
Design and Implementation of
a SNTP Client on FPGA

J. Viejo, J. Juan, M. J. Bellido, E. Ostua, A. Millan, P. Ruiz-de-Clavijo, A. Muñoz, and D. Guerrero
Grupo ID2 (Investigacion y Desarrollo Digital)

Departamento de Tecnologia Electronica-Universidad de Sevilla
E. T. S. Ing. Informatica, Campus Universitario Reina Mercedes

41012 Sevilla (SPAIN)
Email: julian@dte.us.es, jjchico@dte.us.es, bellido@dte.us.es, ostua@dte.us.es,

amillan@dte.us.es, paulino@dte.us.es, amrivera@dte.us.es, guerre@dte.us.es

Abstract— This contribution presents the design and imple-
mentation of a SNTP client module suitable for IEC 61850
environments fully done in hardware. The module is able to
provide synchronization and accurate time reference within a mi-
crosecond with respect to a SNTP server, in a extremely compact,
cost-effective and low power device completely implemented in a
low grade FPGA chip. Therefore it can be an ideal replacement to
expensive computer-based solutions or dedicated GPS receivers in
a wide range of industrial applications. This SNTP client is part
of a common technological platform for implementing Remote
Terminal Units (RTUs) under IEC 61850.

I. INTRODUCTION

Time stamping is a critical task in many industrial control
systems. Data acquisition by Remote Terminal Units (RTUs)
being a typical example. In this sense, the industry norm
IEC 61850 [1] defines the Simple Network Time Protocol
(SNTP) [2] over Ethernet as a standard way to synchronize
a set of substations with a time server. SNTP is a simplified
version of the more general Network Time Protocol (NTP)
[3] that is commonly used in Internet servers and routers.
Both SNTP and NTP share the same communication protocol
and data format, the main difference being that NTP uses
sophisticated algorithms that ensures a correct synchronization
with multiple servers under highly variable latency data links,
which is common in a world wide network like the Internet. On
the contrary, SNTP covers the synchronization with a single
server and uses a simplified stateless algorithm, which makes
it suitable for embedded systems in a controlled industrial
environment. Nevertheless, a SNTP client may communicate
with either a SNTP server or a full NTP server.

In this scenario, a time server will typically gather ac-
curate time information from an absolute reference like an
accurate clock or a GPS receiver. SNTP clients located at
the substations will synchronize with the server through the
Local Area Network (LAN) making it unnecessary to install
absolute references at the substations. SNTP clients will then
provide the nearby electronic equipment with the necessary
time information.

This contribution is part of a project supported by the
Ministry of Industry of Spain and leaded by the Telvent
company [4] which finality is to develop a Common Tech-
nological Platform (PTC) to facilitate the implementation of

the functionality typically found in Remote Terminal Units
(RTU) used to control the public power grid. A key point in the
project is to assure the synchronization of electronic equipment
within the range of a few microseconds. This synchronization
is achieved by the use of SNTP clients and servers fully
implemented in hardware. SNTP client and server design is
divided in three main phases:

1) Basic protocol stack implementation and integration
with Ethernet controller. At least the following protocols
are needed: IP, ARP, UDP, and NTP.

2) NTP client implementation: issuing of requests, answer
processing and local clock synchronization.

3) NTP server implementation: synchronization with an
external reference and request processing.

This paper describes the current status of the client imple-
mentation that includes phase 1 and part of phase 2.

The rest of this contribution is organized as follows: a
brief introduction to NTP and SNTP is included in section II,
section III enumerates the requirements and general specifica-
tions of the system, section IV gives the details of the design
and implementation of the hardware SNTP client, section V
includes some implementation results and section VI discusses
some conclusions.

II. NTP/SNTP PROTOCOL BASIC OPERATION

The operation of the NTP/SNTP protocol is very simple
(Fig. 1). The client sends a request to the server by issuing
an UDP data packet where the time of its local clock (T1) is
included. When the request is received at the server a new time
stamp T2 is generated with the reception time as given by the
server’s local clock. After processing the request, the server
issues a reply including the time at which the reply leaves
the server (T3). When the client receives the reply, the arrival
time (T4) is also annotated. With this set of timestamps the
client can calculate the round trip time (trd) and the time offset
between the client’s and server’s clocks (toffset). Assuming a
symmetric connection it gives:

trd = (T4 − T1)− (T3 − T2)

toffset =
(T2 − T1) + (T3 − T4)

2
(1)

Fig. 1. Operation of the NTP/SNTP protocol.

Using the calculated offset, the client can correct its local
clock to match the server time. Software implementations
of NTP tipically achieve time synchronization within a mil-
lisecond with respect to the server [3]. There are two main
sources of error. The first one is the asymmetry in the network
communication when the time spent by the client’s request to
reach the server is different to the time spent by the answer
to reach the client. This is due to unpredictable latency in
network equipment, specially when collisions take place and
the number of the devices involved increases. The second main
source of error is due to the variable time gap between the
instant the time stamp is registered in the datagram and the
real instant the datagram leaves or reaches the host. In typical
software implementation, these time stamps are registered
by client/server software running as a user level application
(Fig. 2) so the time stamp error will depend on the time spent
processing the datagram as it goes through the protocol stack
and software layers. This error will largely depend on system
load, detailed software implementation, etc. The precision of
the NTP synchronization can be largely improved by doing the
time-stamping operation in lower layers [5], therefore some
operating system kernels like Linux of FreeBSD support NTP
processing in the kernel [6]. This way, precision may reach
some tens of microseconds.

The highest precision in the time-stamping operation is only
achievable if done by the Ethernet device hardware as soon as
the packets arrive or leave the interface.

III. SYSTEM SPECIFICATION

The main objective of this contribution is to build cost-
effective, autonomous, compact and highly accurate SNTP
client and server modules suitable for, but not limited to, IEC
61850 environments. The SNTP server will use a standard
GPS receiver as a time reference. It will use the PPS (Pulse Per
Second) signal and NMEA data from the GPS to synchronize
its internal clock. The SNTP client will synchronize with the
server through the local area network using the NTP proto-
col, and will provide a PPS signal and NMEA information

Fig. 2. Layers where NTP can be implemented.

through a serial interface thus emulating a GPS receiver. A
typical scenario is depicted in Fig. 3 where the server (H-
SNTPD) gathers the time from the GPS receiver and clients
(H-SNTPC) provide time and synchronization information to
remote terminal units (RTU).

More specifically, the SNTP client should meet the follow-
ing criteria:

• The client will operate in a standard 10/100/1000 MHz
Ethernet LAN.

• The client will be configured automatically using the
BOOTP [7] protocol so that the configuration for all the
clients can be centralized in a single BOOTP server.

• The precision of the local clock at the client should
be within 10 µs with respect to the server’s clock in
optimal conditions: hardware time-stamping in the server
and direct LAN connection without switches. In typical
conditions (software server and standard switch connec-
tion) precision should be always within 1 ms.

• The whole client design should fit in a single, low density
FPGA chip and should need no additional hardware, so
that cost of system parts will be under $20 before mass
production.

• Low power. Implemented in a low density, low frequency
FPGA, the client will consume under 1 W of average
power which is much lower than a computer-based im-
plementation that would consume about 100 W.

IV. DESIGN AND IMPLEMENTATION

In this section, the most important aspects of design and
implementation are commented. A diagram of the modules
that form the SNTP client is shown in Fig. 4. We can
distinguish the following parts: control unit, Ethernet MAC
controller, SNTP client module, and PPS generation and RMC
frame transmission module. Next, we will briefly explain the
functionality of each one of these subsystems.

The control unit is in charge of arbitrating the operation of
the rest of the modules in order to perform the adequate task
in each moment. The module has been modeled as a Finite
State Machine using Verilog coding according to the structure

Fig. 3. Typical scenario for deploying hardware SNTP client and servers.

Fig. 4. Block diagram of the SNTP client.

described in [8]. The control unit defines two main operating
modes:

1) Configuration. When the SNTP client starts to operate
or after a system reset, an automatic configuration pro-
cess is performed according to the Bootstrap Protocol
(BOOTP) [7]. This process consists of finding the SNTP
client MAC address and a series of configuration pa-
rameters like SNTP client and server IP addresses and
the RS-232 serial port baudrate. We have used BOOTP
because of its simplicity compared to DHCP [9] which
makes it more suitable to be implemented in hardware,

while the extended capabilities of DHCP are not useful
for the intended application and would only introduce
extra development and resource costs.

2) Normal operation. Once the configuration process has
finished, the SNTP client begins to work into the normal
operation mode. In this mode, the device carries out
different tasks which we are going to summarize next.
Firstly, the SNTP client needs to know the SNTP server
MAC address, so the client includes a simple implemen-
tation of the Address Resolution Protocol (ARP) [10]; as
well, the client must be able to send an ARP reply packet

whenever another device requests its MAC address.
Secondly, the client must transmit a time request packet
(SNTP message) at secondly intervals. Finally, when
the SNTP client receives the time reply packet, the
timestamps obtained are registered so that the SNTP
client module can synchronize the local clock.

The Ethernet MAC controller is in charge of controlling a
standard Fast Ethernet PHY device, allowing us to transmit and
receive Ethernet frames according to IEEE 802.3 specification.
The implementation of this module has been carried out
using the Tri-mode Ethernet MAC IP-core available from the
OpenCores project in its web portal opencores.org. Moreover,
this IP-core has a FIFO interface to user applications which
facilitates the SNTP client design.

The user interface has been developed according to the spec-
ification document [11]. This interface has been implemented
as a finite state machine coded in Verilog, and is formed by
a transmitter module and a receiver module. So, on the one
hand, the transmitter module is able to transmit three different
Ethernet frames: BOOTP Request, ARP Request/Reply and
time request packets, which are stored in a RAM. This module
also includes a memory updating component that is in charge
of updating the different packet fields before transmitting
them. On the other hand, the receiver module is able to identify
the following frames: BOOTP Reply, ARP Request/Reply and
time reply packets, ruling out the rest of Ethernet frames.

The SNTP client module is in charge of calculating the
clock offset using the timestamps and synchronizing the local
time. Additionally, a drift control is carried out in order
to improve the local clock accuracy. At this moment, this
component is being developed using the System Level tool
System Generator for DSP according to the methodology
presented in [12].

Finally, the PPS generation and RMC frame transmission
module is in charge of generating a synchronization signal
(PPS+NMEA) which will be sent through the serial port to a
Remote Terminal Unit. To implement this module the same
methodology used to build the SNTP client module will be
employed.

At the time of writing, the system is fully specified and the
most critical and complex parts have been implemented: the
control unit, the user interface and part of the SNTP client
functions.

V. RESULTS

In this section, simulation and hardware implementation
results are described in some detail.

A. Simulation results

In order to check that the designs works correctly, the
following simulation process has been carried out. At the
first stage, the design has been verified using Simulink and
ModelSim. For the generation of the input stimuli, the Source
Blockset of Simulink has been employed. At the second stage,
we have used the Xilinx tool ChipScope Pro to perform the
on-chip verification of the client. In this way, we have verified

TABLE I
HARDWARE IMPLEMENTATION RESULTS ON SPARTAN-3E XC3S500E.

Figure of merit Usage (%)

Slices 1,122 (24%)

Slice Flip Flops 1,287 (13%)

4 input LUTs 1,303 (13%)

Bonded IOBs 35 (15%)

Block RAMs 10 (50%)

GCLKs 6 (25%)

Maximum operation frequency 96 MHz

the correct transmission and reception of the different packet
types: BOOTP, ARP, and SNTP messages.

B. Hardware implementation results

In this subsection, hardware implementation results will be
presented. Specifically, two figures of merit will be analyzed:
hardware resources and maximum operation frequency.

The design has been implemented on a Spartan-3E
XC3S500E FPGA. The Table I shows the design results in the
current development stage. It is worth no note that although the
implementation is not finished, the most resource consuming
blocks are implemented, which are the user interface and the
control logic. Considering this and the fact that there is still
plenty of room for optimization in the already implemented
hardware, it is expected that the final resource requirements
will be very close to the data in Table I.

VI. CONCLUSION

The design of a SNTP client completely done in hardware
has been presented. By using a high level methodology and
standard FPGA technology it is possible to produce a high
accurate, cost-effective and flexible solution for accurate time
distribution and time stamping in industrial environments
that agrees with international standards. First prototypes are
expected to provide synchronization in the range of the mi-
crosecond in a compact and cheap device that would sub-
stitute expensive computer-based solutions or dedicated GPS
receivers.

ACKNOWLEDGMENT

This work has been partially supported by the PROFIT-
MITC PTC FIT-330100-2006-60 project and the Andalusian
Regional Government’s EXC-2005-TIC-1023 project.

REFERENCES

[1] IEC 61850 Communication Networks and Systems In Substations, Tech-
nical Committee 57. International Electrotechnical Commission.

[2] D. L. Mills, Simple Network Time Protocol (SNTP) Version 4 for IPv4,
IPv6 and OSI, RFC 4330, Category: Informational. January 2006.

[3] D. L. Mills, Network Time Protocol (Version 3) Specification, Implemen-
tation and Analysis, RFC 1305, Status: Draft Standard. March 2006.

[4] Telvent Company Web Portal. http://www.telvent.com.
[5] T. Skeie, S. Johannessen, and Ø. Holmeide, Highly Accurate Time

Synchronization over Switched Ethernet, 8th IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA
2001, Antibes-Juan les Pins, France October 2001.

[6] D. L. Mills and P. H. Kamp. The nanokernel, Proc. Precision Time and
Time Interval (PTTI) Applications and Planning Meeting Reston VA,
November 2000.

[7] B. Croft and J. Gilmore, Bootstrap Protocol (BOOTP), RFC 951,
September 1985.

[8] C. E. Cummings, The Fundamentals of Efficient Synthesizable Finite State
Machine Design using NC-Verilog and BuildGates, International Cadence
Usergroup conference, ICU 2002, San Jose, California, September 2002.

[9] R. Droms, Dynamic Host Configuration Protocol, RFC 2131, March
1997.

[10] D. C. Plummer, An Ethernet Address Resolution Protocol, RFC 826,
a.k.a. STD 37, November 1982.

[11] J. Gao, 10 100 1000 Mbps Tri-mode Ethernet MAC Specification,
OPENCORES.ORG, January 2006.

[12] J. Viejo, M. J. Bellido, A. Millan, E. Ostua, J. Juan, P. Ruiz-de-
Clavijo, and D. Guerrero, Efficient design and implementation on FPGA
of a MicroBlaze peripheral for processing direct electrical networks
measurements, First IEEE Symposium on Industrial Embedded Systems,
IES 2006, Antibes-Juan les Pins, France, October 2006.

