On some \mathcal{D}-modules in dimension 2

Francisco Jesús Castro Jiménez, José María Ucha Enríquez** Facultad de Matemáticas. Apdo. 1160. E-41080 SEVILLA (SPAIN) castro@cica.es; ucha@algebra.us.es

June 30, 2000

Abstract

We prove a duality formula for two \mathcal{D}-modules arising from logarithmic derivations w.r.t. a plane curve. As an application we give a differential proof of a logarithmic comparison theorem in (4).

Keywords: \mathcal{D}-modules, Differential Operators, Gröbner Bases, Logarithmic Comparison Theorem.

Math. Classification: 32C38, 13N10, 14F40, 13P10.

1 Introduction

Let $\mathcal{O}=\mathbf{C}\{x, y\}$ be the ring of convergent power series in two variables and \mathcal{D} the ring of linear differential operators with coefficients in \mathcal{O}. For each reduced power series $f \in \mathcal{O}$, with $f(0,0)=0$, we will denote by $I^{\text {log }}$ the left ideal of \mathcal{D} generated by the logarithmic derivations (see [11]) with respect to f. We denote by $\operatorname{Der}_{\mathbf{C}}(\mathcal{O})$ the Lie algebra of \mathbf{C}-derivations on \mathcal{O}. Recall that a derivation $\delta \in \operatorname{Der}_{\mathbf{C}}(\mathcal{O})$ is logarithmic if there exists $a \in \mathcal{O}$ such that $\delta(f)=a f$. We denote by $\widetilde{I}^{l o g}$ the left ideal of \mathcal{D} generated by the operators of the form $\delta+a$ where $\delta(f)=a f$.

We first prove that the \mathcal{D}-modules $M^{l o g}=\mathcal{D} / I^{\log }$ and $\widetilde{M}^{l o g}=\mathcal{D} / \widetilde{I}^{l o g}$ are dual each to the other and then that both \mathcal{D}-modules are regular holonomic 2.3 .

Let $\mathcal{O}[1 / f]$ be the \mathcal{D}-module of (the germs of) the meromorphic functions in two variables with poles along f. There exists a natural surjective

[^0]morphism $\psi: \widetilde{M}^{\text {log }} \rightarrow \mathcal{O}[1 / f]$. Using [4] we prove that $\operatorname{Ext}_{\mathcal{D}}^{2}\left(\widetilde{M}^{\text {log }}, \mathcal{O}\right)=0$ if and only if f is quasi-homogeneous and then we obtain that the morphism ψ is an isomorphism if and only if f is quasi-homogeneous (see 2.5). As a consequence we give a new "differential" proof of the logarithmic comparison theorem of [4].

These results are susceptible to be generalized to the case of higher dimensions but no general results are known up to now. See [6] for a proof of the duality formula in higher dimension. Nevertheless we give a complete example showing that some results of the present work are true in dimension 3.

We wish to thank Prof. L. Narváez for giving us useful suggestions.

2 The module $\widetilde{M}^{\text {log }}$ in the general case.

Let us consider any reduced $f \in \mathcal{O}=\mathbf{C}\{x, y\}$ with a singular point at the origin. It is possible to obtain, from the logarithmic derivations, an ideal inside $A n n_{\mathcal{D}}(1 / f)$: if $\delta(f)=a f$ then $\delta+a \in A n n_{\mathcal{D}}(1 / f)$. This fact suggested us a general way to present the annihilating ideal of $1 / f$ for a constructive proof of the equality $\operatorname{Ext}_{\mathcal{D}}^{2}(\mathcal{O}[1 / f], \mathcal{O})=0$ for any "polynomial" curve (see (14]).

We have $\widetilde{I}^{\log } \subset A n n_{\mathcal{D}}(1 / f)$, where $\widetilde{I}^{\log }$ is the left ideal in \mathcal{D} generated by the operators $\delta+a$ for $\delta \in \operatorname{Der}_{\mathbf{C}}(\mathcal{O})$ and $\delta(f)=a f$. Then we have a surjective morphism $\psi: \widetilde{M}^{\log }=\frac{\mathcal{D}}{\bar{I}^{\log }} \longrightarrow \mathcal{D} / \mathcal{D} A n n_{\mathcal{D}}(1 / f) \simeq \mathcal{O}[1 / f]$ (for the last isomorphism we use that the Bernstein polynomial of f has no integer roots smaller than -1 (see [15)). It is well known that around each smooth point of $f=0$ the morphism ψ is in fact an isomorphism. So, the kernel K of ψ is a \mathcal{D}-module concentrated at the origin. Then K is a direct sum of "couches-multiples" modules [B], and this type of modules are regular holonomic [9]. In particular $\widetilde{M}^{\log }$ is regular holonomic because $\mathcal{O}\left[\frac{1}{f}\right]$ and K are.
We will denote by $\operatorname{Der}(\log f)$ the Lie algebra of logarithmic derivations with respect to f. By [11 $\operatorname{Der}(\log f)$ is a free \mathcal{O}-module of rank two. Let $\left\{\delta_{1}, \delta_{2}\right\}$ be a basis of $\operatorname{Der}(\log f)$,

$$
\left\{\begin{array}{l}
\delta_{1}=b_{1} \partial_{x}+c_{1} \partial_{y} \\
\delta_{2}=b_{2} \partial_{x}+c_{2} \partial_{y}
\end{array} .\right.
$$

We can suppose that

$$
\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right|=f
$$

We will take into account the following results for any (reduced) curve f :

- Every basis δ_{1}, δ_{2} of $\operatorname{Der}(\log f)$ verifies that

$$
\left\langle\sigma\left(\delta_{1}\right), \sigma\left(\delta_{2}\right)\right\rangle=\operatorname{gr}^{F}\left(I^{l o g}\right)=\operatorname{gr}^{F}\left(\tilde{I}^{l o g}\right)
$$

because $\left\{\sigma\left(\delta_{1}\right), \sigma\left(\delta_{2}\right)\right\}$ is a regular sequence (see [2] and ([3], Corollary 4.2.2)). Here $\sigma(\cdot)$ denotes the principal symbol of the corresponding operator and $\mathrm{gr}^{F}\left(I^{l o g}\right)$ is the graded ideal associated to the order filtration on \mathcal{D}. Therefore,

$$
C C h\left(\widetilde{M}^{l o g}\right)=C C h\left(M^{l o g}\right),
$$

where $C C h()$ represents the characteristic cycle of the \mathcal{D}-module (see, for example, [7]). Of course both $M^{l o g}$ and $\widetilde{M}^{l o g}$ define coherent \mathcal{D} modules in some neighborhood of the origin and then we can properly speak of characteristic varieties and characteristic cycles. Since $\widetilde{M}^{l o g}$ is holonomic then $M^{l o g}$ is holonomic.

- For any curve,

$$
\operatorname{Sol}\left(M^{\log }\right) \stackrel{\text { q.i. }}{\sim} \Omega^{\bullet}(\log f) \xrightarrow{\varphi} \Omega^{\bullet}[1 / f] \simeq D R(\mathcal{O}[1 / f]),
$$

where $\operatorname{Sol}()$ and $D R()$ are the solutions complex and the De Rham complex (see, for example, [9]) and where $\Omega^{\bullet}(\log f)\left(\right.$ resp. $\left.\Omega^{\bullet}([1 / f])\right)$ is the complex of logarithmic differential forms (resp. meromorphic differential forms). The first quasi-isomorphism appears in [3] and φ is the natural morphism.

Proposition 2.1 Let f be a (reduced) curve and let $\left\{\delta_{1}, \delta_{2}\right\}$ be a basis of $\operatorname{Der}(\log f)$ with $\left[\delta_{1}, \delta_{2}\right]=\alpha_{1} \delta_{1}+\alpha_{2} \delta_{2}$ and $\delta_{i}(f)=a_{i} f, i=1,2$. Then

$$
\mathcal{D}\left\{\delta_{2}^{t}+\alpha_{1}, \delta_{1}^{t}-\alpha_{2}\right\}=\mathcal{D}\left\{\delta_{1}+a_{1}, \delta_{2}+a_{2}\right\}
$$

where δ_{i}^{t} is the transposed of δ_{i}.

Proof: First we find an expression of the α_{i} from the a_{j}, b_{k}, c_{l} :

$$
\begin{gathered}
{\left[\delta_{1}, \delta_{2}\right]=\alpha_{1}\left(b_{1} \partial_{x}+c_{1} \partial_{y}\right)+\alpha_{2}\left(b_{2} \partial_{x}+c_{2} \partial_{y}\right)=} \\
=\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) \partial_{x}+\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right) \partial_{y}= \\
=b_{1} \partial_{x}\left(b_{2}\right) \partial_{x}-b_{2} \partial_{x}\left(b_{1}\right) \partial_{x}+b_{1} \partial_{x}\left(c_{2}\right) \partial_{y}-c_{2} \partial_{y}\left(b_{1}\right) \partial_{x}+ \\
+c_{1} \partial_{y}\left(b_{2}\right) \partial_{x}-b_{2} \partial_{x}\left(c_{1}\right) \partial_{y}+c_{1} \partial_{y}\left(c_{2}\right) \partial_{y}-c_{2} \partial_{y}\left(c_{1}\right) \partial_{y}= \\
=\left(c_{1} \partial_{y}\left(b_{2}\right)-b_{2} \partial_{x}\left(b_{1}\right)-c_{2} \partial_{y}\left(b_{1}\right)+c_{1} \partial_{y}\left(b_{2}\right)\right) \partial_{x}+ \\
+\left(b_{1} \partial_{x}\left(c_{2}\right)-b_{2} \partial_{x}\left(c_{1}\right)-c_{2} \partial_{y}\left(c_{1}\right)+c_{1} \partial_{y}\left(c_{2}\right)\right) \partial_{y} .
\end{gathered}
$$

Besides,

$$
-\delta_{1}^{t}+\alpha_{2}=\partial_{x} b_{1}+\partial_{y} c_{1}+\alpha_{2}=\delta_{1}+\alpha_{2}+\partial_{x}\left(b_{1}\right)+\partial_{y}\left(c_{1}\right)
$$

To prove that $\alpha_{2}+\partial_{x}\left(b_{1}\right)+\partial_{y}\left(c_{1}\right)=a_{1}$, we will establish that

$$
\alpha_{2} f=a_{1} f-\partial_{x}\left(b_{1}\right) f-\partial_{y}\left(c_{1}\right) f
$$

We have

$$
\begin{gathered}
a_{1} f-\partial_{x}\left(b_{1}\right) f-\partial_{y}\left(c_{1}\right) f= \\
\left.=\left(b_{1} \partial_{x}+c_{1} \partial_{y}\right)-\partial_{x}\left(b_{1}\right)-\partial_{y}\left(c_{1}\right)\right)\left(b_{1} c_{2}-b_{2} c_{1}\right)= \\
=b_{1}\left(b_{1} \partial_{x}\left(c_{2}\right)-c_{1} \partial_{x}\left(b_{2}\right)-b_{2} \partial_{x}\left(c_{1}\right)\right)+ \\
+c_{1}\left(c_{2} \partial_{y}\left(b_{1}\right)+b_{1} \partial_{y}\left(c_{2}\right)-c_{1} \partial_{y}\left(b_{2}\right)\right)+ \\
+b_{2} c_{1} \partial_{x}\left(b_{1}\right)-b_{1} c_{2} \partial_{y}\left(c_{1}\right) .
\end{gathered}
$$

Therefore

$$
\left(\alpha_{1}, \alpha_{2}\right)\left(\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right)=\left(\gamma_{1}, \gamma_{2}\right)
$$

where

$$
\begin{aligned}
& \gamma_{1}=c_{1} \partial_{y}\left(b_{2}\right)-b_{2} \partial_{x}\left(b_{1}\right)-c_{2} \partial_{y}\left(b_{1}\right)+c_{1} \partial_{y}\left(b_{2}\right) \\
& \left.\gamma_{2}=b_{1} \partial_{x}\left(c_{2}\right)-b_{2} \partial_{x}\left(c_{1}\right)-c_{2} \partial_{y}\left(c_{1}\right)+c_{1} \partial_{y}\left(c_{2}\right)\right)
\end{aligned}
$$

Multiplying by the transposed adjoint matrix and by f we obtain

$$
\left(\alpha_{1} f, \alpha_{2} f\right)=\left(\gamma_{1}, \gamma_{2}\right)\left(\begin{array}{cc}
c_{2} & -c_{1} \\
-b_{2} & b_{1}
\end{array}\right)
$$

and hence the equality follows. In a similar way $\delta_{2}^{t}+\alpha_{1}=-\delta_{2}-a_{2}$. Then both ideals are equal. []

Prof. Narváez pointed us to consider, instead of the Lie algebra $\operatorname{Der}(\log f)$, the Lie algebra

$$
L=\{\delta+a \mid \delta(f)=a f\}
$$

and try to construct of a free resolution (of "Spencer type") of $\widetilde{M}^{\log }([2]$, [3] $)$. In fact, we have

Proposition 2.2 A free resolution of $\widetilde{M}^{\text {log }}$ is

$$
0 \longrightarrow \mathcal{D} \xrightarrow{\phi_{2}} \mathcal{D}^{2} \xrightarrow{\phi_{1}} \mathcal{D} \longrightarrow \widetilde{M}^{\log } \longrightarrow 0
$$

where ϕ_{2} is defined by the matrix

$$
\left(-\delta_{2}-a_{2}-\alpha_{1}, \delta_{1}+a_{1}-\alpha_{2}\right)
$$

and ϕ_{1} by $\binom{\delta_{1}+a_{1}}{\delta_{2}+a_{2}}$.
Proof: To check the exactness of the resolution above, it is enough to consider a discrete filtration on that complex and to verify the exactness of the resulting resolution (see [1], chapter 2, lemma 3.13). The same argument is used in [2], [3] (proposition 4.1.3) to prove that the complex $\mathcal{D} \otimes_{\mathcal{V}_{0}^{f}(\mathcal{D})} S p^{\bullet}(\log f)$ is a free resolution of $M^{\log }$ (as a left \mathcal{D}-module) \rrbracket. But, for $n=2$, the exact graded complex in the proof of [3] is precisely

$$
0 \longrightarrow \operatorname{gr}^{F}(\mathcal{D}) \xrightarrow{M_{1}} \operatorname{gr}^{F}(\mathcal{D})^{2}[-2] \xrightarrow{M_{2}} \operatorname{gr}^{F}(\mathcal{D})[-1] \longrightarrow \operatorname{gr}^{F}\left(M^{\log }\right) \longrightarrow 0,
$$

where the matrices are

$$
M_{1}=\left(-\sigma^{F}\left(\delta_{2}\right), \sigma^{F}\left(\delta_{1}\right)\right), \quad M_{2}=\binom{\sigma^{F}\left(\delta_{1}\right)}{\sigma^{F}\left(\delta_{2}\right)}
$$

And the last complex is the result of applying the same graduation to the resolution of $\widetilde{M}^{\text {log }}$ too, because

$$
\sigma^{F}\left(\delta_{i}\right)=\sigma^{F}\left(\delta_{i}+a_{i}\right)
$$

!

[^1]Proposition 2.3 Given $f \in \mathbf{C}\{x, y\}, \widetilde{M}^{\log } \simeq\left(M^{l o g}\right)^{\star}$ where ()* is the dual in the sense of \mathcal{D}-modules. In particular $\widetilde{M}^{\log }$ and $M^{l o g}$ are regular \mathcal{D}-modules.

Proof: We take the free resolution of $M^{\log }$ (see [2], ([䦽, Th. 3.1.2])

$$
0 \longrightarrow \mathcal{D} \xrightarrow{\psi_{2}} \mathcal{D}^{2} \xrightarrow{\psi_{1}} \mathcal{D} \longrightarrow M^{\log } \longrightarrow 0,
$$

where $\left\{\delta_{1}, \delta_{2}\right\}$ is a basis of the \mathcal{O}-module $\operatorname{Der}(\log f)$, where

$$
\begin{gathered}
{\left[\delta_{1}, \delta_{2}\right]=\alpha_{1} \delta_{1}+\alpha_{2} \delta_{2},} \\
\psi_{1}=\binom{\delta_{1}}{\delta_{2}}
\end{gathered}
$$

and, on the other hand, ψ_{2} is the syzygy matrix

$$
\psi_{2}=\left(-\delta_{2}-\alpha_{1}, \delta_{1}-\alpha_{2}\right)
$$

Applying the $\operatorname{Hom}_{\mathcal{D}}(-, \mathcal{D})$ functor to calculate the dual module, we obtain the sequence

$$
0 \longrightarrow \mathcal{D} \xrightarrow{\psi_{1}^{*}} \mathcal{D}^{2} \xrightarrow{\psi_{2}^{*}} \mathcal{D} \longrightarrow 0,
$$

where ψ_{2}^{*} is the right product by $\binom{-\delta_{2}-\alpha_{1}}{\delta_{1}-\alpha_{2}}$. Hence, $\left(M^{l o g}\right)^{\star}$ is the left \mathcal{D}-module associated to the right \mathcal{D}-module $\mathcal{D} /\left(\delta_{2}+\alpha_{1}, \delta_{1}-\alpha_{2}\right) \mathcal{D}$, that is to say,

$$
\left(M^{l o g}\right)^{\star} \simeq \mathcal{D} / \mathcal{D}\left(\delta_{2}^{t}+\alpha_{1}, \delta_{1}^{t}-\alpha_{2}\right)
$$

Using the proposition 2.1, we deduce that $\left(M^{l o g}\right)^{\star} \simeq \widetilde{M}^{\text {log }}$. The regularity of $M^{\log }$ follows from the regularity of $\widetilde{M}^{\log }$ (c.f. [9]).]

Proposition 2.4 If f is a non quasi homogeneous (reduced) curve, then

$$
\operatorname{Ext}_{\mathcal{D}}^{2}\left(\widetilde{M}^{\log }, \mathcal{O}\right) \neq 0
$$

Proof: The proof of this result contains, as an essential ingredient, a rereading of the demonstration of Theorem 3.7 of [7]. As a matter of fact, we include some tricks of this demonstration.

By proposition 2.2, a free resolution of $\widetilde{M}^{l o g}$ is

$$
0 \longrightarrow \mathcal{D} \xrightarrow{\phi_{2}} \mathcal{D}^{2} \xrightarrow{\phi_{1}} \mathcal{D} \longrightarrow \widetilde{M}^{\log } \longrightarrow 0
$$

where ϕ_{2} is the matrix

$$
\left(-\delta_{2}-a_{2}-\alpha_{1}, \delta_{1}+a_{1}-\alpha_{2}\right)
$$

Hence, $\operatorname{Ext}_{\mathcal{D}}^{2}\left(\widetilde{M}^{\log }, \mathcal{O}\right) \simeq \mathcal{O} / \operatorname{Img} \phi_{2}^{*}$. To guarantee that this vector space has dimension greater than zero, it is enough to show that a pair of functions $h_{1}, h_{2} \in \mathcal{O}$ such that

$$
\left.\left(-\delta_{2}-a_{2}-\alpha_{1}, \delta_{1}+a_{1}-\alpha_{2}\right) \quad \begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right)=1
$$

does not exist, that is to say, that $1 \notin \operatorname{Img} \phi_{2}^{*}$.
Let us take $\delta_{1}=b_{1} \partial_{x}+c_{1} \partial_{y}$. As $a_{1}-\alpha_{2}=\partial_{x}\left(b_{1}\right)+\partial_{y}\left(c_{1}\right)$, (proposition 2.1) we will prove that, or b_{1} and c_{1} have no lineal parts, or that after derivation those lineal parts become 0 .

Of course f has no quadratic part: in that case, because of the classification of the singularities in two variables, f would be equivalent to a quasi homogeneous curve $x^{2}+y^{k+1}$, for some k. Then we can suppose that

$$
f=f_{n}+f_{n+1}+\cdots=\sum_{k \geq n} h_{k}=\sum_{k \geq n} \sum_{i+j=k} a_{i j} x^{i} y^{j}
$$

where $n \geq 3$ and $f_{n} \neq 0$.
We will write

$$
\delta_{1}=b_{1} \partial_{x}+c_{1} \partial_{y}=\delta_{0}^{1}+\delta_{1}^{1}+\cdots=\sum_{k \geq 0} \sum_{i+j=k+1}\left(\beta_{i j}^{1} x^{i} y^{j} \partial_{x}+\gamma_{i j}^{1} x^{i} y^{j} \partial_{y}\right)
$$

where the linear part δ_{0}^{1} is $(x y) A_{0}\left(\partial_{x} \partial_{y}\right)^{t}$, and A_{0} is a matrix 2×2 with complex coefficients.

If $A_{0}=0$, we have finished. Otherwise, the possibilities of the Jordan form of A_{0} are

$$
\left.\left.A_{0}=\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \quad A_{0}=\begin{array}{cc}
\lambda_{1} & 0 \\
1 & \lambda_{1}
\end{array}\right)
$$

As δ_{1} is not an Euler vector (because f is not quasi homogeneous), we deduce:

- If we take the first Jordan form, then (see the cited demonstration of [4]) $f_{n}=x^{p} y^{q}$ y $\delta_{0}=q x \partial_{x}-p y \partial_{y}$. After a sequence of changes of coordinates we have that $f=x^{p} y^{q}$ with $p+q=n \geq 3$, that contradicts that f is reduced.
- For the second Jordan form with $\lambda_{1} \neq 0$, it has to be $f_{n}=0$, that contradicts that f has its initial part of grade n.
- For the second option with $\lambda_{1}=0$ we have $\delta_{0}^{1}=y \partial_{x}$ and, in this situation, the linear of b_{1} is y. If we precisely apply ∂_{x}, we obtain 0 .

In a similar way, you prove the same for $a_{2}+\alpha_{1}$. $]$

Theorem 2.5 The natural morphism $\widetilde{M}^{\log } \xrightarrow{\psi} \mathcal{O}\left[\frac{1}{f}\right]$ is an isomorphism if and only if f is a quasi homogeneous (reduced) curve.

Proof: As we pointed, if f is quasi homogeneous then $\widetilde{I}^{l o g}=A n n_{\mathcal{D}}(1 / f)$ and therefore ψ is an isomorphism. Reciprocally, if ψ is an isomorphism, then $\operatorname{Ext}_{\mathcal{D}}^{2}(\mathcal{O}[1 / f], \mathcal{O}) \simeq \operatorname{Ext}_{\mathcal{D}}^{2}\left(\widetilde{M}^{\text {log }}, \mathcal{O}\right)$. Because of a result of [9], we have $\operatorname{Ext}_{\mathcal{D}}^{2}(\mathcal{O}[1 / f], \mathcal{O})=0$ and, if we take into account proposition 2.4, we obtain that f has to be quasi homogeneous. []

Remark.- The following result can be obtain using [13]: if f is not quasihomogeneous curve then $A n n_{\mathcal{D}}(1 / f)$ could not be generated by elements of degree one in ∂ and then $A n n_{\mathcal{D}}(1 / f) \neq \widetilde{I}^{l o g}$.

Let us give a new "differential" proof of a version of the Logarithmic Comparison Theorem (4).

Theorem 2.6 The complexes $\Omega^{\bullet}(\log f)$ and $\Omega^{\bullet}[1 / f]$ are isomorphic in the correspondent derived category if and only if f is quasi homogeneous.

Proof: If f is quasi homogeneous we have pointed yet that $\widetilde{M}^{l o g}$ is isomorphic to $\mathcal{O}\left[\frac{1}{f}\right]$. By the proposition $2.3\left(M^{l o g}\right)^{\star} \simeq \widetilde{M}^{\log }$ and then we have

$$
\Omega^{\bullet}(\log f) \simeq \operatorname{Sol}\left(M^{l o g}\right) \simeq D R\left(\left(M^{l o g}\right)^{\star}\right) \simeq D R\left(\widetilde{M}^{l o g}\right) \simeq \Omega^{\bullet}[1 / f],
$$

where the first isomorphism is obtained in [2] (see also [3]) and the second one could be found in (97. Reciprocally, if f is not quasi homogeneous then
$\widetilde{M}^{\log } \not \not \mathcal{\mathcal { O }}[1 / f]$ and, as both are regular holonomic, neither their De Rham complexes are isomorphic, that is

$$
D R\left(\widetilde{M}^{l o g}\right) \nsucceq \Omega^{\bullet}[1 / f],
$$

using the Riemann-Hilbert correspondence of Mebkhout-Kashiwara. []

3 Example in a constructive way of logarithmic comparison in surfaces.

We illustrate in this section an interesting example in dimension 3 of the situation presented in theorem 2.6 for curves. We consider the surface (see (2]) $h=0$ with

$$
h=x y(x+y)(x z+y),
$$

which is not locally quasi-homogeneous. We prove that:

- $A n n_{\mathcal{D}}(1 / h)=\widetilde{I}^{l o g}$.
- $\widetilde{M}^{\log } \simeq\left(M^{l o g}\right)^{\star}$
and we conclude the logarithmic comparison theorem holds in this case. Although this example appears in [目, here the treatment is under an effective point of view.

We can compute a basis of Der $(\log h)$ with a set of generators of the syzygies among $h, \frac{\partial h}{\partial_{x}}, \frac{\partial h}{\partial_{y}}, \frac{\partial h}{\partial_{z}}$. We obtain

- $\delta_{1}=x \partial_{x}+y \partial_{y}$,
- $\delta_{2}=x z \partial_{z}+y \partial_{z}$,
- $\delta_{3}=x^{2} \partial_{x}-y^{2} \partial_{y}-x z \partial_{z}-y z \partial_{z}$,
with

$$
\delta_{1}(h)=4 h, \quad \delta_{2}(h)=x h, \quad \delta_{3}(h)=(2 x-3 y) h,
$$

and

$$
\left|\begin{array}{ccc}
x & y & 0 \\
0 & 0 & x z+y \\
x^{2} & -y^{2} & -x z-y z
\end{array}\right|=h .
$$

As a multiple of the b-function of h in \mathcal{D} is

$$
b(s)=(4 s+5)(2 s+1)(4 s+3)(s+1)^{3},
$$

and this polynomial has no integer roots smaller than -1 , we can assure that

$$
\mathcal{O}[* h] \simeq \mathcal{D} \frac{1}{h} .
$$

It is easy to check that $\operatorname{Ann}_{\mathcal{D}}(1 / h)$ is equal to $\widetilde{I}^{\text {log }}$. The computations of the b-function and the annihilating ideal of h^{s} have been made using the algorithms of [10], implemented in [12].

We calculate (using Gröbner bases) a free resolution of the module $\mathcal{D} / I^{\text {log }}$ where $I^{\log }=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ (see [$\left[\begin{array}{l}\text {] }\end{array}\right)$. The first module of syzygies is generated (in this case) by the relations deduced from the expressions of the $\left[\delta_{i}, \delta_{j}\right]$ with $i \neq j$:

- $\left[\delta_{1}, \delta_{2}\right]=\delta_{2}$,
- $\left[\delta_{1}, \delta_{3}\right]=\delta_{3}$,
- $\left[\delta_{2}, \delta_{3}\right]=-x \delta_{2}$.

The second module of syzygies is generated by only one element $\mathbf{s}=\left(s_{1}, s_{2}, s_{3}\right)$:

- $s_{1}=-y^{2} \partial_{y}+x^{2} \partial_{x}-z y \partial_{z}-z x \partial_{z}-x$,
- $s_{2}=-y \partial_{z}-x z \partial_{z}$,
- $s_{3}=y \partial_{y}+x \partial_{x}-2$.

The above calculations provide a free resolution of $M^{l o g}$. With a procedure similar to the used in 2.3 we obtain that $\left(M^{l o g}\right)^{\star}$ is the left \mathcal{D}-module associated to the right \mathcal{D}-module $\mathcal{D} /\left(s_{1}, s_{2}, s_{3}\right) \mathcal{D}$. Then

$$
\left(M^{l o g}\right)^{\star} \simeq \mathcal{D} /\left(s_{1}^{t}, s_{2}^{t}, s_{3}^{t}\right)
$$

It is enough to compute $s_{1}^{t}, s_{2}^{t}, s_{3}^{t}$ and check (using Gröbner basis) that they span $\widetilde{I}^{\log }$. Hence

$$
\left(M^{l o g}\right)^{\star}=\left(\mathcal{D} / \operatorname{Der}(\log (h))^{\star} \simeq \mathcal{D} / \widetilde{I}^{\log }=\widetilde{M}^{\log }\right.
$$

At this point we have obtained that

$$
\operatorname{Sol}\left(M^{l o g}\right) \simeq D R\left(\left(M^{l o g}\right)^{\star}\right) \simeq D R\left(\widetilde{M}^{l o g}\right) \simeq \Omega^{\bullet}[1 / h]
$$

where the last two isomorphism are due to our computations (the first was used in the proof of 2.6). Taking into account that $\Omega^{\bullet}(\log h) \simeq \operatorname{Sol}\left(M^{\log }\right)$ (it was showed for this example in [2], [3]) we can deduce that the logarithmic comparison theorem (i.e. $\left.\Omega^{\bullet}(\log h) \simeq \Omega^{\bullet}[1 / h],[4]\right)$ holds without the "locally quasi homogeneous" hypothesis. It is interesting to remark too (see [2]) that $\left\{\sigma^{F}\left(\delta_{1}\right), \sigma^{F}\left(\delta_{2}\right), \sigma^{F}\left(\delta_{3}\right)\right\}$ do not form a regular sequence in $\operatorname{gr}^{F}(\mathcal{D})$. We have $z \eta \zeta-\xi \zeta \notin\left\langle\sigma^{F}\left(\delta_{1}\right), \sigma^{F}\left(\delta_{2}\right)\right\rangle$ and

$$
(z \eta \zeta-\xi \zeta) \sigma^{F}\left(\delta_{3}\right) \in\left\langle\sigma^{F}\left(\delta_{1}\right), \sigma^{F}\left(\delta_{2}\right)\right\rangle
$$

References

[1] Björk, J-E. Rings of Differential Operators. North-Holland, Amsterdam 1979.
[2] Calderón-Moreno, F.J. Operadores diferenciales logarítmicos con respecto a un divisor libre. Ph.D. Thesis. June 1997.
[3] Calderón-Moreno, F.J. Logarithmic Differential Operators and Logarithmic De Rham Complexes relative to a Free Divisor. Ann. Sci. E.N.S., 4^{e} série, t. 32, 1999, p. 701-714.
[4] Calderón-Moreno F.J., D. Mond, L. Narváez-Macarro and F.J. CastroJiménez. Logarithmic Cohomology of the Complement of a Plane Curve. Preprint, University of Warwick, 3/1999.
[5] Castro, F. Thèse de 3ème cycle. Université Paris VII, 1984.
[6] Castro-Jiménez, F.J., Ucha-Enríquez, J.M. A duality formula for \mathcal{D} modules. Preprint
[7] Granger, J.M. and P. Maisonobe. A basic course on differential modules. Travaux en Cours 45, Hermann. Paris 1993.
[8] Kashiwara, M. On the Maximally Overdetermined Systems of Linear Differential Equations, I. Publ. RIMS, Kyoto Univ. 10:536-579, (1997).
[9] Mebkhout, Z. Le formalisme des six opérations de Grothendieck pour les \mathcal{D}_{X}-modules cohérents. Travaux en cours, volume 35. Hermann, Paris 1989.
[10] Oaku, T. Algorithms for the b-function and \mathcal{D}-modules associated with a polynomial. Journal of Pure and Applied Algebra, 117 \& 118:495-518, 1997.
[11] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac Sci. Univ. Tokyo 27:256-291, 1980.
[12] Takayama, N. Kan: a system for computation in Algebraic Analysis. Source code available for Unix computers from 'ftp.math.kobe-u.ac.jp', 1991.
[13] Torrelli, T. Équations fonctionelles pour une fontion sur une intersection complète quasi homogène à singularité isolée. C.R. Acad. Sci. Paris T. 330, Série I, pp:577-580 (2000).
[14] Ucha-Enríquez, J.M. Métodos constructivos en álgebras de operadores diferenciales Ph.D. Thesis, Sept.1999.
[15] Varchenko, A.N. Asymptotic mixed Hodge structure in vanishing cohomologies. Math. USSR Izvestija 18:3 (1982), 469-512.

[^0]: *Both authors partially supported by DGESIC-PB97-0723 and by A.I. HF1998-0105

[^1]: ${ }^{1}$ Here $S p^{\bullet}(\log f)$ is the Logarithmic Spencer complex and $\mathcal{V}_{(}^{f}(\mathcal{D})$ is the ring of degree zero differential operators w.r.t. \mathcal{V}-filtration relative to f. See [2], (3], section 1.2.

