
Copyright © IF AC Distributed Computer Control Systems,
Coma, Italy, 1998

COMMUNICATING MMS EVENTS IN A
DISTRIBUTED MANUFACTURING SYSTEM

USING CORBA

T. Ariza' F .R. Rubio·

• Departamento de Ingenieria de Sistemas y A utomatica,
Universidad de Se villa, Escuela Superior de Ingenieros,

Gamino de Los Descubrimientos sin. E-41092 Sevilla, Spain.
Phone: +34 95 446 7364· Fax: +34 95448 73 85.

E-mail: matere@trajano.us.es

Abstract: Nowadays , distributed computing systems are widely used due to the
great advances that have been achieved in computer networks in the past few years,
and partly due to their low cost. Developing software for these systems turns out to be
complicated, mainly due to the heterogeneity of the distributed system components
and the underground communication layers. MMS is a suitable language to carry out
the communication between devices in a heterogeneous manufacturing system because
it provides uniformity in the access to them. This work proposes the use of the ORB
specified in CORBA from the OMG to communicate MMS events.
Copyright © 1998 IFAC

Keywords: Distributed models, Object-Oriented programming, Communication
protocols, Events, Manufacturing Systems.

1. INTRODUCTION

Distributed systems have obtained great impor­
tance in the past few years. They have been in­
troduced into a great diversity of environments
and explicitly in manufacturing systems. So that ,
where there were isolated components, there are
now integrated components in the distributed
computing system, where the communication and
cooperation between them is allowed.

This advantage is decreased due to the hetero­
geneity of the devices that can be found in the
manufacturing environments. Because of this, the
necessity of using a common protocol in order
to communicate these interconnected elements
arises. In addition to this, using services provided
by the protocol must be easy from the point of
view of the user application.

MMS is a communication protocol widely used
in manufacturing distributed systems. It is an
application layer protocol that homogenises the
use of the devices that compound the system.
MMS makes use of the object oriented approach
to specify the services that a user can invoke to
communicate with these devices .

149

On the other hand, distributed object method­
ologies, where CORBA is framed, provide all the
object oriented methodology advantages in dis­
tributed systems. CORBA can make the MMS
service user application to request the service
easier, as it allows to structure the system in
objects and at the same time to have these objects
distributed along the several components of the
system, making the distribution transparent to
the user.

Taking this into account , research has been un­
dertaken, but they do not deal with the event
communication, an important aspect of the MMS
protocol that allows to send event notifications to
and from manufacturing devices.

The objetive of this work is to propose CORBA
as the methodology used to communicate MMS
events in manufacturing environments . In the fol­
lowing sections, the aim of this paper will be pre­
sented , as well as a summary on the background
of it and the way to use CORBA in order to
communicate events.

2. AIM OF THE WORK

Taking into account the CORBA architecture,
that allows the split of the system in objects and
communication of these objects in an easy way
and taking into account the VMD event manage­
ment services, communicating MMS events and
carrying out service requests by means of CORBA
is proposed.

In this way, structuring the distributed system in
a set of objects that are communicated by means
of service requests is allowed. But this distribution
is transparent for the user because it is the Object
Bus that undertakes the responsibility to find the
several objects . And furthermore, it is used to
communicate MMS events to the several VMD's.

This work proposes to make available the MMS
services for the event management by means of the
CORBA Object Bus. These services are the ser­
vices specified in the MMS standard. The transla­
tion scheme of these services to CORBA IDL are
going to be studied.

The services for the event management in MMS
are divided in two groups: The services carried out
by the MMS server and the services carried out by
the MMS client.

This approach is used to communicate clients
to the several Virtual Manufacturing Devices by
means of the ORB, using the MMS interface for
events.

3. BACKGROUNDS

In order to understand the work carried out,
MMS, the event model and CORBA are going to
be briefly introduced.

3.1 MMS

In distributed heterogeneous systems , where each
device has different features, carries out different
tasks and is probably owned by a different manu­
facturer , the need to interconnect all devices that
compound the system rises in order to achieve the
integration of each one in the whole system.

It is possible to use two different focuses to allow
the devices to communicate:

• Using the tools and the languages provided
by the manufacturer for each device.

• Using a common language for all the devices .
This language must be independent to the
particular low level features.

The disadvantages of this first approach are evi­
dent:

150

• The specialised staff must learn the particu­
lar features of each device.

• The application depends on the device.
• It is difficult to debug and maintain applica-

tions for these systems.

The second approach does not have these prob­
lems, because of this , the engineer in charge of
developing applications that run in heterogeneous
systems only has to learn one language. Moreover,
the application will be independent to the device
and therefore easier to debug and maintain.

Manufacturing Message Specification (MMS) can
be used in this second approach. MMS is a com­
munication language to aid the interconnection of
devices in a heterogeneous environment. It is a
protocol that falls in the application level stan­
dardised by ISO (International Standard Organi­
sation) .

Although MMS is not a complete Object-Oriented
language, as it does not support all the features
of the Object-Oriented programming, it splits the
system in object and presents a well defined inter­
face for each one. The most important object in
the system is the Virtual Manufacturing Device
(VMD) . The VMD hides the real manufacturing
device to the programmer. The system is struc­
tured in a set of VMD.

MMS is also based on the client/server model.
The VMD acts as a server, and so carries out
a set of services that are described in the MMS
protocol. The clients are the requesters of the
services provided by the VMD.

A particular implementation of the MMS server
must provide the mapping between the VMD
model, which is an abstraction, and the function­
ality of the real manufacturing device.

(Real Device (Real Device

Fig. 1. System based on MMS.

The scheme of a system based on the communica­
tion protocol MMS is showed in figure 1.

Each MMS server manages a set of objects asso­
ciated to the VMD . Some of the most important
are the following:

• The Damain Object : It represents a subset
of the capabilities of the VMD which is used
for a specific purpose.

• The Program Invocation Object : It is a
dynamic element which most closely corre­
sponds to an execution thread in a multi­
tasking environment .

• The variable Object: It is used to model real
variables of the VMD.

Other important objects that are managed by the
VMD are events. These objects are explained in
the next section.

In order to handle these objects, the VMD pro­
vides a set of services for them.

A revision of MMS can be found in (Pimentel ,
1990; CCE-CNMA, 1995) and a complete descrip­
tion of all these services and the protocol specifi­
cation in (ISO/IEC. 9506-1, 1990; ISO/IEC. 9506-
2, 1990) .

3.2 MMS EVENTS

The event management services provide facilities
which allow a client MMS-user to define and
manage event objects at a VMD and to obtain
notifications of event occurrences.

The event management model extends the VMD
with three additional objects and services that
work in these objects. Each one of these objects
models a specific aspect of the state information
associated to the MMS event management. They
are briefly commented on in the following:

• The Event Condition Object :
The event management model defines two

classes of Event Condition object, Network­
triggered event condition object and Moni­
tored Event Condition object. The first one
models an event which occurs due to the
explicit request of a client using the Trig­
gerEvent service. Although it also models
events occurring internally, as a result of
autonomous VMD action. The second one
is a virtual representation of an aspect of
the activity of the VMD which represents a
significant occurrence in the processing of the
VMD. Either class of Event Condition object
includes the potential for VMD initiation of
EventNotification service executions.

• The Event Action Object :
It models the portion of the state informa­

tion which is concerned with the execution
of MMS services due to the occurrence of an
event. An Event Action is a confirmed MMS
service which will be executed when a specific
transition of a state attribute of the Event
Condition object is detected.

• The Event Enrollment Object :
It is used optionally in order to bind an

Event Condition object to an Event Action

151

object and to bind the notifications that are
results of an event transition to a client. It
represents the request of a client to be noti­
fied of the occurrence of one or more specific
transitions of the state attribute of the Event
Condition object, or to delay the execution
of a confirmed MMS service until the occur­
rence of one or more specific transitions of
the state attribute of the Event Condition
status.

The services that have been added to the VMD
to manage events are the following:

• In order to define and delete objects: Defi­

neEventCondition , DeleteEventCondition, DefineEven­

tAction , DeleteEventAction, DefineEventEnrollment ,

DeleteEventEnrollment.

• In order to obtain and modify attributes:
GetEventConditionAttributes, AlterEventCondition­

Monitoring, GetEventActionAttributes, GetEventEn­

rollmentAttributes, AlterEventEnrollment .

• In order to obtain alarm summary: Get Alarm­
Summary, GetAlarmEnrollmentSummary.

• In order to inform about the status ob­
jects: ReportEventConditionStatus, ReportEven­

tActionStatus, ReportEventEnrollmentStatus.

• In order to notify events: TriggerEvent, Event­

Notification , Acknow ledgeEventN otification .

3.3 CORBA

The Common Object Request Broker Architec­
ture (CORBA) is a distributed object architecture
that allows software objects to interact across
networks. CORBA was first introduced in 1991
by the Object Management Group (OMG). It is
an international consortium of over 800 software
vendors, developers and end users .

The aim of this group is to specify an open
software bus on which object components written
by different vendors can interoperate regardless
of the implementation language, location or host
platform.

The object bus provides an Object Request Bro­
ker (ORB) that lets clients invoke methods on
remote objects either statically or dinamically.

As a result of their work, OMG approved a set of
specifications -called CORBA 2.0- in late 1994.

The Object Management Architecture (OMA)
specified by OMG, is shown in figure 2 and con­
sists of the following elements:

• Object Request Broker (ORB) : It pro­
vides the mechanisms by which objects trans­
parently make and receive requests and re­
sponses. In doing this, the ORB provides
interoperability between applications on dif­
ferent machines in heterogeneous distributed

Non·standardiud Vertical

Application·specific

Interfaces

Application
Objects

0 0

Domain· specific

Interfaces

Domajn
Interfaces

0 0

Horizontal

Facility Interfaces

Common
Facilities

0 0

OBJECr REQUEST BROKER (ORB)

0 0
Object Services

General Service Interfaces

Fig. 2. The Object Management Architecture
(OMA) specified by OMG.

environments and seamlessly connects multi­
ple object systems.

• Object Services : They are services that
complement the functionality of the ORB .
These components standardize the life-cycle
management of objects.

• Common facilities: Services of direct use to
application objects. It provide a set of generic
application functions that can be configured
to the specific requirements of a particular
configuration.

• Domain Inter faces : They represent verti­
cal areas that provide functionality of direct
interest to end-users in particular application
domains.

• Application Objects: They are specific com­
ponents to end-user applications. An appli­
cation is typically built from a large number
of basic objects - some specific to the appli­
cation at hand, some domain specific, some
from object services and some built from a
set of common facilities .

The object specification is carried out using the
Interface Definition Language (IDL). It is a de­
scriptive language used to define the interface
through which a client may access a server. IDL
provides operating system and programming lan­
guage independent interfaces to all the services
and components that reside on a CORBA bus.

The static method invocation used by the COR­
BA's implementation is shown in figure 3 (CORBA
also define a dynamic method invocation, but it
is not explained). The following components are
necessary to carry out the invocation:

• Cl ient IDL stub : Client code used by an
object to encode invocations in a form which
can be handled by the ORB, and to decode
replies received via the ORB.

152

Request

Object
Implementations

00

Object

~=::..J Adapter

Object Request Broker (ORB)

Fig. 3. Object 's method 's static invocation.

• Skeleton: Server code up-called by the ORB,
capable of decoding requests transmitted by
the ORB, converting it into an invocation of
the implementation object, and encoding the
results to be sent back to the client via the
ORB.

• Object adapter: It defines how an object is
activated. It can do this by creating a new
process, creating a new thread within an
existing process, or by reusing an existing
thread or process.

More information regarding CORBA can be found
in (Object Management Group, 1995a; Object
Management Group, 1995b).

4. SYSTEM DESCRIPTION

In order to structure the system and to adapt
MMS to CORBA, the approach proposed in
(G. Guyonnet, 1997) has been followed . This
CORBA approach for ISO-MMS is known as
COOL-MMS, because it has been thought of
for the CHORUS-COOL system (CHORUS Sys­
tems, 1996) .

The features of the system can be summarised in
this way:

• The MMSserver is a CORBA object and its
interface corresponds to the MMS services
provided by the VMD, it is defined in a IDL
specification. The event services have been
added so that events can be communicated.

• The confirmed MMS services are declared as
synchronous invocation methods.

• The request to send unsolicited information
is implemented by means of one-way invo­
cation methods. The MMSserver uses the
TrapServer object of the client in order to
send this unsolicited information.

The scheme of the system is shown in figure 4.

Although the association management is not im­
plemented due to the fact that they are managed
by the ORB, some considerations must be made.

Real Device

MM8-CUent

Fig. 4. Event Management in CORBA.

In some cases, in the objects and services of the
event model , being able to indicate a specific
association is important. For example, the Event
Enrollment object has an attribute that is a
reference to the application that must be advised
with an Event Notification service when the state
of a variable changes. Then, the MMS server
must be capable of indicating this to a client . In
the standard MMS, the application reference is
defined as specified below:

ApplicationReference

{

SEQUENCE

}

ap-title

[0] AP-t i tle OPTIONAL,

ap-invocation-id

[1] AP-invocation-identifier OPTIONAL,

ae-qualifier

[2] AE-qualifier OPTIONAL,

ae-invocation-id

[3] AE-invocation-identifier OPTIONAL

But this information is only meaningful in an OSI
environment. In CORBA, the following applica­
tion reference has been used:

enum ApplicationReferenceChoice

{

name,

reference

};

union ApplicationReference
switch (ApplicationReferenceChoice)

{

153

};

case name :

Identifier ap-name;

case reference:

TrapServer ap-reference;

This reference is the application name or the refer­
ence to a TrapServer object. Having the reference,
the MMS server can communicate with the client
directly by means of the ORB. Otherwise, having
the name, it can obtain this reference asking to
the Naming Services.

5. EVENT SERVICES IN CORBA

In order to carry out the translation from ASN.1
to idl the specification Inter-domain Management:
Specification Translation of The Open Group
(Open Group, 1997) is followed.

Next, the example of the TriggerEvent service in
idl and the way to translate the necessary data
structures from ASN.1 to idl is shown.

The data specified in the MMS protocol to realize
a request and return the response for the Trig­
gerEvent services are the following.

Identifier ::= VisibleString

ObjectName : : = CHOICE {

vmd-specific

}

[0] IMPLICIT Identifier,

domain-specific

[1] IMPLICIT SEQUENCE {

},

aa-specific

domainId

itemId

[2] IMPLICIT Identifier

Identifier,

Identifier

Unsigned8 :: = INTEGER

Priority ::= Unsigned8

TriggerEvent-Request :: = SEQUENCE {

}

eventConditionName

[0] ObjectName,

priority

[1] IMPLICIT Priority OPTIONAL

TriggerEvent-Response ::= NULL

The corresponding structure in idl obtained by
means of the translation following the specifica­
tion of the Open Group are the following:

typedef char ASN1_Null;

const ASN1_Null ASN1_NullValue='\xOO';

typedef string ASN1_VisibleString;

typedef ASN1_VisibleString Identifier;

typedef long ASN1_Integer;

typedef ASN1_Integer Unsigned8;

typedef Unsigned8 Priority;

typedef ASN1_Null TriggerEvent_Response;

enum ObjectNameChoice {

vmd_specificChoice,

domain_specificChoice,

aa_specificChoice

};

union ObjectName svitch (ObjectNameChoice) {

case vmd_specificChoice:

};

Identifier vmd_specific;

case domain_specificChoice :

struct {

Identifier domainId;

Identifier itemId;

} domain_specific ;

case aa_specificChoice:

Identifier aa_specific;

union PriorityTypeOpt svitch (boo lean) {

case TRUE: Priority value;
};

struct TriggerEvent_Request {

ObjectName eventConditionName;

PriorityTypeOpt priority;
};

The method in the MMSserver interface specified
in idl is:

TriggerEvent_Response

TriggerEvent(TriggerEvent_Request)

raises(ServiceError):

Once the VMD interface to manage MMS events is
defined in idl , the MMSserver object services for
the event management can be accessed through
the ORB from any place in the manufacturing
distributed system.

6. IMPLEMENTATION

A prototype has been implemented. The function
of it is to accept requests from the clients and
send unconfirmed requests to them. It only deals
with the communication of events. The event
management has not been implemented , but some
information regarding this can be found in (Swiss
Federal Institude of Technology, Lausanne, 1992) .

The ORB used is JavaIDL. JavaIDL is an Object
Request Broker provided with the JDK 1.2. To­
gether with the idltojava compiler, it can be used
to define, and access CORBA objects from the
Java programming language. JavaIDL is compli­
ant with the CORBA 2.0 Specification and the
IDL-to-Java Language Mapping.

JavaIDL also provides a transient nameserver
to organize objects into a tree-directory struc­
ture. The nameserver is compliant with the
Naming Service Specification described in COR­
BAServices: Common Object Services Specifica­
tion (Object Management Group, 1995b) .

154

7. CONCLUSION

The aim of developing this work is to advance
in the integration of the Virtual Manufacturing
Devices (VMD) in distributed systems based on
CORBA.

More explicitly, the MMS event management
model has been dealt with. By means of the
Object Bus defined in CORBA, making available
the MMS event management services have been
achieved.

In order to accomplish this , the interface for these
services have been built in id!. Starting from the
data specified in ASN.1 used by the protocol,
and following the Specification Translation of The
Open Group, the specification of these data in idl
have been obtained.

In this paper, the CORBA bases, the MMS and
services bases are also explained.

8. ACKNOLEDGEMENT

This work is supported in part by the CICYT
under grant num. TAP-95-0307

9. REFERENCES

CCE-CNMA, ESPRlT Consortium (1995). MMS:
A Communication Language for Manufactur­
ing. Springer.

CHORUS Systems (1996). CHORUS/COOL
ORB Programmer 's Guide. CS/TR-96-2.2.

G. Guyonnet, E. Gressier-Soudan, F. Weis (1997) .
COOL-MMS: a CORBA approach for ISO­
MMS. ECOOP'97 WorkShop.

ISO/IEC. 9506-1 (1990) . Industrial Automation
Systems - Manufacturing Message Specifica­
tion", Part 1: Service Definition. Interna­
tional Standards Organization.

ISO/IEC. 9506-2 (1990) . Industrial Automation
Systems - Manufacturing Message Specifica­
tion", Part 2: Protocol Specification. Interna­
tional Standards Organization.

Object Management Group (1995a). CORBA :
Common Object Request Broker Architecture
and Specification. OMG, Framingham, MA.

Object Management Group (1995b) . CORBAser­
vices: Common Object Services Specification.
OMG , Framingham, MA.

Open Group (1997). Inter-domain Management:
Specification Translation. X/Open Document
Number: P509.

Pimentel, Juan R. (1990). Communication Net­
works for Manufacturing. Prentice-Hal!.

Swiss Federal Institude of Technology, Lausanne
(1992) . MMS Event Management. Computer
Engineering Dept.

