choose, install and
configure the necessary software resources in order to provide
these services. Therefore, the virtual machine gateway should
be configured to enable access for any machine in the network
192.168.20.0/24. These new services are needed in order to be
able to complete the next block.

In the last session, the network architecture is completed
with traffic control and QoS mechanisms. This practical part
coincides with the third theoretical block, and is the most
extensive, stating about 40% of all the subject.

Finally, students have to put into practice all the knowledge
acquired throughout all the sessions. The practical part of
the subject ends with a project in which a new service must
be added to the virtual infrastructure, (see Fig. 1). Examples
include a network security audit, a load-balancing transparent
reverse proxy, installing and configuring IT infrastructure mon-
itoring software, such as NAGIOS [12] and MUNIN [13], and
installing, configuring and comparing “file hosting” systems,
such as BTSYNC [14] and oOWNCLOUD [15].

III. QUALITY OF SERVICE

LINUX offers a wide range of flow-control mechanisms.
However, the great number of alternatives, poor documen-
tation, and the fact that more importance is given to the

development and integration of new modules than to usability,
make the configuration of these mechanisms complex. For this
reason, only those most used in real environments have been
selected.

A. Theoretical basis

The LINUX [6] traffic control implementation covers four
operations: the conformance, packet reordering, packet match-
ing, and packet dropping. To carry out these operations,
each network interface is configured using several policies. In
LINUX, the policies can include one or more packet queues,
and following custom rules, the packet classifier puts each
input packet in a queue. The packet classifier consists of a
set of custom rules called filters. Filters include information
about the destination queue for each packet when it matches
with the rule specification.

All queuing disciplines are attached to a network interface,
which is associated to a hierarchical tree. The parent node
of the tree is the network interface and the filters attached to
this node determine the destination queue for each incoming
packet. The classifier system introduces greater complexity
when child queues also contain filters. In this scenario, packets
hop between child nodes. It is not recommended to attach
filters to internal nodes of a network interface.

Certain queuing disciplines include more than one node in
the interface queuing tree. These queuing disciplines are made
up of sub-nodes where the packet can be queued. Figure. 2
shows a diagram of a possible solution using several queuing
disciplines. In order to understand the classifier process, it is
necessary to discuss in-depth the three different nodes of the
tree: queuing disciplines, classes, and filters.

Classes are incorporated into a queue discipline and are used
to classify the packets. For example, if the use of a priority
queuing discipline with 5 queues is desired, it is not necessary
to attach 5 queuing disciplines to the network interface tree.
The priority queuing discipline has the ability to add the child
sub-classes required with the priority sets for each sub-class.

The task of disciplines is to change the way data is sent.
Their main functions are: accepting, delaying, rescheduling,
and dropping packets. Not all existing queue disciplines in-
clude child classes, and hence are grouped into two types of
queue disciplines: (classless) and (classful).

On the other hand, the filters are defined as classification
rules. In order to ascertain of how rules are applied to packets,
it is necesary to know how the LINUX kernel interacts with
the class tree. For each packet, the kernel applies only those
rules attached to the top node of the network-interface queuing-
discipline tree. When the packet matches one rule, the kernel
sends it to the queue established in the rule. As mentioned
above, child queues can also contain filters but it is a complex
solution and is used only in scenarios where the performance
is a critical requirement.

Once the queuing disciplines form part of the hierarchical
tree, the full tree has two types of nodes: queuing discipline
and class. For each tree node, a unique identifier is used to
refer to it in filters. The syntax is similar to that used for
identification of kernel devices in LINU X, which consists of a

pair of major and minor numbers. The pair of major and minor
numbers for a queue discipline is assigned in the configuration
by the administrator. The major number identifies the queuing
discipline, and the minor number identifies the sub-classes of
the queuing discipline, therefore, all sub-classes of one queuing
discipline have the same major number.

After having reviewed the main concepts, several queuing
policies can now be selected. The Linux kernel supports a wide
variety of disciplines, of which some are only experimental
and others are deprecated or fail to function correctly. The
following are those selected for our purpose:

e PFIFO and BFIFO: These are simple single queuing
behaviors based on FIFO (First In First Out). Both
queues are configured with a fixed queue size and differ
in units used for configuration: fixed size in packets
(PFIFO) or fixed size in bytes (BFIFO).

e PFIFO_FAST: Default queuing discipline set for the
interfaces. Consists of a FIFO queue divided into three
bands. Each band is assigned a priority related with the
TOS field of IPv4 packets.

e SFQ (Stochastic Fairness queuing): This detects flows
of packets through analyzing the source and destination
fields. This policy reschedules packets and perturbs the
flows by approaching a round-robin schedule for flows.

o TBF (Token Bucket Filter): This is a traffic shaper and
never schedules packets. It can be configured with rate
limits and burst size.

Regarding classful queuing disciplines chosen for laborato-
ries, only two have been selected:

e PRIO: Queuing discipline with configurable priority
bands which is not a traffic shaper.

e HTB (Hierarchy Token Bucket): An advanced queuing
discipline that organizes its child sub-classes into a
hierarchical tree of TBF sub-classes. It is a traffic shaper
and shares the flow rate with its child sub-classes, and
includes a mechanism to implement priority between its
child sub-classes.

In addition to that above, the study and test of other disci-
plines is proposed to the students. For this purpose, the students
test disciplines such as: CHOKE (CHOose and KEep for
responsive flows), CBQ (Class-Based queuing), DRR (Deficit
Round-Robin Scheduler) and RED (Random Early Detection).

B. Configuration tools

There are a wide number of queuing disciplines available
in the Linux kernel. To reduce the configuration complexity
to the system administrator, all of them have a homogeneous
configuration process using a command line tool called TC [6].
In fact, when the command TC is used, there are several
common options valid for all disciplines followed by specific
options for each discipline.

At a more detailed level, the TC command has three op-
erational modes. Each mode is designed to configure one of
three parts of the traffic system: queuing disciplines, classes or
filters. An explanation of this tool goes far beyond the scope
of this paper, but some examples are shown.

1:1
Rate:100Mbit
Ceil: 100Mbit

1:2
Rate:600Kbit

HTB discipline with 2 levels __| Ceil: 600Kbit

of classes.

1:21

Rate:25Kbit
Ceil: 100Kbit
Prio:0
DNS

1:22
Rate:400Kbit
Ceil: 600KDbit
Prio:1
SSH,HTTP.

1:99
Rate: 100K bit
Ceil: 600Kbit
Prio:1

Default

3 classless disciplines

Filters which classify the packets
~ are configured in this node.

1:24

Rate:25Kbit
Ceil: 200K bit
Prio:3
SMTP

1:23
Rate:50Kbit
Ceil: 400K bit
Prio:2
IMAP

Legend:

. Root node of the discipline
O Node which represents a class

(*) Ceil: Ceiling
Prio: Priority

Fig. 2. Example of HTB queuing disciplines example used for DSL connections.

When the configuration of disciplines mode is used, it must
indicate the discipline type, the node identifier (major number)
and parent node. Code 1 refers to Fig. 2 and shows some
examples: HTB at the top of the hierarchy (line 7), SFQ (lines
20-21) and PFIFO (lines 34-35).

The class configuration mode can be used when the queuing
discipline is clasful. The syntax is similar to that used for
disciplines with few differences. For the queuing discipline
HTB, shown in Fig. 2, the configuration example (Code 1)
is located on lines: 11-12, 18-19, 25-26 and 32-33.

The syntax of the filters is the same for all disciplines.
One or more filters can be attached to one node of a classful
queuing discipline. When several filters are attached to the
same node, the filters are organized into a list where each filter
has a set priority. A number represents the priority, whereby 1
is the highest priority. It is mandatory to set the filter priority.
The filters are applied in order from high to low priority. If
several filters have the same priority, then they are applied in
sequential order, in the same order as they were added.

The classifier performs two tasks: pattern matching and
action taking. The most common action is to put the packet
into a hierarchy node. The filter works on OSI level 3; for
example, it can test values on the IP header. The classifier is
the most complex part of a rule due to the high number of
options available in the classifier syntax. The two most used
classifiers are: FW, which uses netfilter; and u32, which is able
to perform in-depth analysis on the packets through masks.

Some examples of filters with the U32 classifier are shown in
Code 1 on lines 37-46.

C. Laboratory session details

The goal of this session is to put into practice the knowledge
acquired on traffic managing and QoS, as well as to combine
real and virtual resources in the same infrastructure. Thus,
taking the network architecture deployed throughout the labo-
ratory sessions as a starting point, students have to manage the
traffic on interface ethl of the machine gateway, (see Fig. 1).
To this end, several QoS policies are applied incrementally,
from a really simple configuration to a complex one, as shown
in Fig. 2. This set of policies is usually implemented in
domestic environments, with the purpose of: controlling the
traffic in ADSL connections; assuring DNS services; giving
HTTP and SSH greater priority, followed by other network
protocols; and giving IMAP and SMTP protocols the lowest
priority, in that order.

The code necessary to configure the interface ethl of the
machine gateway, in accordance with the highlighted fragment
of Fig. 2, is given:

Code 1. Configuration, on interface ethl of the machine gateway, in
accordance with the highlighted fragment in Fig. 2.

1 # Remove previous configuration tc qgdisc

del dev ethl root
3

Tree structure (classes and disciplines)

5

#HTB configuration for root node.

#Traffic is classified into 1:99 class by default
7tc gdisc add dev ethl root handle 1: htb default 99
9 #Traffic to internet is classified into 1:2 class

#Maximum bandwidth: 600Kbit.
1ntc class add dev ethl parent 1:0 classid 1:2 htb \

rate 600 ceil 6000 burst 3000
13
#Traffic by default is classified into 1:99 and

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

#299:0 classes

#Bandwidth (minimum/maximum): (100/600Kbit) .

#In addition, a SFQ discipline is applied.

tc class add dev ethl parent 1:2 classid 1:99 htb \
rate 100kbit ceil 600 quantum 5000 prio 1

tc gdisc add dev ethl parent 1:99 handle 299:
perturb 5

sfq \

#DNS traffic is classified into 1:21 class

#Bandwidth (minimum/maximum): (25/100Kbit) .

tc class add dev ethl parent 1:2 classid 1:21 htb \
rate 25kbit ceil 100kbit prio O

#SSH and HTTP are classified into 1:22 and 222:0

#classes, respectively.

#Bandwidth (minimum/maximum): (400/600Kbit) .

#In addition, a PFIFO discipline is applied.

tc class add dev ethl parent 1:2 classid 1:22 htb \
rate 400kbit ceil 600 prio 1

tc gdisc add dev ethl parent 1:22 handle 222: pfifo \
limit 100

Classification filters

#HTTP and SSH traffic are classified into 1:22 node

tc filter add dev ethl protocol ip parent 1:0 prio 2\
u32 match ip sport 80 Oxffff flowid 1:22

tc filter add dev ethl protocol ip parent 1:0 prio 2\
u32 match ip sport 22 Oxffff flowid 1:22

#DNS traffic is classified into 1:21 node
tc filter add dev ethl protocol ip parent 1:0 prio 2\
u32 match ip dport 53 Oxffff flowid 1:21

Finally, when the QoS policies are applied, students can test
them using a script provided at the beginning of the session.
This script shows statistics about all previously configured
nodes and filters, through the TC tool. Fig. 3 shows the output
of this script, at a given moment, whose configuration is based
on the example of HTB hierarchy of the Fig. 2.

IV. RESULTS

This subject was given for the first time in the academic
year 2012/13. Academic results of all students have been
collected since that time. These results, and the number of
laboratory sessions completed by students are shown in Fig. 4.
There are two ways to pass the subject: through normal
evaluation, in which students have to pass a theoretical exam
and a practical exam, and via continuous evaluation, which
follows the methodology described in this paper. In this regard,
students have to complete the first three sessions to pass
the laboratory part. In 2013, 58.5% of students passed the
continuous evaluation, which makes up 76.9% of all students
who passed the subject (83.3% of students presented), in
comparison with those of 2014, of which 47.6% passed the
continuous evaluation, which indicates that 75% of all students

root@arty. ~/bin
= root@arty: ~/hin 87x63
[Every 0,2Z5: tc -g -d gdisc show dev ethl;echo ™

qdisc[hth 1:|root refont 2 r2q 10 default 99 direct packets_stat 0 ver 3.17
Sent 14732762730 bytes 20499514 pkt (dropped 11358, overlimits 22744201 requeues 11)

backlog Ob Op recqueuss 11

qdlsc parent 1:99 limit 127p cuantum 1514bh flows 127/1024 divisor 1024 perturb
Ssec

Sent 1130905763 bytes 8775671 pkt (dropped 73, overlimits 0 redqueuss 0)

hacklog Ob Op recqueues 0

qdlsc parent 1:22 limit 100p

Sent 1484877243 bytes 1803378 pkt (dropped 39, overlimits 0 redqueuss 0)

hacklog Ob Op requeues 0
qdisc| sfg 223: |parent 1:23 linit 127p cquantum 1514b flows 127/1024 divisor 1024 perturb

l0sec
Sent 8500991346 byrtes 6342330 pkt (dropped 27365, owverlimits 0 requeues 0)
backlog Ob Op recqueues 0

classpatent 1:2 leaf 299: prio 1 fuantum 5000 rate §0000bit ceil 600000bit hu
rst 1600b7% mpu Ob owerhead Ob cburst 159%b/3 mpu 0b overhead Ob lewel 0

Sent 1130912038 bytes 8775718 pkt (dropped 26, overlimits 0 redqueuss 0)

rate 9960bit l0pps backlog Ob Op recqueues 0

lended: 8308523 borrowed: 466845 giants: 0

tokens: 1014398 ctokens: 136930

classparent 1:2 leaf 2Z2: prio 1 quantum 5000 rate 400000bit ceil 600000bit b
rst 1600B73 mpu Ob overhead Ob chburst 15958b/8 mpu Ob overhead Ob lewel O

Sent 1454877243 byrtes 1803378 pkt (dropped 39, overlimits 0 recueues 0)

rate 14912bit Spps backlog Ob Op regueues 0

lended: 1517801 borrowed: 285577 giants: O

tokena: 475000 ctokens: 316672

Class root prio 0 quantum 5000 rate 100000Ebit ceil 100000Ebit burst 1600b/8 mp|=
i 0b overhead 0Ob churst 1600h/3 mpu Ob owverhead Oh lewel O

Sent 3449092944 bytes 3084153 pkt (dropped 411, owerlimits 0 requeues 0)
rate 536bit lpps backlog Ob Op requeuss 0

lended: 3054183 borrowed: 0 giants: 0

tokens: 1922 ctokens: 1822

class parent 1:2 leaf 223: prio 2 quantum 1000 race 50000bit ceil 300000bit bu)
rst 1600b7% mpu Ob owerhead Ob cburst 159%b/3 mpu 0b overhead Ob lewel 0
Sent 8536773416 bytes 6367373 pkt (dropped 282Z, overlimits 0 recqueuss 0)
rate 13328bit 3pps backlog Ob Op redqueues 0

lended: 1224119 borrowed: 5113711 giants: 0O

tokens: 1520907 ctokens: 613328

;

class root rate 600000bit ceil 600000bit burst 3000b/5% mpu Ob owerhead Ob churs
t 1599b,/8 wpu Ob overhead Ob lewvel 7

Sent 11283669786 bytes 17415631 pkt idropped 0, owerlimits 0 recqueues 0)
rate 38808bit 1Spps backlog Ob Op requeues 0

lended: 6046268 borrowed: 0 giants: 0

tokena: 605344 ctokens: 316672

:

class parent 1:2 prio 0 gquantum 1000 rate Z5000bit ceil 100000bit burst 1500b/
8 mpu Ob overhead Ob churat 1600b/8 mpu Ob owerhead Ob lewvel 0

Sent 35403439 bytes 396569 pkt (dropped 7431, overlimits 0 recueues 0)
rate Zd4bit Opps backlog Ob Op redqueuss 0

lended: 304643 horrowed: 91926 giants: 0

tokens: 7560000 ctokens: 1320000

:

class DHparent 1:2 prio 3 cuancum 1000 rate 10000bit ceil 200000bit burst 1600h/
5 mpu Ob overhead Ob churst 1600b#/8 mpu Ob owerhead Ob level 0

Sent 128491895 bytes 97183 pkt (dropped 629, owerlimits 0 requeuss 0]
rate Obit Opps backlog Ob Op recqueues 0 I:l

!

Fig. 3. Terminal output with statistics using the TC tool. The disciplines are
surrounded by rectangles and classes by ellipses.

Course 2013 Course 2014

Absent
13%
Absent
Failed
11% Passed CE - Lab5
P d CE 30%
ase Passed - NE Failed

Lab 5 15%
56% 18%

Passed CE
Lab4
13% Passed NE
16%

|
Passed CE - Lab4 Passed CE - Lab3 Passed CE - Lab3
1% 1% 4%

Legend:
CE: Continuous evaluation

NE: Normal evaluation

LabX: Completed until Xth session

Fig. 4. Results of the academic years 2012/13 and 2013/14.

passed the exams (81.3% of students presented). As a result,
the relation between students who passed the exam and those
who presented themselves is maintainable. The decrease in the
number of students who passed the subject was motivated by
the transition towards the Bologna Process: in 2014 a major
number of students had moved from old degrees. On average,
these students had a higher level in the network area, since
they had already passed old degree subjects which gave them
an advantage over the rest and, in consequence, they obtained
better results.

Regarding the completeness of laboratory sessions, it should
be pointed out that, 2013, 56% of all students achieved the last
block (QoS), completely or otherwise, in comparison to 30%
of all students in 2014. The cause is the same as previously:
the introduction of the Bologna Process.

Finally, it is important to mention the greatest difficulties
encountered by students. The use of a command-line interface,
instead of a graphic interface, is the most common difficulty,
and the reason is clear: most students have only ever used
graphical interfaces. The second obstacle is the administration
of any server and, specifically, of Unix systems.

V. CONCLUSIONS

The laboratory program that is introduced in this paper has
provided students with a more practical approach to the areas
of network architecture, virtualization technologies and QoS,
in addition to the theoretical knowledge.

Moreover, one of the main principles throughout all the
laboratory sessions has been the reuse of current infrastruc-
ture, through environments which combine virtual and real
resources. Furthermore, the license of the VIRTUALBOX and
LINUX software is free, which has enabled students to work
outside the laboratories.

ACKNOWLEDGEMENTS

This work has been partially supported by the Ministry
of Science and Innovation of the Spanish Government under
project TEC2011-27936 (HIPERSYS), by the European Re-
gional Development Found (ERDF), and by the Ministry of
Education of Spain (FPU grant AP2009-3625).

REFERENCES

[1] A. Villalon Huerta, “Seguridad en
http://www.rediris.es/cert/doc/unixsec/, 2002.

[2] S. Northcutt, L. Zeltser, S. Winters, K. Kent, and R. W. Ritchey, Inside
Network Perimeter Security (2Nd Edition) (Inside). Indianapolis, IN,
USA: Sams, 2005.

[31 M. Feilner, OpenVPN: Building and
Private Networks. Packt Publishing, 2006.
http://portal.acm.org/citation.cfm?id=1202604

[4] J. W. Evans and C. Filsfils, Deploying IP and MPLS QoS for Multiser-
vice Networks: Theory & Practice. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2007.

[5] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach, 6th ed. USA: Addison-Wesley Publishing Company, 2009.

[6] B. Hubert, “Linux advanced routing & traffic,” http://www.lartc.org/,
2014.

[71 Oracle, “Virtualbox web page,” https://www.virtualbox.org/, 2014.

unix y redes,”

Virtual
Available:

Integrating
[Online].

(8]

(91

[10]

[11]

[12]

[13]
[14]

[15]

Canonical, “Ubuntu server web page,” http://www.ubuntu.com/server,
2014.

R Russell, “Linux

. networking-concepts,”
http://www.netfilter.org/documentation/, 2001.

M. Rash, Linux firewalls : attack detection and response with iptables,
psad, and fwsnort. San Francisco: No Starch Press, 2007, index.
[Online]. Available: http://opac.inria.fr/record=b1124526

M. Feilner, Beginning OpenVPN 2.0.9: Build and Integrate Virtual
Private Networks Using OpenVPN, ser. From technologies to
solutions. Packt Publishing, Limited, 2009. [Online]. Available:
http://books.google.es/books?id=SLIXmAEACAAJ

W. Barth, Nagios. System and Network Monitoring. No Starch Press,
2006.

B. t. Brinke, Instant Munin Plugin Starter. Packt Publishing, 2013.

B. Inc, “Bittorrent sync user guide,” http://btsync.s3-website-us-east-
1.amazonaws.com/BitTorrentSyncUserGuide.pdf, 2014.
ownCloud, “owncloud administrators manual,”
http://doc.owncloud.org/server/6.0/admin_manual/, 2014.

