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Abstract: Modeling and simulation are essential tools for better understanding complex biological
processes, such as cancer evolution. However, the resulting mathematical models are often highly
non-linear and include many parameters, which, in many cases, are difficult to estimate and present
strong correlations. Therefore, a proper parametric analysis is mandatory. Following a previous
work in which we modeled the in vitro evolution of Glioblastoma Multiforme (GBM) under hypoxic
conditions, we analyze and solve here the problem found of parametric correlation. With this aim,
we develop a methodology based on copulas to approximate the multidimensional probability density
function of the correlated parameters. Once the model is defined, we analyze the experimental
setting to optimize the utility of each configuration in terms of gathered information. We prove that
experimental configurations with oxygen gradient and high cell concentration have the highest utility
when we want to separate correlated effects in our experimental design. We demonstrate that copulas
are an adequate tool to analyze highly-correlated multiparametric mathematical models such as
those appearing in Biology, with the added value of providing key information for the optimal design
of experiments, reducing time and cost in in vivo and in vitro experimental campaigns, like those
required in microfluidic models of GBM evolution.

Keywords: copulas; design of experiments; glioblastoma multiforme; mathematical modelling

MSC: 62H20; 62K05; 62P10

1. Introduction

Biological processes usually involve several cell populations interacting in a complex,
dynamic, and multiple interactive micro-environment [1]. Understanding these interactions
between cells and microenvironment is crucial in many physiological and pathological
processes [2]. However, progressing in this understanding with only in vivo experiments
is difficult. Despite them being more realistic, isolating effects or achieving particular
conditions is complex in such experiments due to technical and/or ethical reasons.

In vitro experiments permit better control of the variables, while reducing costly and
ethically-questioned animal assays. Nonetheless, the predictive power of currently avail-
able in vitro models is still poor due to the strong difficulties that we face in reproducing
the structure and distribution of the different cell populations as well as the particular
environmental conditions in which cells live, adapt and react (e.g., three-dimensionality) [3].
Microfluidics is a new in vitro technique that allows more precise reproductions of the
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microenvironment and cell distribution [4,5], including three-dimensionality, thus making
in vitro tests much closer to the actual in vivo conditions. This permits, for example, a more
reliable and efficient drug testing [6,7].

Finally, mathematical models allow to separate and quantify the effects of each mech-
anism or parameter, as well as to predict the outcome in “what if” situations, which are
sometimes impossible to achieve in in vivo or in vitro experiments [8,9]. Nevertheless, these
models are mostly non-linear, involve highly-coupled multiphysic interactions, and in-
clude many parameters. In many occasions, those parameters are difficult to measure
and have strong hidden correlations. Moreover, it is usual to have a lack of data both
for quantification and validation of the parameters and results [10]. Therefore, they are
fitted only for the results available, which usually correspond to very specific conditions.
This may lead to trivial conclusions that could have been directly derived from the model
assumptions, making the results only useful for those particular experiments, with the
obtained conclusions impossible to generalize.

In a previous paper [11], we addressed this parametric analysis in a particular
problem—the mathematical modeling of the in vitro (using microfluidic devices) evo-
lution of glioblastoma multiforme (GBM), the most aggressive and lethal among primary
glioma tumors [12]. In Ref. [11], we presented a general framework in which the main cell
processes involved (proliferation, chemotaxis, random migration, apoptosis, and necrosis),
in response to changes in the oxygen concentration, were mathematically formulated.
We then analyzed three different experimental configurations, reproducing the main GBM
migratory structures (pseudopalisade and necrotic core formation). An extensive analysis
of all model parameters was performed, both from literature and by fitting the associated
in silico results with those derived from the experiments. As main results of that work,
we identified a unique set of parameters able to accurately reproduce the quantitative
results for the three case-studies. However, we also found two model limitations: (i) the
sensitivity analysis showed that the model is strongly affected by small variations in the
oxygen cell consumption and diffusion and (ii) a strong correlation was found between the
parameters associated with those two mechanisms.

The objective of the present work is to present the possibilities in this context of-
fered by a methodology that is able to separate the correlated effects found in that study,
and to get a more accurate and reliable representation of the experimental results in the
parametric space. With that purpose, we approximate the multidimensional probability
density function of the parameters by means of appropriate copulas. Copulas allow con-
sidering separately the marginal distributions and the dependence between variables in
multivariate statistical problems, including those with high correlation. This permits using
general models for the marginal distributions, while the variable dependence model can
be different [13]. Copulas are today used in a wide range of areas in Economic sciences
and Engineering. The most recent models have been successfully applied in portfolio
management and optimization [14], actuarial analysis [15], quantitative finance and risk
theory [16,17]. A particularly hot topic is the study of climate-agent time series [18,19], hy-
drology [20,21] and weather and climate research [22,23]. Some efforts have been made in
transportation research [24] and traffic policy [25]. Recently, copulas have been successfully
applied in reliability analysis in civil [26], mechanical and structural [27], offshore [28] and
software [29] engineering. In Biology, copulas have been used in the field of genetics [30]
to model gene dependencies.

Up to the authors’ knowledge, there is no work using copulas for the parametric
analysis of evolution processes in Biology, where, as commented, many of the parame-
ters involved are unknown and uncontrolled, and high correlations between parameters
are common. We prove here that copulas are an adequate tool to improve the analysis
of highly-correlated multiparametric mathematical models such as those appearing in
Biology, with the added value of providing key information for the optimal design of new
experiments with the highest information possible, thus reducing time and cost not only in
in vitro experiments but also in scarce and costly in vivo cases.
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2. Rationale of the Approach
2.1. Deterministic and Stochastic Models

Let us suppose that our problem may be represented by the following mathematical
relationship:

u = F(λ, θ), (1)

with

• u (an m-dimensional vector) the output variable, that is, the outcome of the experi-
ments, that we measure.

• λ the variables which we can control when performing the experiments (such as
environmental variables, geometric parameters, or boundary conditions).

• θ the model parameters, that we cannot control and whose values must be determined
(θ ∈ Ω, with Ω the parametric space of dimension n).

• F the mathematical model, that relates the experimental configuration λ with the
output variables u in terms of the set of parameters θ.

In relation to the accuracy and precision of the model, it is possible to define three
levels of analysis: (1) the model is perfect and the experimental measures are noise-free;
(2) the model is perfect and the experimental measures are noisy; and (3) the model is
not perfect and the measurements are noisy. Only the third case is, in general, realistic in
complex problems as the one here analyzed.

In addition, it is difficult to define universal values for the parameters in biological
problems, since they are highly-dependent on the particular experimental context.

As a consequence of all the previous observations, it is more appropriate to consider a
stochastic approach, and reformulate Equation (1) as:

U = F(λ, Θ), (2)

where U and Θ are now random vectors of dimensions m and n respectively.
The proposed approach is therefore suitable when the following conditions are satis-

fied:

• Many coupled phenomena are present, being difficult to design experiments able to
isolate each of them (complexity).

• The measurement space is large and it is possible to perform a sufficiently big number
of experiments N (data availability).

From a mathematical point of view, these two statements may be reformulated as:

• The model F includes many parameters (n� 1) and/or is non-separable.
The separability of a model is evaluated by the possibility of approximating F as:

F(λ, θ) ' FM(λ, θ) =
M

∑
i=1

n

∏
j=1

Fi,j(λ, θj). (3)

The lower M, the easier to define a set of different experimental configurations
S = {λj}j=1, ..., k to isolate each of the parameters θj by solving separately each
equation uj = FM(λ, θ). Although this separability definition is not very rigorous,
it is enlightening enough for our purposes.

• The dimension of the measurement space is high (m � 1) and/or the sample size
is large enough (N � 1). Without loss of generality, we consider that m is, actually,
the reduced dimensionality of the space or in other words that all variables of the
ambient space are independent.

2.2. Case Study: In Vitro GBM Evolution

There have been many attempts to develop mathematical models to describe how
tumors grow and respond to therapies [10,31]. In particular, in previous works, we demon-
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strated the possibility of developing GBM pseudopalisades [32] and necrotic cores [33]
in vitro. Figure 1 illustrates one of such experiments in which a high density cell cul-
ture is exposed to oxygen flow by two lateral channels but, due to self-induced hypoxia,
the formation of a necrotic core in the central part of the chamber is observed.

Figure 1. Formation of a necrotic core in the microfluidic device.

One of the main problems in these models is the lack of reliable values for the many
parameters involved that forces many times to rely on values fitted from different situa-
tions, leading sometimes to unreliable conclusions. We recently proposed a mathematical
model for GBM in vitro evolution [11], together with an extensive parameter discussion.
This model enables the simulation of different stages of GBM evolution under several
experimental conditions, showing robustness, while keeping a small uncertainty range in
the results. It is established in terms of three advection-reaction-diffusion equations and
the associated parameters that are expressed as:

∂Ca

∂t
=

∂

∂x

(
Da

∂Ca

∂x
− KaχO2

a (O2)χ
Ca
a (Ca)Ca

∂O2

∂x

)
+

1
τa

βa(O2)Ga(Ca, Cd)Ca −
1

τad
Sad(O2)Ca

(4)

∂Cd
∂t

=
1

τad
Sad(O2)Ca (5)

∂O2

∂t
= DO2

∂2O2

∂x2 − αaHa(O2)Ca. (6)

Equation (4) quantifies the evolution of the cell normoxic phenotype concentration,
Ca, with three terms: random diffusion, growth-death source, and chemotaxis. Equation (5)
models the evolution of the necrotic phenotype concentration, Cd, which contains only
the dead cells derived from the normoxic phenotype. Finally, Equation (6) defines the
O2 concentration evolution in the hydrogel in which cells are embedded, considering
both oxygen diffusion and cell consumption. Functions βa, Ga, χO2

a , χCa
a , Sad and Ha are

nonlinear corrections accounting for cell metabolic behavior:
χO2

a defines a chemotaxis correction accounting for the oxygen concentration. It has
been shown that GBM cells present what is called the go or grow behavior [34]: cells spend
resources in proliferating when they are enough oxygenated and activate migration mecha-
nisms under hypoxia conditions, that is, when the oxygen concentration is under a certain
hypoxia threshold OH

2 . Therefore, we state:
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χO2
a (O2) =

{
1−O2/OH

2 if 0 ≤ O2 ≤ OH
2

0 if O2 > OH
2 .

(7)

χCa
a defines a chemotaxis correction accounting for the cell concentration. We assume

that cellular motility is only possible when the cell concentration is below the saturation
capacity of the hydrogel CM:

χCa
a (Ca) =

{
1− Ca/CM if 0 ≤ Ca ≤ CM

0 if Ca > CM.
(8)

βa accounts for the dependence of the proliferation activity on the oxygen concentra-
tion, in agreement with the go or grow paradigm [34]. Cell proliferation decreases when the
oxygen concentration is under the hypoxia threshold, OH

2 , and is totally inactivated under
total lack of oxygen:

βa(O2) =

{
O2/OH

2 if 0 ≤ O2 ≤ OH
2

1 if O2 > OH
2 .

(9)

Ga is a logistic growth correction accounting for space and nutrients availability [35].
Cell proliferation decreases when the cell concentration approaches the hydrogel saturation
capacity, CM:

Ga(Ca, Cd) =

(
1− Ca + Cd

CM

)
. (10)

Sad is a death activation function accounting for the oxygen concentration. Cell death
is a complex phenomenon that can be due to two different cell mechanisms, necrosis,
and apoptosis [36,37]. Cell necrosis is highly dependent on the oxygen concentration,
while cell apoptosis is not. Therefore, we have chosen a soft transition function for Sad
depending on two parameters—a location parameter, OA

2 , identifying the anoxia oxygen
concentration and a spread parameter, ∆OA

2 , associated with the death stochastic nature:

Sad(O2) =
1
2

(
1− tanh

(
O2 −OA

2

∆OA
2

))
. (11)

Finally, Ha is the Michaelis-Menten correction factor in oxygen consumption, related to
the oxidative phosphorylation kinetics [38]. The consumption rate is constant for high
oxygen concentrations, but decreases to zero with a homographic shape. The value of the
oxygen concentration for which the consumption rate is halved is the so-called Michaelis-
Menten constant, OM

2 . The function Ha is then stated as:

Ha(O2) =
O2

OM
2 + O2

. (12)

Equations (4)–(6) are complemented with the boundary and initial conditions. For the
experiments carried out in our microfluidic devices, we assume total impermeability
(Neumann boundary conditions) for the cell populations and a fixed value for the oxygen
concentration at both sides of the channel (Dirichlet boundary conditions). Therefore, if L
is the chamber length, we may write:

∂Ca

∂x
= 0, x = 0, L

∂Cd
∂x

= 0, x = 0, L

O2 = Ol
2, x = 0

O2 = Or
2, x = L,

(13)



Mathematics 2021, 9, 27 6 of 22

with Ol
2 and Or

2 the oxygen levels at the left and right channels of the chip.
The initial oxygen concentration is assumed to be homogeneous over the whole

chamber and equal to the maximum of both lateral oxygen concentrations, that is O2(x, t =
0) = O0

2 = max(Ol
2, Or

2).
The resulting experimental parametric space consists, therefore, of three parameters,

corresponding to the concentration at the boundaries of the chip, (Ol
2, Or

2), and the initial
cell concentration, (C0), assumed constant throughout the chip. That is:

λ = [Ol
2, Or

2, C0]. (14)

OH
2 , OA

2 , ∆OA
2 and OM

2 have a clear meaning in terms of cell metabolism and are
assumed to be known and constant for all cell cultures used in our experiments, at least from
an illustrative point of view. Besides, although CM is very dependent on the experimental
conditions (hydrogel mechanical properties, nutrients, ...), we shall assume it is constant,
for the sake of simplicity. The values for these parameters were taken from a previous
work [11].

Previous research in computational biology has mainly focused on the value of the
parameters or, in the best case, in their (individual) uncertainty. However, in many cases,
the fitting process is very complex and the parameters are highly correlated due to, at least,
two facts:

• Samples variability: Different physical phenomena may have an inherent correlation
supported by physical considerations, being this correlation independent of the exper-
iments performed or the model used. For example, when working with GBM cellular
models, cell motility is induced by the random motion inherent to any cell and several
taxis effects driven by external physical or chemical stimuli. Mathematical parameters
related to these phenomena (e.g., diffusion and chemotaxis coefficients) appearing
in the model equations will present, therefore, a strong correlation in the different
experimental samples.

• Model complexity: The non-separability of the model and/or the experiments does
not allow to isolate the particular mechanisms. For example, when working with
GBM cellular models, without further measurements of cell oxygen consumption or
oxygen flux, it is impossible to establish if a lack of oxygen in a certain region is due to
high cell consumption or due to low oxygen diffusion. The mathematical parameters
related to these phenomena (e.g., oxygen diffusion and cell oxygen consumption
coefficients) should present a strong correlation, although this correlation does not
have a physical meaning, being inherent to the model or to the experimental set-up.

Thanks to the flexibility, portability, automation, integration, and miniaturization of
the microfluidic experiments, a huge amount of data may be generated. Accordingly, this
type of experiments is a perfect domain of application for the framework presented herein.

3. Methods
3.1. Data Generation and Numerical Solution

As the methodology is based on the availability of sufficient data, the data set used
for illustrating the methodology was generated synthetically using numerical simulation.
For this purpose, the assumed values for the parameters were extracted from Ref. [11] and
a data set of “experimental” measurements was generated by simulation, using randomly
generated boundary and initial conditions.

The summary of the model parameters is shown in Table 1, together with the value
used for data generation.
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Table 1. Model parameters and values used for data generation.

Parameter Symbol Value Used for Data
Generation [11]

Normoxic cell diffusion coefficient Da 5× 10−10 cm2/s

Normoxic cell chemotaxis coefficient Ka 7.5× 10−9 cm2/mmHg·s
Oxygen diffusion coefficient DO2 1× 10−5 cm2/s

Oxygen consumption coefficient αa 1× 10−9 mmHg·cm3/cell·s
Growth characteristic time τa 200 h

Death characteristic time τad 48 h

Hypoxia activation threshold OH
2 7 mmHg

Growth saturation capacity CM 5× 107 cell/mL

Anoxia activation location parameter OA
2 1.8 mmHg

Anoxia activation spread parameter ∆OA
2 0.1 mmHg

Michaelis-Menten constant OM
2 2.5 mmHg

With respect to the simulated virtual experiment, we set a chip length of L = 0.1 cm,
a mesh size of ∆x = 0.0025 cm and a time step of ∆t = 1000 s. N = 400 different ex-
periments, {λi}i=1, ..., 400, were simulated varying the boundary conditions: the left and
right channel oxygen concentrations were set randomly between 0 and 7 mmHg using two
independent uniform distributions while the initial oxygen concentration was set to the
maximum of both values, as mentioned. The initial cell profile is supposed to be uniform
and randomly sampled from a reciprocal distribution (to take into account both the expo-
nential and saturated growth regimes) between 4× 106 and 5× 107 cell/mL. The numerical
solutions are obtained for tm = 8 d and the output variable associated to the experiment i,
ui = us(x, tm; λi), is the numerical solution of the model equations (the mathematical ap-
proach and numerical procedures and algorithms are detailed in Ref. [11]), with boundary
and initial conditions defined by λ, at time tm and at points given by the defined mesh
x. Here, xj = j∆x, j = 1, . . . , 41. The computed data were all perturbed with a uniform
noise εj = 0.2× uj ×V with V a random uniform distribution V ∼ U [−1, 1]. Consequently,
ui

j = us(xj, tm, λi) + εi
j, j = 1, . . . , 41 and i = 1, . . . , 400.

Within the framework presented in Section 2.1, u = F(λ, θ) are the numerical solutions
obtained, with λ the control parameters, θ the unknown parameters and F the mathematical
model presented.

3.2. Copula-Based Parametric Model Analysis
3.2.1. Concept of Copulas

In Probability and Statistics, a copula is an n-multivariate probability distribution
function U whose marginals, Ui, are uniform distributions on [0, 1] [39]. They were intro-
duced by Sklar in 1959 [40]. As the marginal distributions are known, a copula describing
the structural dependence between variables is enough to perfectly define the model.

Mathematical definition.

As mentioned, a copula is a function C : In → I, where I = [0; 1] such that:

• For u1, . . . , un ∈ I, and if ui = 0 for some 1 ≤ i ≤ n:

C(u1, . . . , un) = 0. (15)

• For uj ∈ I, 1 ≤ j ≤ n:
C(1, . . . , 1, uj, 1, . . . , 1) = uj. (16)
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• C is n-non decreasing, that is, for each B = ∏n
i=1[xi; yi] ⊂ In, the C-volume of B is

non-negative: ∫
B

dC(u) = ∑
z∈×n

i=1{xi ;yi}
(−1)#{k:zk=xk}C(z) ≥ 0. (17)

We can distinguish between parametric and non-parametric copulas. In this work,
we use a hybrid approach, as we fit the marginal distributions by means of kernel esti-
mators [41] of the probability density functions and use a parametric copula. With this
approach, the required data-set grows as O(n) where n is the space dimension.

3.2.2. Fitting and Model Validation

Let us suppose we have a data-set of values for different experiments, λi, charac-
terized in terms of a resultant mean value µi and a covariance matrix Σi, i = 1, . . . , N,
obtained from different measurements associated to the configuration i. As the assumed
model F is known, it is possible, for each piece of data ui, to obtain the set of parameters θi

which best fits it.
In order to avoid pathological numerical convergence, we only take into account

those sets of parameters θi which lie inside the bibliography ranges considered in Ref. [11],
amplified by 50% to avoid considering the parameters bounds as deterministic values,
that, as shown in Table 2, are very large ranges. Therefore, the resulting intervals are [(1−
κ)xinf, (1 + κ)xsup], being xinf and xsup the lower and upper bounds detailed in Ref. [11]
and κ = 0.5, as summarized in Table 2. As a result of this process, we obtain a dataset with
n = 6 (number of parameters), N = 111 (dataset size) and m = 41 (measurement space
dimension), so we are under the scope of the presented framework: N ×m� n > 1.

Table 2. Parameter ranges considered in the analysis.

Parameter Lower Bound Upper Bound Units

Da 3.3× 10−12 7.5× 10−5 cm2/s

Ka 1× 10−10 1.1× 10−3 cm2/mmHg·s
DO2 5× 10−6 3× 10−5 cm2/s

αa 5× 10−10 1.1× 10−6 mmHg·cm3/cell·s
τa 8 3000 h

τad 24 917 h

Once θi, i = 1, . . . , N are obtained, the next step is the adjustment of the marginal
distributions. The values θi

j, j = 1, . . . , n, are used for fitting the marginal random variable
Θj whose cumulative distribution is assumed to be Gj. Here, we can follow either a para-
metric (that is, Gj(x) = Gj(x; αj)) or a non-parametric approach (which is the one followed
in this work). The values θi

j are therefore transformed into uniformly distributed ones via

the standard transformation yi
j = Gj(θ

i
j). As yi are considered uniformly distributed with a

joint dependence, it is possible to fit this structural dependence using parametric copulas.
To summarize, the steps of the training process are:

1. Problem minimization to obtain θi. We have to minimize the residual function Ri:

Ri(θ) =
(

F(λi, θ)− µi
)T

(Σi)−1
(

F(λi, θ)− µi
)

, (18)

where the Mahalanobis distance has been used to take into account the sample vari-
ability. Assuming that Σi = σi2 I, Equation (18) can be rewritten as:

Ri(θ) =
1

σi2

∥∥∥F(λi, θ)− µi
∥∥∥2

. (19)
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2. Kernel density estimation of the marginal distributions from the data θi
j.

3. Transformation into uniformly distributed values yi
j.

4. Copula fitting of the y data to capture the joint dependence.

The presented sequence of steps allows moving from a dataset S = {θi}i=1, ..., N to a
probabilistic model for the random vector Θ (the marginal kernel densities and the copula
parameters encoding the structural dependence), as it is the aim of statistical procedures.

To avoid overfitting, we follow a typical train-test approach: we divide the datasets
λi − ui (where ui includes µi and Σi) in two separate subsets, one used for training and the
other used for testing.

If we consider now the test data-set, the procedure is:

1. Problem minimization to obtain θi.
2. Testing the statistical fitting:

• Marginal fitting: q-q plots, histograms, empirical cumulative distribution func-
tions (ecdf), boxplots, parametric or non-parametric statistical tests [42].

• Joint 2 vs. 2 correlations: correlations, scatterplots, parametric statistical tests for
correlations [42].

• Whole joint structural dependence: multivariate parametric and non-parametric
statistical tests [43].

3.2.3. Model Analysis and Parameter Estimation

Once the distribution of the random vector Θ is learned, the model is known from a
probabilistic point of view. The first straightforward application is parameter estimation
It is important to emphasize that with “parameter estimation” we refer to the parameters
of the mathematical model, not to the parameters of the distributions used in the statistical
characterization (actually, the statistical characterization may be non-parametric), that may
be estimated via common statistical inference techniques. A point estimate of the model
parameters is given by:

θ̂ = P[Θ], (20)

where P is a central tendency operator, for example, the expectation operator E, mini-
mizing the L2 squared norm dispersion (its minimum is the variance), or the geometric
median operator M, minimizing the L2 norm dispersion (its minimum is the mean absolute
deviation).

However, it is more interesting to perform a confidence region estimation. As sug-
gested in Ref. [44], in this work, we use the so-called Highest Density Regions (HDR)
because of their easy interpretation, straightforward generalization to multi-dimensional
spaces and direct computation. Recall that, under some distributional assumptions
(e.g., normality assumption), HDR computation is reduced to other standard confidence
region computation techniques (e.g., χ2 quantile tolerance ellipsoids). HDR computation
enables reliable parameter estimation since, given a significant level threshold α, it is
possible to define an HDR region in which the parameters are located with a p = 1− α
probability. This may be performed for single parameters, or, in general, k-tuples of param-
eters.

This methodology is also applicable to conditional distributions. Let us suppose that
we know the value of a certain subset of parameters θ∗ and let us define θ = (θ′, θ∗).
Knowing the distribution Θ, that is obtained after the fitting-validation procedure, it is
possible to define the conditioned distribution of Θ given Θ∗ = θ∗ by its density f ′ defined
in terms of the density f of θ:

f ′(θ′|θ∗) = f (θ′, θ∗)∫
f (η, θ∗) dη

, (21)

so all HDR computations are now applied to the distribution of Θ given Θ∗ = θ∗ by
replacing f by f ′.
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3.2.4. Design of Experiments

Design of experiments techniques aim to maximize the information obtained from each
performed experiment, in order to reduce the number of them required [45]. In particular,
in this work, we use the techniques within the Bayesian Experimental Design (BED),
based on the Bayesian interpretation of probability.

BED aims to maximize the expected utility of the experiment outcome [46]. The utility
function expresses how useful is the information provided by an experiment. Of course,
the optimal experiment design depends on the chosen utility criterion. In this work,
the definition of the utility function is based on the Shannon entropy or Information
entropy [47].

Under these assumptions, the utility of an experiment λ is defined as the prior-
posterior gain in Shannon information. That is, the additional information that the experi-
mental configuration λ provides about our model parameters. The utility U(λ) then writes:

U(λ) =
∫ ∫

f (θ, u|λ) log f (u|θ, λ) dθdu−
∫

f (u|λ) log f (u|λ) du, (22)

where u is the experimental observation and θ is a vector of parameters to be determined.
f (u|θ, λ) is the probability density of obtaining an experimental outcome u given the
experimental configuration λ and the model parameters θ and f (θ, u|λ) is obtained as
follows, being f (θ) the prior PDF over the parameters θ:

f (θ, u|λ) = f (θ) f (u|θ, λ). (23)

If we assume that u has a multivariate normal distribution (what is indeed not nec-
essary but has been here considered for illustration purposes) with covariance matrix
Σ = σ2 I, and knowing that the entropy of a multivariate normal distribution of dimension
n is only dependent on the standard deviation σ [48], we have the following expression for
the utility:

U(λ) = −n
2

log
(

2πeσ2
)
−
∫

f (u|λ) log f (u|λ) du. (24)

We assume that we measure the alive cell concentration at 5 given points: uk = Ca(x =
xk), k = 1, . . . , 5, where x1 = 0.015 cm, x2 = 0.035 cm, x3 = 0.050 cm, x4 = 0.065 cm, x5 =
0.085 cm. We work under the homoscedasticity and independence assumption so that each
concentration measurement is assumed to be normally distributed with µi = ui and σi = σ,
i = 1, . . . , 5. The uncertainty associated with the measurement of the cell concentration is
assumed to be σ = 1× 106 cell/mL.

As we work under the assumptions detailed above, Equation (24), representing the
utility of an experimental configuration λ, may be computed via numerical integration.
A convergence analysis was performed, justifying the use of a given value of Nθ (number of
sampling points for the model parameter) and Nu (number of sampling points for the
experimental outcome) for each computation in the numerical integration process.

The simulations were performed for ten different oxygen levels at each side of the chip
, Ol

2 = O2(x = 0) and Or
2 = O2(x = L) (from 0 to 9 mmHg) and four different initial cell

concentrations (1× 106 cell/mL, 5× 106 cell/mL, 1× 107 cell/mL and 5× 107 cell/mL).
In order to avoid numerical problems, in all simulations the uniform distributions of

the parameters were sampled from ε = 0.01 to 1− ε = 0.99.

4. Results
4.1. Copula Fitting
4.1.1. Marginal Distributions

First of all, we obtain the fitting of the univariate marginal distributions. Figure 2
shows the kernel estimation of the marginal distribution of the different parameters.
We have chosen a Gaussian kernel for all the estimations with variable bandwidths
(w1 = 7.46× 10−11 cm2/s , w2 = 9.52× 10−10 cm2/(mmHg·s), w3 = 1.66× 10−6 cm2/s,
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w4 = 2.17× 10−10 mmHg·cm3/(cell·s), w5 = 9.57× 104 s and w6 = 2.74× 104 s). The val-
ues are generally concentrated around the one used for the data generation, although the
distributions present a variable uncertainty, related to the model complexity and its in-
fluence on the minimization procedure. For example, it is interesting to observe that all
distributions present a multimodal feature, surely related to the existence of several local
minima in the minimization procedure.

Figure 2. Kernel density estimation of the marginal distributions.

4.1.2. Parametric Copula Structure

Then, the data are transformed into uniformly distributed values using the cumulative
distribution function (CDF) associated to this kernel estimation and a t-Student copula
fitted by means of maximum likelihood (ML) estimation. The use of a t-Student copula
is justified as it allows a different structural dependence for each of the variable pairs
considered [16] and, besides, it outperforms Gaussian copula when estimating the co-
occurrence of extreme events [49]. We obtain a copula with ν = 1.8 degrees of freedom and
a Pearson correlation matrix of:

P =



1.00 0.93 0.71 0.77 0.70 0.40
0.93 1.00 0.74 0.74 0.77 0.38
0.71 0.51 1.00 0.91 0.61 0.20
0.77 0.74 0.91 1.00 0.54 0.26
0.70 0.77 0.61 0.54 1.00 0.24
0.40 0.38 0.20 0.26 0.24 1.00

 (25)

Note that the value obtained for ν is far from the Gaussian limit (ν→ ∞), justifying
the use of the t-Student model.

4.1.3. Complete Probabilistic Model and Bayesian a Posteriori Corrections

In order to briefly analyze the aspect of the whole model, we represent in Figure 3a
the bivariate joint distribution of (DO2 , αa). Knowing the whole joint distribution function
allows us to make a posteriori corrections using Bayesian theory and conditional probability
as explained in Section 3.2.3. If we are interested in the joint distribution of two parameters
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(e.g., DO2 and αa), assuming that we know the rest (Da, Ka, τa, τad), the uncertainty of
the parameter estimation obviously decreases, as can be seen in Figure 3b. In order to
compare the impact of setting a posteriori the rest of the parameters, contour plots of both
distributions, absolute and conditional (normalized between 0 and 1 to compare them
more easily) are depicted in Figure 3c.

(a) Bivariate joint distribution of (DO2 , αa).
(b) Bivariate joint distribution of (DO2 , αa) assuming we
know the rest of parameters.

(c) Comparison between the distribution shape of (a) and (b).

Figure 3. Bivariate joint distribution functions of DO2 and αa.

4.2. Validation of the Results Using Test Data

Over-fitting is one of the main problems in any statistical or numerical parametric
fitting. In our methodology, this is avoided by using a sub-set of the data as test data for
validating the models.

4.2.1. Marginal Distributions

Marginal distributions are validated as pointed out in Section 3.2. To do so, new “ex-
perimental” data are compared to the data generated from the multivariate model. It is
important to note that the original data are not used, but, on the contrary, a new data-set
is strictly generated from the parametric copula and marginal densities, using the same
procedure described for the generation of the original data. The histogram of data, the ecdf
of the test data (with 95% confident interval) compared to the model data, the boxplot of
both test and model data and the Q-Q plot of the test data, when compared to the model,
are shown in Figure 4 for Da as an illustrative example. The validation of the whole set
of variables has been performed and good agreement was found between the model and
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test data except, if at all, for the extreme values, at the tail values of the distributions.
In Figure 5, the ecdf of the test data for each model parameter is shown.

Figure 4. Validation of the marginal distributions for the parameter Da.

Figure 5. Empirical cumulative distribution functions (ecdf) of the test data for each parameter.

4.2.2. Joint Dependencies

Testing the structural dependence between parameters is not trivial. In Section 3.2,
a multivariate statistical test was referenced. However, here we evaluate merely the
differences in the correlation coefficients between the model-based and the test data.
In Figure 6b, we represent the Kendall τ correlation index between the variables for the
model and test data. We observe again a good agreement between the model values of
the correlation coefficients (Figure 6a) and those obtained from the sample of the test data
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(Figure 6b), even though the test sample is finite, which can cause differences between the
model and the statistical values.
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0.51
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0.50

0.26

0.77
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0.53

0.53

0.56

0.25

0.51

0.53

1.00

0.73

0.41

0.13

0.56
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(a) Kendall τ for the training data.
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0.72

0.49

0.49

0.37

0.34

0.72

1.00

0.47

0.43

0.45

0.31

0.49

0.47

1.00

0.67

0.38

0.27

0.49

0.43
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1.00

0.31

0.26

0.37

0.45

0.38

0.31

1.00

0.24

0.34

0.31

0.27

0.26

0.24

1.00

(b) Kendall τ for the test data.

Figure 6. Kendall τ correlation coefficient for each pair of variables for the training and test data.

4.3. Parameter Estimation

In Figure 7, we show p-confident HDR regions for p = 0.90, p = 0.95 and p = 0.99
for the pair of variables DO2 − αa. We present the results for the absolute distribution
and the conditional distribution when the rest of parameters are known. The results
are compared with the classical ellipsoid estimation, which is based on the normality
assumption. The differences, both in the shape and the size of the regions, are clear and are
explained by the complex dependence structure between variables.
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(a) Absolute distribution.

(b) Conditional distribution.

Figure 7. DO2 – αa point (mean) and region (HDR) estimations.

4.4. Estimation of the Output Variables

Once the multivariate distribution of the random vector Θ is characterized, we know
the distribution of the random vectors U = F(λ, Θ). In Figure 8, we show the distribution
of the vector U for three experiments, which illustrates completely different behaviors
corresponding to the main histopathological features of GBM. For the first one, the oxygen
flow is set to 2 mmHg in the left channel and 0 in the right channel and the initial concen-
tration of cells is C0 = 4× 106 cell/mL (pseudopalisade experiment in Ref. [11]). For the
second one, the oxygen flow is set to 7 mmHg in both channels and the initial concentration
of cells is C0 = 40× 106 cell/mL (necrotic core experiment in Ref. [11]). Finally, for the third
one, the oxygen flow is set to 7 mmHg in both channels and the initial concentration of
cells is C0 = 4× 106 cell/mL (double pseudopalisade experiment in oxygenated conditions
in Ref. [11]).
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(a) Pseudopalisade experiment.

(b) Necrotic core experiment.

(c) Double pseudopalisade experiment.

Figure 8. Distribution of the measured variable for in silico experiments.
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4.5. Design of Experiments

In this section, the aim is to determine the experimental configuration with the highest
utility, that is, to choose both right and left oxygen flow levels and the initial cell concentra-
tion to get the maximum possible information from the new experiment. We focus here on
the effect of coupling between parameters and how it affects the utility interpretation and
model parameter estimation.

Two different families of simulations were carried out. In the first one, only one
parameter dependence is analyzed at a time, leaving the rest fixed at the value set in
Section 3.1. These figures show configurations where, if the rest of the parameters are
assumed to be known, the unknown parameter will be estimated accurately. This is the case
in Figure 9a,b. In the second family, two parameter dependencies are analyzed. They are
considered as bivariate distributions in order to observe the effect that the parameter
correlation has in characterizing these parameters, that is, how it modifies the utility values.
Figure 9c, which belongs to this family, illustrates experimental configurations where the
two-dimensional vector will be estimated accurately.

In Figure 9 we compare the iso-utility curves when analyzing one or two parameter
dependencies for the pair of parameters related to oxygen, changes in the cell population
and cell motility respectively. We assume for all figures C0 = 5× 107 cell/mL. In these
figures we can see the most useful experiments (those configurations corresponding to the
highest utility values) and those that lead to a poor adjustment of the model parameters.

This analysis may be performed for different parameter combinations, and for different
degrees of knowledge. For instance, Table 3 summarizes all possibilities when exploring
the relationship between DO2 and αa, as we are interested in the estimation of these two
parameters, both individually or jointly. The cases analyzed in this paper are reported in
the third column.

Table 3. Different possibilities when exploring the relationship between DO2 and αa in the utility
computation.

Parameters to Be Estimated Known Parameters Figure

DO2 None -

DO2 Da, Ka, τa, τad -

DO2 Da, Ka, τa, τad, αa Figure 9a

αa None -

αa Da, Ka, τa, τad -

αa Da, Ka, τa, τad, DO2 Figure 9b

DO2 , αa None -

DO2 , αa Da, Ka, τa, τad Figure 9c
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(a) DO2 .

(b) αa.

(c) (DO2 , αa).

Figure 9. Iso-utility curves for parameters related to oxygen for an initial concentration of C0 =

5× 107 cell/mL.

5. Discussion

The train-test methodology based on copulas followed in the fitting process has shown
that it is possible to establish a gradation in the strength of the parameter dependencies.
Figure 6a illustrates the strength of this relationship, showing that there are pairs of
phenomena difficult to isolate from the experimental and/or computational points of
view. For example, cell random motility and chemotaxis migration (τ = 0.77). Both
phenomena have similar effects but in the opposite direction. Thus, it is difficult to isolate
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their individual effect on cell behavior if we have limited measurements available on the
cell profiles. It is then only possible to evaluate, on the outcome, their combined resultant
effect, that is, the average cell motility. This analysis may be done for each parameter
couple, justifying the approach adopted in this work.

It is important to note that the high complexity of biological systems, resulting in
coupling between pairs of variables, is moderated by the values of the rest, since the
bivariate random distributions (shown for example in Figure 3a) are only a projection of
the whole 6-dimensional joint distribution. Comparing Figure 3a,b, for example, we can
observe the conditioning effect in location, spread, and directionality of the dependency.

Once the probabilistic model is fitted, predicting the actual value of the model param-
eters is easily carried out. As it is observed in Figure 7, the normality assumption for the
confidence region estimation is not always a good starting hypothesis. First, it does not take
into account the complexity of the relationship between the model parameters (i.e., physical
phenomena) and may lead to non reliable values (meaningless physical magnitudes, such
as negative oxygen diffusion). Secondly, it may mislead with respect to the uncertainty
that we actually have for different significant levels. In any case, the confident region
estimation using HDR and a proper probabilistic analysis are very informative about the
degree of reliability of the mathematical model used for a biological explanation. These
two observations become even more evident when the uncertainty of the model is reduced,
as it can be seen when comparing Figure 7a,b: the chosen significant level has a major
impact on the confidence region size and shape. In all the cases analyzed, this uncertainty
reduction makes the confidence region to concentrate around the parameter values used in
the data generation process.

Knowledge of the model parameter variation (from a probabilistic point of view)
allows to predict the outcome of a given experiment. This can be used not only for
model calibration and validation, but for experimental planning (deciding the appropriate
material, equipment or accuracy of the measuring devices and techniques to be used).
For example, in Figure 8, it may be seen that the necrotic core experiment requires less
accuracy in the measurement of the cell profile in the central part of the chamber for param-
eter estimation, while the pseudopalisade experiment requires a measurement technique
able to detect extremely low alive cell concentrations. It can also be observed that the
appearance of significant alive cells at the right side of the chamber in the pseudopalisade
experiment would not be explained by the model parameter variability, but rather by a
model limitation.

The probabilistic knowledge of the model can be further exploited in experimental
planning and design by using BED theory. In the analysis performed in this work, there
are several aspects important to remark. All graphics showing the utility function are
symmetric with respect to the line Ol = Or. This is coherent with the symmetrical config-
uration of the experimental set-up (geometry and properties). The utility value should
therefore not be modified by flipping the boundary conditions. Besides, it can be seen that
the level curves belonging to DO2 and αa have similar shapes. This is due to the correlation
between parameters, as it can be observed from the Kendall correlation coefficient τ for
each pair of variables (Figure 6b). The coefficient corresponding to DO2 and αa is high and,
consequently, they are strongly correlated, so the experiments needed to characterize the
value of one of them are similar to the ones needed to characterize the other.

Iso-utility curves give us a picture that may be interpreted biologically and is coherent
with the different phenomena occurring in the microfluidic device. However, the coupling
between them makes this interpretation difficult. In this work, the utility has been com-
puted for four different initial cell concentrations, ranging from a low concentration C0 =
1× 106 cell/mL to the chip saturation concentration C0 = CM = 5× 107 cell/mL. The max-
imum utility is always reached for the highest initial concentration (5× 107 cell/mL).

A summary of the analysis is presented in Table 4, where the best experimental config-
uration is presented for each of the parameters’ calibration, together with the maximum
utility value.
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Table 4. Most useful experimental configuration for each of the parameters’ evaluation.

Parameters to Be
Estimated

Upper O2 Concentration
[mmHg]

Lower O2 Concentration
[mmHg]

Maximum
Utility Value

DO2 7 0 1.58

αa 5 2 1.53

(DO2 , αa) 5 1 2.58

τa 7 0 0.07

τad 7 0 1.29

(τa, τad) 7 0 1.63

Da 8 0 0.51

Ka 7 1 0.35

(Da, Ka) 8 0 0.49

For the analyzed family of experiments, the most useful experiments are always the
ones performed for high concentrated cell cultures. As most phenomena are related to cell
concentrations, the higher the concentration, the more quantifiable the different biological
mechanisms. Besides, it results clear that configurations with oxygen gradient are more
useful for accurately characterizing the parameters related to oxygen (DO2 , αa) and cell
migration (Da, Ka), when the other parameters are assumed to be known. However, this
gradient has to be moderate to avoid regions of total normoxia or total anoxia. When
the aim is to perfectly discriminate between their effects, softer gradients are generally
preferred (Figure 9c, Table 4). Finally, for high initial cell concentrations, growth and
death parameters are also well characterized under gradient conditions: we need to
induce localized hypoxic conditions in order to evaluate growth under saturation capacity
and death.

6. Conclusions

Mathematical modeling of complex cell processes is very challenging due to its in-
trinsic non-linearity, highly-coupled multiphysic interactions, and the many correlated
parameters which are difficult to measure or simply unknown. These parameters are most
times obtained for a particular problem under specific conditions, leading in many cases to
conclusions, directly derived from the modeling assumptions and therefore providing little
new information. Also, they are difficult to generalize.

As a result, a proper and extensive parametric analysis is mandatory. This should
include an extensive and detailed study of the values reported in the bibliography, a careful
sensitivity analysis and a sufficient number of different experiments, not only for calibration
but also for validation, avoiding parameter overfitting.

This analysis, although it allows the identification of the optimal set of parameters,
is most times difficult to extend to other problems with reasonable accuracy and therefore
with a certain validation of its actual physical character and its value range. It is also
difficult to discriminate between correlated parameters associated to mechanisms that
cannot be isolated in the experiments. Hence, we need additional information both to
get a better discrimination between them, and to identify the optimal conditions for
additional experiments to provide the maximum information possible in order to get
such discrimination.

We have proved here that copulas are a simple and powerful tool to detect and
improve highly-correlated multiparametric mathematical models such as those appearing
in Biology, with the added value of providing key information for the optimal design of new
experiments with the highest information possible for the problem in hands, thus reducing
time and cost not only in our in vitro experiments but also in scarce and costly in vivo cases.
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