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Abstract—An analysis of the effects of wind shear on optimal 

aircraft cruise trajectories is presented. The procedure 

considered is cruise at constant Mach number and constant 

altitude, which is commonly flown by airlines, following air-

traffic-control rules. The optimal trajectories correspond to the 

case of minimum direct-operating-cost cruise with given range, 

and are obtained using parametric optimization theory. The 

main objective of the paper is to analyze the influence of the wind 

shear on the optimum altitude and speed. The results show that, 

for a given cost index, the effect of the wind shear on the 

optimum altitude is quite large. The effect of the cost index on the 

optimum results is also analyzed. Results are presented for a 

model of a Boeing 767-300ER. 

Keywords-aircraft trajectory optimization; optimal cruise; wind 

shear 

I.  INTRODUCTION 

Trajectory optimization is an important subject in air traffic 
management, which aims at defining optimal flight procedures 
that lead to energy-efficient flights. In practice, the airlines 
consider a cost index (CI) and define the direct operating cost 
(DOC) as the combined cost of fuel consumed and flight time, 
weighted by the CI. Their goal is to minimize the DOC. This 
problem has been treated extensively in the literature. Among 
many others, for example, minimum-DOC trajectories have 
been studied by Barman and Erzberger [1], Erzberger and 
Lee [2] and Burrows [3] who analyze the minimum-DOC 
problem for global trajectories (climb-cruise-descent); they 
consider steady cruise, and take the aircraft mass as constant. 
Burrows [4] also analyzes the minimum-DOC problem for 
global trajectories, without the assumption of constant mass, 
but with the assumption that the cruise segment takes place in 
the stratosphere. Bilimoria et al. [5] and Chakravarty [6] 
analyze the minimum-DOC, steady cruise as the outer solution 
of a singular perturbation approach, where the aircraft mass is 
taken as constant. Lidén [7] proposes computing algorithms to 
be used in flight management systems which optimize the 
cruise profile. However, these works either do not consider 
wind-shear effects, as in [2-5], or only consider one particular 
wind profile, as in [1,6,7], not analyzing the effects of changing 
the wind profile. 

In this paper we address the problem of analyzing the 
effects of wind shear on minimum-DOC aircraft cruise 

trajectories. The procedure considered is cruise at constant 
Mach number and constant altitude, which is commonly flown 
by airlines, following air-traffic-control (ATC) rules; the cruise 
range is fixed. The cruise is unsteady, with variable mass, 
subject to a horizontal, altitude-dependent wind profile. The 
main objective of this work, with respect to the published 
literature, is to provide an understanding of the influence of the 
wind shear on the optimum cruise altitude and cruise speed, 
taking into account the cost index value fixed by the operator. 
For completeness, the influence of the average wind speed 
(headwinds and tailwinds) is also analyzed. 

To optimize the cruise procedure, a parametric optimization 
approach is presented. Parametric trajectory optimization has 
been also treated extensively. For example, Betts and 
Cramer [8] apply the direct transcription technique, which 
combines nonlinear optimization with a discretization of the 
trajectory dynamics, to the optimal design of trajectories (for 
several performance indices) subject to realistic constraints that 
represent the trajectory phases of a mission profile. Soler et 
al. [9] relax some of the constraints imposed in [8] to give more 
room for planning more efficient trajectories, formulating a 
single optimal control problem which is solved as a nonlinear 
optimization problem. Menon et al. [10] optimize flight 
strategies for conflict resolution parameterizing the trajectories 
in terms of four-dimensional waypoints, and approximating the 
trajectories by piecewise-linear paths. Wu and Zhao [11] 
optimize the trajectory from liftoff to touchdown and quantify 
the deviation from actual trajectories due to modeling errors 
and/or flight conditions, defining the trajectory by a series of 
flight segments specified by a set of flight objectives, such as 
speeds, altitudes or throttle settings. Torres et al. [12] formulate 
a multi-objective optimization problem that minimizes noise 
and pollutants emissions of the departure procedures, 
parameterizing the trajectory through two sets of variables that 
describe the evolution of the aircraft speed and thrust. 
Valenzuela et al. [13] optimize discrete cruise procedures 
constrained to have Mach numbers multiple of 0.01, and 
altitudes defined by flight levels. 

In this paper the cruise procedure is defined by a trajectory 
pattern formed by five segments commonly flown by airlines, 
which is in fact a flight intent that defines unambiguously how 
the aircraft is to fly. The segments are as follows: 1) starting at 

the initial altitude 
i

h , a transition segment at the initial Mach 



i
M  (descent/climb with idle/maximum cruise engine rating) 

ending at the cruise altitude 
c

h , 2) a transition segment at 

constant altitude 
c

h  (deceleration/acceleration with idle/maxi-

mum cruise engine rating) ending at the cruise Mach 
c

M , 3) 

the main cruise segment at constant Mach 
c

M  and constant 

altitude 
c

h , ending when a distance 
c
r  is flown, 4) a transition 

segment at constant altitude 
c

h  (deceleration/acceleration with 

idle/maximum cruise engine rating) ending at the final Mach 

f
M , and 5) a transition segment at constant Mach 

f
M  

(descent/climb with idle/maximum cruise engine rating) ending 

at the final altitude 
f

h . In this work, the initial and final 

conditions (
i

h ,
i

M ,
f

h ,
f

M ) are given, so that the cruise 

altitude 
c

h , the cruise Mach number 
c

M  and the distance 
c
r  

are free variables, on which the optimization is performed. 

Results are presented for a model of a Boeing 767-300ER, 
with compressible aerodynamics and general specific fuel 
consumption and thrust models, which is described in [14]. The 
results for linear wind profiles show that the effect of the wind 
shear on the optimum altitude is quite large, depending 
strongly on the cost index; on the contrary, the effect of the 
average wind speed is much smaller. In particular, it is found 
that depending on the value of the wind shear the optimal 
cruise takes place either in the troposphere or in the strato-
sphere, with opposite behaviors as a function of the cost index, 
namely, the optimum altitude decreases with the cost index in 
the troposphere, whereas it increases in the stratosphere. 

II. PROBLEM FORMULATION 

A. Equations of Motion 

In this work, cruise flight in a vertical plane is considered. 
The model adopted to describe the aircraft motion is that of a 
point mass with three degrees of freedom, commonly used for 
trajectory prediction (see Slattery and Zhao [15]); the equations 
then describe the motion of the aircraft center of mass, 
considered as a mass-varying body. The case of altitude-
dependent horizontal winds contained in the flight plane is 
considered. The equations of motion for symmetric flight with 
thrust parallel to the aircraft aerodynamic velocity are the 
following (see Jackson et al. [16]): 
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where the following simplifying assumptions have been made: 

1γ ≪  and / 0V gγ ≈ɺ . In the previous equations, V  and γ  are 
the aerodynamic velocity modulus and the aerodynamic path 

angle; m  the aircraft mass; r  and h  the horizontal distance 

and the altitude; w  the wind speed; g  the gravity acceleration; 

t  the time; T , L , and D  the thrust, the lift, and the 

aerodynamic drag; and c  the specific fuel consumption. 

Each flight segment is defined by two flight constraints (for 
example, to fly at constant altitude and constant speed), which 
together with (1) form a system of differential algebraic 
equations (DAE). The resolution of the DAE systems for the 
different flight segments is based on the reduction of the 
system of equations to a system of ordinary differential 
equations (ODE) through the explicit utilization of the flight 
constraints. The ODE systems are then solved using 
MATLAB's ode45 [17] (based on an explicit Runge Kutta 
formula). 

The computation of each flight segment starts with the 
corresponding initial conditions and ends when the appropriate 
stopping condition is reached (for instance, reaching a given 
altitude or a given Mach number). Additionally, to compute the 
flight segments, some supplementary models are needed: 
Earth, aerodynamic and propulsion models. In this paper, the 
Earth has constant gravity, the atmospheric model is ISA, and 
realistic aerodynamic and propulsion models are considered, 
which are described in [14]. The aircraft model provides the 

following functions: compressible drag polar ( , )
D L

C M C , 

specific fuel consumption ( , )c M h , and available thrust 

( , )
MCRZ

T M h  for maximum-cruise engine rating and 

( , )
IDLE

T M h  for idle engine rating. The atmosphere model 

provides the density ( )hρ  and the wind speed profile ( )w h . 

The lift and drag coefficients are defined by 2 / 2
L

L V SCρ=  

and 2 / 2
D

D V SCρ= , where S  is the reference wing surface. 

B. Trajectory Pattern 

To model the cruise flight in a vertical plane, the trajectory 
pattern shown in Fig. 1 is considered; the arrows in the figure 
indicate the stopping criterion for each flight segment, and ER 
stands for fixed engine rating. The pattern starts from the initial 

altitude 
i

h  and initial Mach number 
i

M , and ends at the final 

conditions 
f

h  and 
f

M .The pattern is formed by five flight 

segments. The first one is a transition segment, a descent/climb 

at constant Mach 
i

M  and with idle/maximum cruise engine 

rating ending at the cruise altitude 
c

h . The second one is also a 

transition segment, a deceleration/acceleration at constant 

altitude 
c

h  and with idle/maximum cruise engine rating, 

ending at the cruise Mach number 
c

M . The third one is a 

segment at constant Mach 
c

M  and constant altitude 
c

h  ending 

when a distance 
c
r  is flown. Finally, because the cruise flight 

has to end at the final conditions 
f

h  and 
f

M , two more 

transition segments, as those just described, complete the 

pattern; that is, a transition segment at constant altitude 
c

h  

(deceleration/acceleration with idle/maximum cruise engine 

rating) ending at the final Mach 
f

M , and a transition segment 



 

at constant Mach 
f

M  (descent/climb with idle/maximum 

cruise engine rating) ending at the final altitude 
f

h . 

Figure 1.  Trajectory pattern. 

Hence, one can see that three different types of flight 
segments are considered, which comply with usual ATC rules, 
namely, segments with constant Mach and constant altitude, 
transition segments with fixed engine rating and constant Mach 
(for descent/climb segments), and transition segments with 
fixed engine rating and constant altitude (for 
decelerating/accelerating segments). 

The procedure is defined by seven parameters: altitude 
c

h , 

Mach number 
c

M , distance 
c
r , initial and final altitudes, 

i
h  

and 
f

h , and initial and final Mach numbers, 
i

M  and 
f

M . 

Depending on the application, some of these parameters can be 
fixed, whereas the rest are free and used as variables in the 
optimization problem. In this paper, the initial and final values 
of altitude and Mach number are fixed. 

C. Parametric Optimization 

Once the free parameters of the trajectory are defined, they 
are collected in a vector x . The optimization problem is 
formulated as a nonlinear programming (NLP) problem: 

 
minimize  ( )

subject to  ( ) , ( ) , ,

J

X= ≤ ∈

x

f x 0 g x 0 x
 (2) 

where X  is the feasible region of the variables. In this 
formulation, the optimality criterion defining the cost function 
can be the minimization of any property or combination of 
properties of the trajectory that can be derived from the 
computation of the trajectory. The equality and inequality 
constraints and the feasible region depend on the application. 

Different techniques can be used to solve NLP 
problems [18]. In this work, MATLAB's fmincon is used, a 
sequential quadratic programming (SQP) method, which is 
proposed by Schittkowsky [19] as the most efficient to solve 
nonlinear programming problems. It must be noted that SQP 
methods, as gradient-based methods, are only able to find one 
local minimum within the feasible region; in case that several 
local minima exist, the global minimum can be obtained by 

subdividing the feasible region into appropriate subregions, 
solving the optimization problem on each subregion, and 
finally taking the best local minimum found. 

D. Minimum-DOC Cruise 

The objective is to minimize the direct operating cost in 
cruise flight with fixed range. The DOC is a combination of 

fuel and time costs, 
F f

DOC m CI t= +  (measured in kg), 

where 
F

m  is the fuel consumption, 
f

t  the flight time, and CI  

the cost index which measures the relative importance of both 
costs (the case 0CI =  corresponds to minimum fuel). Note 
that although airlines define the CI in units of $/hour divided 
by cents/lb, in this paper international units of measure are 
used, hence, the CI is measured in kg/s. Representative values 
of the CI are in the range 0 to 3 kg/s, which is considered in the 
numerical simulations. The initial and final altitudes and speeds 

are fixed, 30000
i f

h h= =  ft and 0.79
i f

M M= = . The same 

initial and final conditions are chosen, to be able to compare all 

cases considered in the analysis; 
i

M  and 
f

M  correspond to 

typical climb and descent Mach values and 
i f

h h=  is a typical 

cruise altitude. The range to be flown is 2000
A

r =  km. 

The cost function can be written as 

 ( ) ( ) ( ),
F f

J m CI t= +x x x  (3) 

where the fuel consumption and the flight time depend on the 

free parameters x . Because the total flown distance 
f

r  is a 

function of the free parameters, the given range 
A

r  is imposed 

by the equality constraint 

 ( ) 0.
f A

r r− =x  (4) 

The inequality constraints reduce to requiring that the speeds 
and altitudes be within the aircraft operational envelope. 

Because the initial and final conditions are given, the total 

number of free parameters is three: the Mach number 
c

M , the 

altitude 
c

h , and the distance flown during the third pattern 

segment 
c
r . The feasible region is given by [0.60,0.86]

c
M ∈ , 

[20000,43000]
c

h ∈  ft, and [0,2000]
c
r ∈  km.  

Considering the different behavior of the atmosphere in the 
troposphere and in the stratosphere, one could expect the 
objective function to be non convex in the feasible region, 
possibly having a local minimum in each layer. For this reason, 
it has been decided to subdivide the feasible region into two 

subregions: [20000,36089]
c

h ∈  ft in the troposphere and 

[36089, 43000]
c

h ∈  ft in the stratosphere. For the cases 

analyzed in Section III, it has been observed that the objective 
function is convex in each subregion. The optimization 
problem is then solved in both subregions and the best local 
minimum found is taken as the global minimum. 

E. Wind Profile 

For the wind model, linear profiles are considered, with the 
absolute value of the wind speed increasing with altitude 
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(see [6,20,21]). The profiles, between two given altitudes 1h  

and 2 1h h> , are defined as follows 

 ( ) ,
f

h h
w h w w

h h

−
= + ∆

−
 (5) 

where w  is the average wind, w∆  the wind-shear parameter 

and 1 2( ) / 2h h h= +  the average altitude. For given values of 

1h  and 2h , w∆  defines the wind shear d / dw h , and, in 

particular, 0w∆ =  defines a uniform wind profile. Note that 

the average wind speed w  is given by 

 
2

1
2 1

1
( )d ,

h

h
w w h h

h h
=

− ∫  (6) 

and, also, since the wind profiles are linear, w  is the wind 

speed at the average altitude, that is, ( )w w h= . In the 

following, both tailwinds (TW) and headwinds (HW) are 
considered, with the linear profiles defined as follows: for TW 
one has 0w >  and 0w∆ ≥ , and for HW 0w <  and 0w∆ ≤ . 
To define the wind profile, the following altitudes are 

considered: 1 10000h =  ft, 2 33000h =  ft; the average altitude 

is 21500h =  ft. The average wind ranges from 40−  kt to 

40  kt, and the absolute value of the wind-shear parameter 

ranges from 0  to 40  kt. 

III. RESULTS 

In this section optimization results are presented for 

1200
f

W =  kN. Note that instead of fixing the initial aircraft 

weight, which would depend on the value of the CI, the final 
weight is fixed, the same for all the simulations. Hence, the 
integration of the equations of motion is performed backwards. 

The effects of the average wind and of the wind shear on 
the optimal procedures are analyzed in Sections III.A and III.B, 
respectively. 

A. Effect of the Average Wind 

The evolution of the optimum altitude *

c
h  with the average 

wind is shown in Fig. 2 for different values of the CI and for a 
wind-shear parameter 0w∆ = . It can be seen that the altitudes 
decrease as the CI increases; this same behavior was found, for 
example, by Barman and Erzberger [1] for short-haul aircraft 
with constant mass and no wind. For a fixed value of the CI, 
the altitude slightly increases as the average wind increases; the 
smaller the CI, the weaker the altitude increase. For instance, 
for 0CI = , one has that the difference in the altitude (for the 
range of average wind considered) is 129 ft, and for 

3CI =  kg/s is 727 ft.  

The optimum Mach number *

c
M  is shown in Fig. 3. As 

expected, it increases as the CI increases. It can be seen that the 
Mach number slightly decreases as the average wind increases; 
the larger the CI, the weaker the Mach decrease. For instance, 
for 3CI =  kg/s, one has that the difference in the Mach 

number is just 0.005, and for 0CI =  is 0.011.  

In summary, it can be said that the effect of the average 
wind on the optimal procedures is small. 

Figure 2.  Optimum altitude vs average wind for CI = 0,0.5,1,1.5,2,2.5, 

3 kg/s, and 0w∆ = . 

Figure 3.  Optimum Mach number vs average wind for CI = 0,0.5,1,1.5,2, 

2.5,3 kg/s, and 0w∆ = . 

The global properties 
F

m , 
f

t , and DOC  are shown in 

Figs. 4, 5, and 6, respectively. These three global properties 
significantly decrease as w  increases: they are, as expected, 
larger for headwinds than for tailwinds. As an example, for 

1.5CI =  kg/s one has the following differences (for the range 

of average wind considered): 1756  kg in 
F

m , 1347  s in 
f

t , 

and 3777  kg in DOC .  

As the CI increases, 
F

m  increases and 
f

t  decreases as 

expected, and DOC  increases, because both 
F

m  and the 

product 
f

CI t  increases. 
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Figure 4.  Fuel consumption vs average wind for CI = 0,0.5,1,1.5,2,2.5, 

3 kg/s, and 0w∆ = . 

Figure 5.  Flight time vs average wind for CI = 0,0.5,1,1.5,2,2.5,3 kg/s, and 

0w∆ = . 

Figure 6.  DOC vs average wind for CI = 0,0.5,1,1.5,2,2.5,3 kg/s, and 

0w∆ = . 

B. Effect of the Wind Shear 

Now, the effect of the wind shear is analyzed. In this 
analysis one has 30w = −  kt and 0w∆ <  for HW, and 

30w =  kt and 0w∆ >  for TW. 

The evolution of the optimum altitude with the wind-shear 
parameter is shown in Fig. 7. It can be seen that the altitude 
increases as the wind shear increases. This variation is quite 
large and strongly depends on the CI. For instance, for 0CI = , 
one has that the difference in the altitude (for the range of wind 
shear considered) is 5791 ft, and for 3CI =  kg/s is as large as 

15977 ft. The jumps at 0w∆ =  correspond to the different 
average winds considered. 

Figure 7.  Optimum altitude vs wind shear for CI = 0,0.5,1,1.5,2,2.5,3 kg/s; 

30w = −  kt for HW, 30w =  kt for TW. 

For the range of CI considered, the optimum altitude is 
found to be in the troposphere for negative and small positive 
values of w∆  and in the stratosphere for large values of w∆ . 
The way in which the transition from one region to the other is 
performed depends on the value of the CI. For instance, for 

0CI = , the optimum altitude coincides with the tropopause 

between 25w∆ =  and 29 kt, and for 1CI =  kg/s the altitude 
jumps from 35650 ft to 36530 ft at approximately 

17.5w∆ =  kt. A more detailed view of this transition is shown 

in Fig. 8 for CI  ranging from 0 to 0.5 kg/s. 

The variation of the altitude with the CI depends on the 
wind-shear parameter (see Fig. 7). For negative and small 
positive values of w∆ , one has that the optimum altitude 
decreases as the CI increases; but for large positive values of 

w∆ , when the optimum altitude is located in the stratosphere, 
the behavior is reversed: the optimum altitude increases as the 
CI increases. The two different behaviors are better observed in 
Fig. 9 where the evolution of the optimum altitude with the CI 
is represented for positive values of the wind-shear parameter: 

for small values of w∆ , *

c
h  decreases, and for large values of 

w∆ , *

c
h  increases. As one can also see, for intermediate values 

of w∆  the optimum altitude can be in the troposphere or in the 
stratosphere, depending on the value of the CI. For instance, for 
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17.5w∆ =  kt the optimum altitude is in the stratosphere for 

[0.89,1.77]CI ∈  kg/s and in the troposphere in any other case. 

These results show that the wind shear does have an 
important effect on the optimum cruise altitude. 

Figure 8.  Optimum altitude vs wind shear for CI = 0,0.1,0.2,0.3,0.4, 

0.5 kg/s, and 30w =  kt. 

Figure 9.   Optimum altitude vs cost index for w∆ = 0,5,10,15,17.5,20,25,30, 

35,40 kt, and 30w =  kt. 

The evolution of the optimum Mach number is shown in 
Fig. 10. One can see that, in general, it slightly increases for 

0w∆ <  and decreases for 0w∆ > . The little jumps about 

17.5w∆ =  kt match with the altitude jumps just mentioned. 
The variation of the Mach number with the wind shear is small 
and comparable to the variation with the average wind. For 
instance, for 0CI = , one has that the difference between the 
maximum and minimum value of the Mach number is just 
0.011, and for 3CI =  kg/s is 0.016. 

 

 

Figure 10.  Optimum Mach number vs wind shear for CI = 0,0.5,1,1.5,2,2.5, 

3 kg/s; 30w = −  kt for HW, 30w =  kt for TW. 

The global properties 
F

m , 
f

t , and DOC  are shown in 

Figs. 11, 12, and 13, respectively. For a given CI, they are 
considerably larger for 0w∆ < , because in that case one has 

headwinds, as opposed to the tailwinds one has for 0w∆ > . As 

before, 
F

m  and DOC  increase, and 
f

t  decreases as the CI 

increases.  

For tailwinds, the performance index DOC  decreases as 

w∆  increases; the larger the wind shear, the better. For 

headwinds, however, DOC  increases as w∆  increases; the 

larger the wind shear (in modulus), the worse. As an example, 
for 1.5CI =  kg/s one has the following results: for tailwinds, 

when w∆  increases from 0 to 40 kt, the decrease in DOC  is 

1933 kg; and for headwinds, when w∆  increases from 0 to 

40 kt, the increase in DOC  is 1773 kg. 

Figure 11.   Fuel consumption vs wind shear for CI = 0,0.5,1,1.5,2,2.5,3 kg/s; 

30w = −  kt for HW, 30w =  kt for TW. 
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Figure 12.  Flight time vs wind shear for CI = 0,0.5,1,1.5,2,2.5,3 kg/s; 

30w = −  kt for HW, 30w =  kt for TW. 

Figure 13.  DOC vs wind shear for CI = 0,0.5,1,1.5,2,2.5,3 kg/s; 30w = −  kt 

for HW, 30w =  kt for TW. 

IV. CONCLUSIONS 

An analysis of the effects of average wind and wind shear 
on optimal aircraft cruise trajectories has been presented, which 
is based on the use of a predefined trajectory pattern and 
parametric optimization. The trajectory pattern is formed by 
five segments commonly flown by airlines following ATC 
rules. The case of linear wind profiles has been considered. 

The effect of the average wind on the optimal procedure 
(altitude and Mach number) has been shown to be small, and 
much larger its effect on the global properties (fuel 
consumption, flight time, and cost), as expected for the 
difference between tailwinds and headwinds. 

The results have shown that the wind shear has a strong 
effect on the optimum cruise altitude. In particular, it has been 
found that, depending on the value of the wind shear, the 
optimal cruise can take place either in the troposphere or in the 
stratosphere; in general, for tailwinds, the larger the wind 
shear, the higher the optimal cruise, and, for headwinds, the 

larger the wind shear (in modulus), the lower the optimal 
cruise. It has also been shown that the behavior of the optimum 
altitude as a function of the cost index is opposite in the 
troposphere and in the stratosphere, namely, the optimum 
altitude decreases with the cost index in the troposphere, 
whereas it increases in the stratosphere. On the contrary, the 
effect of the wind shear on the optimum cruise Mach has been 
shown to be quite small. 

Finally, the effect of the wind shear on the optimal 
performance has been also shown to be important: for 
tailwinds, the larger the wind shear, the better the performance; 
on the contrary, for headwinds, the larger the wind shear (in 
modulus), the worse the performance. 

The analysis of cruise flight with larger range, with several 
cruise steps (stepped climb cruise), is left for future work. It is 
expected that for large, positive values of the wind shear (for 
tailwinds) the whole optimal cruise take place in the 
stratosphere; for lower values, one may have the optimal cruise 
starting in the troposphere and ending in the stratosphere; and 
for negative values (for headwinds) one may expect that the 
whole optimal cruise take place in the troposphere. 

The analysis of other types of wind profiles and of cases 
that include wind variation along the trajectory are also left for 
future work. 
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