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Abstract—The effects of wind uncertainty on aircraft fuel 

consumption are analyzed using a probabilistic trajectory 

predictor. The case of cruise flight subject to an average constant 

wind is considered. The average wind is modeled as a random 

variable; the wind uncertainty is obtained from ensemble 

weather forecasts. The probabilistic trajectory predictor is based 

on the Probability Transformation Method, which is a method 

that evolves the wind probability density function; the output of 

the probabilistic trajectory predictor is the probability density 

function of the fuel consumption. A general analysis is performed 

for arbitrary winds distributed uniformly, with a twofold 

objective: 1) present the capabilities of the probabilistic 

trajectory predictor, and 2) understand how the wind 

uncertainty affects the fuel consumption. 
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I.  INTRODUCTION 

The future Air Traffic Management (ATM) system must 
address the performance challenges posed by today's airspace: 
the capacity and the efficiency of the system must be increased 
while preserving or augmenting the safety levels. To 
accomplish these goals it is required a paradigm shift in 
operations through innovative technology and research. In this 
future system the trajectory becomes the fundamental element 
of a new set of operating procedures, collectively referred to as 
Trajectory-Based Operations (TBO), which aim at evolving 
from the current airspace-based ATM system to a trajectory-
based system designed to accommodate airspace users' 
requests to the maximum extent possible [1]. 

One key factor that affects those challenges is uncertainty, 
which is an inherent property of real-world socio-technical 
complex systems, and ATM is clearly not an exception. 
Uncertainty is critical from different perspectives in air 
transport: safety, environmental and cost dimensions. 
Researchers must accept the fact that uncertainty is 
unavoidable and must be dealt with, rather than ignored. If the 
capacity of the ATM system is to be increased while 
maintaining high safety standards and improving the overall 
performance, uncertainty levels must be reduced and new 

strategies to deal with the remaining uncertainty must be 
found. In particular, procedures to integrate uncertainty 
information into the ATM planning process must be 
developed. In Rivas and Vazquez [2] one can find a review of 
all the uncertainty sources that affect the ATM system. Among 
those, weather has perhaps the greatest impact.  

The analysis of weather uncertainty has been addressed by 
many authors, using different methods. For instance, Nilim et 
al. [3] consider a trajectory-based air traffic management 
scenario to minimize delays under weather uncertainty, where 
the weather processes are modeled as stationary Markov 
chains. Pepper et al. [4] present a method, based on Bayesian 
decision networks, for taking into account uncertain weather 
information in air traffic flow management. Clarke et al. [5] 
develop a methodology to study airspace capacity in the 
presence of weather uncertainty and formulate a stochastic 
dynamic programming algorithm for traffic flow management. 
Zheng and Zhao [6] develop a statistical model of wind 
uncertainties and apply it to stochastic trajectory prediction in 
the case of straight, level flight trajectories. 

In this paper a probabilistic analysis of aircraft fuel 
consumption taking into account wind uncertainty is presented. 
The study is focused on the cruise phase and considers the 
wind uncertainty provided by Ensemble Prediction Systems 
(EPS), which have proved to be an effective way to quantify 
weather uncertainties. An analysis of wind-optimal cruise 
trajectories using ensemble probabilistic forecasts together 
with pseudospectral methods is performed in Gonzalez-Arribas 
et al. [7]. A conceptual vision of the integration of ensemble-
based, probabilistic weather information with ATM decision 
support tools, focused on convective storms, is presented in 
Steiner et al. [8]. The importance of weather uncertainty 
information in probabilistic air traffic flow management is 
shown in Steiner et al. [9], where the translation of ensemble 
weather forecasts into probabilistic air traffic capacity impact 
is described. These papers clearly show the importance of 
making use of ensemble weather forecasts to generate 
probabilistic weather information for aviation needs. 



The analysis presented in this work is based on a 
probabilistic trajectory predictor (pTP) which propagates the 
wind uncertainty along the aircraft trajectory. The method used 
for the uncertainty propagation is the Probabilistic 
Transformation Method (see Kadry [10] and Kadry and Smaily 
[11]) which is a non-parametric method according to the 
classification of Halder and Bhattacharya [12]; in this method 
the wind probability density function (pdf) is evolved. This 
method was presented in Vazquez and Rivas [13] where the 
propagation of uncertainty in the initial aircraft mass was 
studied, and some preliminary results applied to wind 
uncertainty are described in Vazquez and Rivas [14]. 

This study is relevant because wind is one of the main 
sources of uncertainty in trajectory prediction, and because 
cruise uncertainties have a large impact on the overall flight 
since the cruise phase is the largest portion of the flight (at 
least for long-haul routes). In particular it is expected that this 
study be relevant for the determination of the contingency fuel, 
and, hence, for allowing a more effective decision making, as 
concluded by SESAR WP-E IMET project 
(http://www.sesarju.eu/print/2352). 

II. ENSEMBLE WEATHER FORECASTING 

To model weather for strategic planning horizons, a 
probabilistic approach is the appropriate one, so that the 
inherent weather uncertainty can be taken into account. 
Today's trend is to use Ensemble Prediction Systems (EPS), 
which attempt to characterize and quantify the inherent 
prediction uncertainty based on ensemble modeling. Ensemble 
forecasting is a prediction technique that consists in running an 
Ensemble of Weather Forecasts (EWF) by slightly altering the 
initial conditions and/or the parameters that model the 
atmospheric physical processes, and/or by considering time-
lagged or multi-model approaches (Arribas et al. [15]; Lu et al. 
[16]). Thus, this technique generates a representative sample of 
the possible (deterministic) realizations of the potential 
weather outcome [8]. 

An ensemble forecast is a collection of typically 10 to 50 
weather forecasts (referred to as members). Cheung et al. [17]  
review various EPSs: PEARP (form Météo France), consisting 
of 35 members; MOGREPS (form the UK Met Office), with 
12 members; the European ECMWF, with 51 members; and a 
multi-model ensemble (SUPER) constructed by combining the 
previous three forming a 98-member ensemble. Some 
examples of EPSs from the US are MEPS (form the Air Force 
Weather Agency) with 10 members, and SREF (form the 
National Centers for Environmental Prediction) comprised of 
21 members. 

Ensemble forecasting has proved to be an effective way to 
quantify weather prediction uncertainty. The uncertainty 
information is on the spread of the solutions in the ensemble, 
and the hope is that this spread bracket the true weather 
outcome [8]. It is important to notice that for strategic planning 

the analysis of all the individual ensemble members must be 
included (rather than an ensemble mean) [9].  

III. TRAJECTORY PREDICTION CONSIDERING ENSEMBLE 

WEATHER UNCERTAINTY 

As described in the IMET project 
(http://sesarinnovationdays.eu/files/2013/Posters/SID%202013
%20poster%20IMET.pdf) there are two approaches for 
trajectory prediction subject to uncertainty provided by 
ensemble weather forecasts. 

1) Ensemble trajectory prediction (see Fig. 1), where, for 
each member of the ensemble, a deterministic trajectory 
predictor (TP) is used, leading to an ensemble of trajectories 
from which probability distributions can be derived. This 
approach generates a large volume of data; some type of post 
processing is required. This is the approach used in the IMET 
project. 

2) Probabilistic trajectory prediction (see Fig. 2), where 
probability distributions of meteorological parameters of 
interest (such as wind) are evolved along the aircraft trajectory 
using a probabilistic trajectory predictor (pTP), leading to 
probability distributions of trajectory parameters of interest 
(such as fuel consumption). This approach, as compared to the 
previous one, saves computation time. This is the approach 
followed in this paper. 

The required input from the EWF to the trajectory 
predictors will depend on the ATM problem under 
consideration. In this paper the fuel consumption in cruise 

flight is studied, subject to wind uncertainty; therefore, 1w ,  

2w , ... nw  represent the wind fields defined by the ensemble 

members. 

       

Figure 1.  Ensemble trajectory prediction. Legend: m  - member,  

 w  - weather, x - trajectory. 

 



 

Figure 2.  Probabilistic trajectory prediction. Legend: m  - member, 

 w  - weather. 

IV. FUEL CONSUMPTION IN CRUISE FLIGHT 

As already indicated, in this paper the fuel consumption in 
cruise flight is studied. The cruise is supposed to be formed by 
a given number of cruise segments, each one of them defined 
by a constant heading, and flown at constant speed and 
constant altitude, as required by Air Traffic Control (ATC) 
procedures. 

In each cruise segment the flight is supposed to be subject 
to a constant average wind, which can be different for the 
different segments, thus modeling the along-track wind 
variation. This condition of having a constant average wind 
will be key to decide the number of segments that compose the 
cruise. 

In this paper, as a first step in this research, the case of a 
cruise defined by only one segment is considered. The case of 
several cruise segments is left for future work since it involves 
more than one random variable. 

Assuming symmetric flight and the flat Earth model, the 
equations of motion for a cruise segment are (see Vinh [18])  
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where x  is the horizontal distance, t  is the time, V  is the 

airspeed, w  is the average wind speed, considered constant, T  

is the thrust, D  and L  are the aerodynamic drag and the lift, 

m  is the aircraft mass, 
2

9.8 /g m s=  is the acceleration of 

gravity, and c  is the specific fuel consumption, which can be 

taken as a function of altitude and speed, and it is therefore 
constant under the given cruise condition. 

The drag can be written as 
2

2
D

D V SCρ= , where ρ  is 
the air density, S  is the wing surface area, and the drag 

coefficient DC  is modeled by a parabolic polar 
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D D D LC C C C= + , where  LC  is the lift coefficient given by 

2
2 ( )LC L V Sρ= , and the coefficients 

0D
C  and 

2D
C  are 

constant under the given cruise condition. 

Using these definitions and (1), the following equation is 
obtained for the aircraft mass 
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where the constants A  and B  are defined as 
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Note that , 0A B > . Equation (2) is a nonlinear equation 

describing the evolution of the aircraft mass as a function of 
distance. Even though this model is quite simple, it is adequate 
to describe the cruise flight of commercial transport aircraft, 
since they usually fly segments of constant Mach number (M ) 
and constant altitude ( h ) following ATC procedures, and it is 

assumed that the constant values of the parameters of the 

aircraft model (
0D

C , 
2D

C , and c ) correspond to the values of 

M  and h  set for the flight. 

In this paper, the cruise range fx  and the final aircraft 

mass fm  are given. Fixing fm  (instead of the initial aircraft 

mass) is consistent with having a fixed landing weight. It also 
allows for a fair comparison for different values of the wind, 
which lead to different fuel loads and therefore to different 
values of the initial aircraft mass. Hence, (2) is to be solved 
backwards with the boundary condition 

 ( )f fm x m= . (4) 

To emphasize the dependence of the aircraft mass ( )m x  on 

the wind, it is written as ( ; )m x w . If the average wind w  is 

uncertain, then the evolution of mass with distance is uncertain 
as well. Note that, in such a case, the solution of (2) and (4) is 
still valid but in a probabilistic sense, i.e., ( ; )m x w  is a random 

process. 

 



Once the aircraft mass is obtained, the cruise fuel 
consumption follows from 

 ( ) (0; )F fm w m w m= − , (5) 

which is uncertain as well. This problem has the following 
explicit solution 

 

2
( ) tan

tan

f

f

F

f

f

ABx
m A B

V w
m

ABx
A B m

V w

+
+

=

−
+

 
 
 
 
 
 

, (6) 

which defines the transformation ( )Fm g w= . Notice that in 

the case of several cruise segments fm  would be uncertain 

after the first segment, and hence one would have a 
transformation with two random variables. 

V. PROBABILISTIC TRAJECTORY PREDICTOR 

The pTP is described in this section. The input is the pdf of 
the wind and the output is the pdf of the fuel consumption, see 
sketch in Fig. 3. The pTP is based on the Probability 
Transformation Method (PTM), see [10, 11]. The basis of this 
method is the following theorem (see Canavos [19]): Given a 

random variable y  with probability density function ( )yf y  if 

one defines another random variable z  using a transformation 
g  such that  ( )z g y= , then the probability density function 

of z  is given by 

 

Figure 3.  Probabilistic trajectory predictor (pTP). 
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expression that is valid only if the function ( )g y  is invertible 

on the domain of y . 

Let ( )wf w  be the pdf of the wind (to be defined in Section 

VI). Then, the pdf of the fuel consumption follows from 
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This analysis is valid only if the function ( )Fm g w=  is 

invertible on the domain of w, that is, only if for two different 

values of wind 1w  and 2w , the aircraft fuel masses ,1Fm  and 

,2Fm  are different, which in this problem is obvious. 

Once the pdf is known, one can compute the mean and the 
typical deviation, as follows  
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VI. PROBABILISTIC WIND MODEL 

In this section the input to the pTP is defined (see Fig. 3), 
that is, the probabilistic wind that affects the aircraft trajectory. 
In the following the approach to obtain the pdf of the average 
constant wind in the cruise segment is described. 

Suppose that the ensemble has n  members, then, the first 

step is to determine, for each member of the ensemble, the 

average wind along the segment, say iw . Next, once the 

sample values { }1, , nw w…  are obtained, one must assume that 

they follow a particular distribution. This is not a minor point, 
and in fact is one of the open challenges in this problem. 

Taking into account that the uncertainty information is on 
the spread of the solutions in the ensemble, and that all 
members (including the outliers) must be considered, in this 
paper, to obtain the pdf of the wind, it is assumed that the wind 
is distributed as a uniform continuous variable in the interval 

,[ ]m Mw w , where { }1min , ,m nw w w= …  and 

{ }1max , ,
M nw w w= … . 

 

 



Therefore, the wind has the following pdf 
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The mean and the typical deviation of w are given by 

 1/2
2 2

E[ ] ( ) ( ) 2

[ ] ( ) (E[ ])
2 3

w M m

M m
w

w wf w dw w w

w w
w w f w dw wσ

∞

−∞

∞

−∞

= = +

−
= − = 

 

∫

∫
, (11) 

VII. ANALYSIS OF FUEL CONSUMPTION UNCERTAINTY 

Once the input to the pTP is defined (given by (10)), the 

pdf of the fuel consumption ( )
FFm

f m  is easily computed from 

(8), where the function ( )Fm g w=  is defined by (6). One has 
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where 
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and ,1 ( )F mm g w= , ,2 ( )F Mm g w= . Note that the G  function 

depends only on the transformation g , being independent of 

the probabilistic wind model considered. 

In the following some initial results are presented 
corresponding to a general analysis for arbitrary winds 
distributed uniformly along one cruise segment. The objective 
is twofold: 1) present the capabilities of the pTP, and 2) 
understand how the wind uncertainty affects the fuel 
consumption. In this controlled experiment, for the wind 

distribution the mean value ( ) 2M mw w w= +  varies 

between –50 m/s and 50 m/s, and the width 

( ) 2w M mw wδ = −  varies between 0 and 25 m/s. 

Results are presented for a given aircraft and a given 
cruise flight defined by the following parameters: 

240 m/sV = , 
3

0.4127 kg/mρ =  ( 10000 mh ≈ ), 

0
0.01744DC = , 

2
0.04823DC = , 

5
1.49 10  s/mc

−= ⋅ , 

2
283.5 mS = , 150000 kg

f
m = , and 3000 km

f
x = . 

The pdf of the fuel mass is shown in Fig. 4, for the 
following wind distributions: headwind (HW) 50w = −  m/s, 

no wind (NW) 0w = , and tailwind (TW) 50w =  m/s, with 

20wδ =  m/s in all cases, and in Fig. 5 for different values of 

wδ  ( 10,  15,  20, 25wδ =  m/s) in two different cases: HW 

50w = −  m/s and TW 50w =  m/s. 

 

Figure 4.  Fuel mass pdf for different wind distributions: HW 50w = − m/s, 

NW 0w = , and TW 50w =  m/s; 20wδ = m/s. 

 

 



 

Figure 5.  Fuel mass pdf for different wind distributions: HW 50w = − m/s 

and TW 50w =  m/s; 10, 15, 20, 25wδ = m/s.  

The mean and the typical deviation of the fuel mass are 
shown in Fig. 6 as a function of the mean wind value w  for 

different values of the wind distribution width 
w

δ  

( 5,  10,  15,  20,  25wδ =  m/s), and in Fig. 7 as a function of 

wδ  for different values of w  ( 50,  40,  ... 40,  50w = − −  

m/s). Some results, for 50,  0,  50w = −  m/s and 10,  20
w

δ =  

m/s, are given in Table I. 

 

 

Figure 6.  E[ ]Fm  and [ ]Fmσ  as a function of w ; 

5, 10, 15, 20, 25wδ =  m/s. 

TABLE I.  VALUES OF THE MEAN AND THE TYPICAL DEVIATION OF THE 
FUEL CONSUMPTION 

 E[ ]Fm  (kg) [ ]Fmσ  (kg) 

w  (m/s) 10wδ = m/s 20wδ = m/s 10wδ = m/s 20wδ = m/s 

50−  22235.5 22304.7 713.2 1436.2 

0  17400.8 17433.8 436.5 876.6 

50  14294.8 14313.1 294.5 590.6 

 

 

 

 

 

 



 

Figure 7.  E[ ]Fm  and [ ]Fmσ  as a function of wδ ; 

50,  40,  ... 40,  50w − −=  m/s.  

The previous figures show that the mean of the fuel mass 
distribution decreases as w  increases (as expected, HWs lead 

to larger fuel consumption than TWs), and it is practically 

independent of wδ . On the other hand, one has that the typical 

deviation of the fuel mass also decreases as w  increases, and it 

increases as wδ  increases; the increase with wδ  is almost 

linear (for the range of values of wδ  considered), with a slope 

that decreases as w  increases. Thus, one obtains the result that 

the uncertainty in the fuel consumption is larger in the case of 
HWs (for a given value of the wind uncertainty) than in the 

case of TWs; as a numerical reference, for 20wδ =  m/s, 

[ ]
F
mσ  increases from 590.6 kg for TW 50w =  m/s to 1436.2 

kg for HW 50w = −  m/s. 

It is interesting to note that, for a given wind distribution 

(defined by w  and wδ ), the previous results satisfy the 

following relationship 

 [ ( )] ( [ ])F FE m w m E w> , (17) 

that is, the mean of the fuel mass distribution is always larger 
than the mass of fuel that it would be required for the wind 
mean value [ ]E w  (taken as a deterministic value). 

The difference [ ( )] ( [ ])F FE m w m E wε = −  decreases as 

w  increases, and increases as wδ  increases; thus, it is largest 

for the most uncertain headwinds. Some results, for 

50,  0,  50w = −  m/s and 15,  25wδ =  m/s, are given in 

Table II. 

Hence, the presence of uncertain winds leads one to expect 
(in a statistical sense) larger values of fuel loading. 

VIII. FINAL REMARKS 

The general framework for this paper is the development of 
a methodology to manage weather uncertainty suitable to be 
integrated into the trajectory planning process. This work is a 
first step focused on the assessment of the impact of wind 
uncertainty on aircraft trajectory, and in particular on the cruise 
fuel load. It is expected that by considering the weather 
uncertainty in the trajectory prediction process, one could 
adjust the contingency fuel depending on the uncertainty 
obtained for the fuel consumption. 

In this paper the fuel consumption in cruise flight has been 
obtained as an explicit function of the average wind, and hence 

the pdf ( )
Fm Ff m  has been obtained explicitly as well. In 

problems where explicit solutions cannot be obtained, the pdf 
given by (12-13) must be obtained numerically. A numerical 
approach for this type of problems can be found in [13, 14]. 

TABLE II.  VALUES OF THE DIFFERENCE 

[ ( )] ( [ ])F FE m w m E wε = −   

 ε  (kg) 

w  (m/s) 15wδ = m/s 25wδ = m/s 

50−  51.6 144.3 

0  24.7 68.8 

50  13.7 38.1 

 

 

 



Even though the analysis presented has not taken 
crosswinds into account, they can be considered in a simple 

manner by defining the ground speed as 
2 2

g cV V w w= − + , 

where cw  is the average crosswind for the given cruise 

segment. Then, for each member of the ensemble, one can 

define the average values iw  and ,c iw , and therefore ,g iV . The 

analysis now can be carried out straightforwardly just 

considering gV  as the random variable (instead of w ). 

Another approach would be to consider a two-variable random 

process, defining ( , )F cm g w w= . The extension of this 

problem to more than one random variable is left for future 
work. 

The application of the probabilistic approach presented in 
this paper to real trajectories, composed of several cruise 
segments, taking into account the wind distributions obtained 
from real EWFs is to be carried out as a next step in this 
research. 

Also for future work is left the task of including both wind 
uncertainty and the presence of convective regions in the 
problem. 

The probabilistic trajectory predictor presented in this 
paper is capable of taking as input any type of wind 
distribution. In this work, a simple uniform distribution has 
been considered, although other types of distributions could be 
considered as well. It is clear that the determination of the wind 
pdf from the uncertainty information contained in the EWFs is 
an open challenge in this problem. This issue poses a 
multidisciplinary task to be addressed jointly by 
meteorologists, statisticians and ATM experts.  
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