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Abstract

The redundancy allocation problem is formulated minimizing the design
cost for a series-parallel system with multiple component choices whereas
ensuring a given system reliability level. The obtained model is a nonlinear
integer programming problem with a non linear, non separable constraint.
We propose an algebraic method, based on Gröbner bases, to obtain the ex-
act solution of the problem. In addition, we provide a closed form for the
required Gröbner bases, avoiding the bottleneck associated with the compu-
tation, and promising computational results.

1 Introduction

System reliability is considered an important measure in the engineering design
process. A series system is like a chain composed of links, each of them repre-
senting a subsystem. The failure of one of these components means the failure
of the whole system. In order to avoid this, it is usual to use redundant compo-
nents in parallel to guarantee a certain level of reliability. These systems are called
series-parallel systems.

Determining the optimal number of components in each subsystem is the so
called reliability optimization problem. Two different approaches are usual:

• maximize system reliability subject to system budget constraint, or

• minimize system cost subject to a required level of reliability.

Both problems are nonlinear integer programming problems, and they are NP-hard
[5]. There are very few papers looking for their exact solutions, due to the difficulty
of the problems. Those works use essentially Dynamic Programming [14], branch
and bound methods [9], or Lagrangian relaxation [11], among others techniques.
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On the contrary, in the literature there are many heuristicsand metaheuristic algo-
rithms; such as those based in Genetic Algorithms [6], Tabu Search [10] or Ant
Colony Optimization [2], among others.

In this paper we study the exact solution of one of the versions of the prob-
lem that minimizes the cost function of the chosen design, subject to a non linear
constraint which describes the reliability of the considered system. For a fixed
subsystem its inner components can be considered equal, as in [9], or different, as
in [11]. If the components are equal the reliability function is separable and con-
vex, and the problem can be reduced to a linear knapsack problem [9]. In the case
of multiple component choices the reliability function is no longer separable. In
[14], the solution is found using dynamic programming methods. That approach
presents two stages; in the first one the problem is restricted to each subsystem,
with a level of reliability. Under this assumption the reliability function is separa-
ble, and the optimization problem can be reduced to a knapsack problem. Then the
reliability levels of the subsystems are determined by a newdynamic programming
process.

The solution method shown in [11] uses an algorithm based on Lagrangian
relaxations over two linear relaxations of the original problem. The first relaxation
consists of deleting the non-linear reliability function,and adding certain linear
constraints, one for each subsystem. The second relaxationassumes that the same
type of component is going to be used in every subsystem, so that the problem has
the form as in [9].

Mainly, the algorithm of [11] is a what their authors called acut and partition
scheme(a geometric branch and bound). The solution space is partitioned in boxes,
which are divided and discarded for certain conditions. Thecuts are built from the
best bound feasible solution of some Lagrangian relaxations. Such bounds allow
to remove certain boxes depending on the improvement with respect to the current
best point.

We address the problem via a different approach based on Gröbner bases. As
introduction on this subject, we recommend the text books [1], [3] and [8].

Gröbner bases were applied to Integer Linear Programming,by the first time,
in [7]. Later, Tayur et al. [13] introduced a new applicationframework, which
solves nonlinear integer programming problems, with a linear objective function.
This is exactly our framework, as in [4].

First, we consider a relaxed integer programming problem where all the restric-
tions are linear. Then we find the solution of the relaxed problem by computing a
test set. By using the so called reverse test set, we can solvethe complete prob-
lem, generating paths from the solution of the relaxed problem to a solution of the
complete one. These paths increase the cost function at eachstep.

A test set for a linear integer programming problem is a set ofdirections that
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can be used to design descending algorithms with respect to alinear cost function.
A test set can be computed from a Gröbner basis of the toric ideal associated with
the linear restrictions, with respect to an order given by the cost function.

One of the main tasks in the process described before is usually the calculation
of the Gröbner basis. We construct a linear programming problem from the original
one, removing the reliability function, and adding a new linear restriction. This
constraint is obtained computing a feasible solution with agreedy algorithm. For
the relaxed linear programming problem obtained in this waywe explicitly give the
associated Gröbner basis, and so the test set to solve the main problem. We point
out here that any Gröbner basis computation is done using closed formulas, thus
avoiding the hard computation burden of reduction algorithms to compute Gröbner
bases.

The organization of the paper is as follows. In Section 2 we introduce the no-
tation and describe the model of a parallel-series system with multiple component
choices. In Section 3, a greedy algorithm is described to compute a feasible point.
Section 4 is devoted to a brief introduction to the essentialfacts about Gröbner
bases. Section 5 contains the main result about the closed formula for the test
set of the integer linear problem. Our computational experiments are reported in
Section 6. Finally we draw some concluding remarks in Section 7.

2 General model

In order to formulate the problem, some notation is first introduced.

• n number of subsystems.

• ki number of different types of available components for thei-th subsystem,
i = 1, . . . ,n.

• r i j reliability of the j-th component for thei-th subsystem,i = 1, . . . ,n, j =
1, . . . ,ki .

• ci j cost of thej-th component for thei-th subsystem,i = 1, . . . ,n, j = 1, . . . ,ki .

• l i j ,ui j lower/upper bounds of number ofj components for thei-th subsystem,
i = 1, . . . ,n, j = 1, . . . ,ki .

• R0 admissible level of reliability of the whole system.

• xi j number of j components used in thei-th subsystem,i = 1, . . . ,n, j =
1, . . . ,ki .

3



r11 r21 rn1

r12 r22 rn2

...
...

· · · ...

r1k1 r2k2 rnkn

Figure 1: A series-parallel system with multiple choice components

In our model, some assumptions are considered:

• Components have two states: working or failed.

• The reliability of each component is known and is deterministic.

• Failure of individual components are independent.

• Failed components do not damage other components or the system, and they
are not repaired.

This model is illustrated in Figure 1. It is a system withn subsystems with the
notation introduced before. The optimization problem can be formulated as:

(RP) min ∑n
i=1 ∑ki

j=1ci j xi j

s. t.
R(x)≥ R0,

∑ki
j=1xi j ≥ 1, i = 1, . . . ,n,

0≤ l i j ≤ xi j ≤ ui j , i = 1, . . . ,n,
j = 1, . . . ,ki ,

xi j ∈ Z+ for all i, j,

(1)

whereR(x) = ∏n
i=1(1−∏ki

j=1(1− r i j )
xi j ). The firstn linear inequalities in (1) assert

that each subsystem must have, at least, one component.
As usual, we can make a change of variablesyi j = xi j − l i j , so that we can

assumel i j = 0. This does not alter the equations of(RP), and some of the last
equations can be redundant. Hence it can be assumedl i j = 0 without loss of gen-
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erality, and:
(RP) min ∑n

i=1 ∑ki
j=1ci j xi j

s. t.
R(x)≥ R0,

∑ki
j=1xi j ≥ 1, i = 1, . . . ,n.

0≤ xi j ≤ ui j , i = 1, . . . ,n,
j = 1, . . . ,ki ,

xi j ∈ Z+ for all i, j.

A feasible solution is sometimes called a reliable solutionbecause it ensures a
reliability greater than or equal toR0.

3 Computing a reliable system with a greedy procedure

The main step used in the algebraic algorithm described in this article is to consider
an integer linear programming problem(LRP), relaxed from the original problem
(RP). There is only one nonlinear constraint in(RP), the equation which ensures
the reliability of the whole system. Removing the nonlinearconstraint we get an
integer linear programming problem:

(LRP1) min ∑n
i=1∑ki

j=1ci j xi j

s. t.

∑ki
j=1xi j ≥ 1, i = 1, . . . ,n.

0≤ xi j ≤ ui j , i = 1, . . . ,n,
j = 1, . . . ,ki ,

xi j ∈ Z+ for all i, j.

In our solution technique, we start from the solution of the linear programming
problem(LRP1), and following the directions given by the test set of(LRP1) we
follow a descent path to the solution of the complete problem(RP). If the linear
relaxation is too weak, the paths to be followed to get to the optimal solution of
(RP) will be very long, and the number of points to be processed is huge.

To avoid this problem we add a new linear equation. We need a feasible point
y0 of (RP), and there are lots of heuristic methods to obtain such a point. In our
case, we use a greedy algorithm similar to [9] or [11].

At the beginning of the greedy algorithm,y0 describes the system with the max-
imum number of components of every type. If the reliability of that system is less
thanR0, the problem is unfeasible. We considerI the set of all pairs(i, j), which
describes thej-th component for thei-th subsystem. For each(i, j), we calculate
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the rateti j =
ci j

− log(1−r i j )
between cost and reliability, and orderI non increasingly

by these rates (ties are solved by lex order, for example). For the first index(i0, j0)
in I , we subtract components of type(i0, j0) from y0 until it is non reliable, there
is no such component or thei0-th subsystem is empty. If the solution obtained by
this process is non reliable, or thei0-th subsystem is empty, one(i0, j0) component
is added. Then we take the next index in the setI and repeat the procedure, until
the index setI has been completely processed.

Data: r i j , vectorccc
Result: yyy0 feasible point
yyy0 = (u11, . . . ,unkn)

t =
(

c11
− log(1−r11)

, . . . ,
cnkn

− log(1−rnkn)

)

I = {(1,1), . . . ,(1,k1) . . . ,(n,kn)}
OrderI non increasingly byti, j
forall the (i, j) ∈ I do

Reliable=TRUE
SubsystemNonEmpty=TRUE
while Reliableand SubsystemNonEmptyand y0

i, j > 0 do
y0

i, j = y0
i, j −1

if ∑k y0
ik < 1 then

SubsystemNonEmpty=FALSE
end
if R(y0)< R0 then

Reliable=FALSE
end
if Reliable=FALSEor SubsystemNonEmpty=FALSEthen

y0
i j = y0

i j +1

end
end

end

Algorithm 1: Greedy algorithm

Using the above greedy algorithm, we obtain a feasible pointy0, with a cost
∑i j ci j y0

i j = c0. The optimal solution of(RP) has a cost less than or equal toc0, so
we can add to(RP) a valid inequality stating this condition and the problem has an
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equivalent form:

(RP) min ∑n
i=1∑ki

j=1ci j xi j

s. t.
R(x)≥ R0,

∑ki
j=1xi j ≥ 1, i = 1, . . . ,n,

0≤ xi j ≤ ui j , i = 1, . . . ,n,
j = 1, . . . ,ki ,

∑n
i=1∑ki

j=1ci j xi j ≤ c0,

xi j ∈ Z+ for all i, j.

From this formulation, we have the new integer linear problem

(LRP) min ∑n
i=1 ∑ki

j=1ci j xi j

s. t.

∑ki
j=1xi j ≥ 1, i = 1, . . . ,n,

0≤ xi j ≤ ui j , i = 1, . . . ,n,
j = 1, . . . ,ki ,

∑n
i=1 ∑ki

j=1ci j xi j ≤ c0,

xi j ∈ Z+ for all i, j.

4 A review on integer programming and Gröbner bases

In this section, we recall the concepts and algorithms used to solve Integer Linear
Programming problems from an algebraic point of view, and the walk back proce-
dure for nonlinear integer programming problems based on test sets. To this end,
we have followed [12] and [13].

4.1 Gröbner bases

Denote byk[xxx] = k[x1, . . . ,xN] the ring of polynomial with coefficients in a fieldk.
In our case,k will be R. The ideal generated by a subsetF ⊂ k[xxx] is the set〈F 〉
consisting of all linear combinations:

〈F 〉 = {h1 f1+ · · ·+hr fr : f1, . . . , fr ∈ F ,h1, . . . ,hr ∈ k[xxx]}.

A term order onNN is a total order≺ satisfying the following properties:

• ≺ is compatible with sums, i.e.,α ≺ β ⇒ α+γ ≺ β +γ , for all α ,β ,γ ∈N
N.
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• ≺ is a well-ordering, i.e., 0≺ α for all α ∈ N
N, α 6= 0.

If we fix a term order≺, then every non zero polynomialf has a unique initial
term in≺( f ) = axxxα . It is the monomialaxxxα whereα is the largest term appearing
in f for the term order≺. We are particularly interested in two term orders:

1. The lexicographic order<lex. For everyα ,β ∈ N
N, we sayα >lex β if, in

the vector differenceα −β ∈ Z
N, the leftmost nonzero entry is positive.

2. The vector induced order<ccc. We consider a vectorccc∈ N
N. Givenα ,β ∈

N
N, we sayα >ccc β if

ccctα > ccctβ or ccctα = ccctβ , andα >lex β .

For example, consider the polinomialf = 6x1x2
2x3 + 7x2

3 − 5x3
1 + 4x2

1x2
3 and the

vectorccc= (3,2,2)t . Then

in<lex( f ) =−5x3
1, in<ccc( f ) = 4x2

1x2
3.

Of course, we can reorder the variablesxi , and get a new term order. In general,
the notation<ccc means a term order which respect the partial order defined by the
vectorccc and then a tie-break term order, so if we change the lexicographic order in
the definition on<ccc, we get another vector induced order.

Suppose thatJ is an ideal ink[xxx], and≺ is a given term order. Then its initial
ideal is the ideal generated by the initial terms of the polynomials inJ:

in≺(J) = 〈in≺( f ) : f ∈ J〉.

A finite subsetG of J is a Gröbner basis with respect to the term order≺ if the
initial terms of the elements inG suffice to generate the initial ideal:

in≺(J) = 〈in≺(g) : g∈ G 〉.

Fixed an ideal and a term order, a Gröbner basis is not unique. Adding two more
conditions, the uniqueness is guaranteed. The reduced Gröbner basis ofJ with
respect to≺ is a Gröbner basisG≺ of J such that:

• in≺(gi) has unit coefficient for eachgi ∈ G≺.

• For eachgi ∈ G≺, no monomial ingi lies in 〈in≺(G≺\gi)〉.

Every idealJ has a unique reduced Gröbner basis for each term order.
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4.2 Test set

Consider a linear programming problem:

LP(bbb) min ccct ·xxx
s. t.

A ·xxx= bbb,
xxx∈ Z

N
+,

whereA∈ Z
d×N,bbb∈ Z

d,ccc∈ R
N. The notationLP(bbb) denotes the linear program-

ming problem with the right-hand-side restrictions fixed tobbb. When we write(LP),
we note all integer programming problems, obtained by varying the right-hand-side
vectorbbb, fixing A and the cost functionccc. Consider the mapπ : NN → Z

d defined
by π(xxx) = Axxx. Given a vectorbbb∈ Z

d, the setπ−1(bbb) = {uuu∈ N
N : π(uuu) = bbb} is

the fiber of(LP) overbbb.
We group points inNN according to increasing cost valueccctxxx, and refine this

order to a total order<ccc breaking ties among points with the same cost value by
adopting some term order (lexicographic, for example, as defined in the previous
section). It is the vector induced order.

A setG<ccc ⊂Z
N is a test set for the family of integer problems(LP) with respect

to the matrixA and the order<ccc if

• for each nonoptimal pointα in each fiber of(LP), there existsg∈ G<ccc such
thatα −g is a feasible solution in the same fiber andα −g<ccc α ,

• for the optimal pointβ in a fiber of(LP), β −g is unfeasible for everyg∈
G<ccc

A test set for(LP) gives an obvious algorithm to solve an integer program, provided
we know a feasible solution to this problem. At every step of this algorithm, we
have two different cases:

• There exists an element in the test set which, when subtracted from the cur-
rent point, yields an improved point. We are then in a nonoptimal point, but
we get a better one.

• There will not exist such an element in the set, so we are in theoptimum of
the fiber.

4.3 Toric ideal

We defineIA the toric ideal associated withA as

IA = 〈xxxα −xxxβ : Aα = Aβ ,α ,β ∈ N
N〉.
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Given an integral vectorγ ∈ Z
N, we can write it uniquely asγ = γ+− γ−, where

γ+,γ− ∈ N
N and have disjoint supports. It is well known ([12]) that

IA = 〈xxxα+
−xxxα−

: Aα = 000,α ∈ Z
N〉.

The relationship between the previous concepts is that the reduced Gröbner
basisG<ccc of IA with respect to the order<ccc allows us to compute a uniquely defined
minimal test setG<ccc for (LP). The reduced Gröbner basis is formed by binomials

G<ccc = {xxxαi −xxxβi , i = 1,2, . . . , r}, with in<ccc(xxx
αi −xxxβi ) = xxxαi ,

and then the test set is expressed as

G<ccc = {αi −βi, i = 1,2, . . . , r}.

4.4 Walk back procedure

Basically the walk back procedure gives an algorithm which computes the optimum
for a nonlinear integer programming problem under some conditions. The integer
programming problem(RP) introduced in Section 2 is not linear. It has a nonlinear
constraint (the reliability condition), while the rest of the restrictions are linear and
the cost function is also linear. These are the conditions required to use the walk
back procedure, introduced in [13]. In Algorithm 2, it is used the directed graph
defined by the Gröbner basis over the feasible points, but directions are reversed in
the skeleton. In each step, elementsw=α+g in the reverse skeleton are computed,
whereAα = 000 andg is an element in the Gröbner basis.

In general, Algorithm 2, uses the following notation. We denote by(RP) the
entire non linear integer programming problem,(LRP) the relaxed linear integer
programming problem which arises from(RP). Let β be the optimum of(LRP). If
β is feasible for(RP), then it is the solution to(RP). If it is non feasible, then the
reverse skeleton is needed.

Let P(α) denote the path, in the directed graph (reversed) of the linear integer
programming Problem(LRP), from the optimumβ for (LRP) to a feasible pointα
for (LP). There is always one. Any solution of(RP) is feasible for(LRP), so the
objective is to find such a path, in an ordered way. In each reversed step the cost
function increases, so the minimum cost feasible points for(RP) are found first.

5 The test set for the relaxed linear problem

Once the(LRP) problem is reinforced by means of the linear constraint thatcomes
after a feasible solution of(RP) is found by the greedy algorithm, the relaxed linear
problem is:
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Data: Matrix A, vectorsbbb,ccc, non-linear restrictions
Result: Optimum
P = {P(β )}
y0 = greedy(RP)
Y = {y0}
G<ccc = groebner(IA) with respect to<ccc

β = optimum for relaxedLRP
repeat

forall the P(α) ∈ P do
forall the g∈ G<ccc do

w= α +g
if w is a feasible point of (LRP)then

if w is feasible for (RP)then
Y =Y∪{w}
PruneP(w)

else
if y<ccc w for some y∈Y then

PruneP(w)
end
P = P ∪{P(w)}

end
end

end
end
DeleteP(α) from P

until all paths inP are pruned
Optimum= Select minimum<ccc element fromY

Algorithm 2: Walk back procedure
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(LRP) min ∑n
i=1∑ki

j=1ci j xi j

s. t.

∑ki
j=1xi j ≥ 1, i = 1, . . . ,n,

0≤ xi j ≤ ui j , i = 1, . . . ,n,
j = 1, . . . ,ki ,

∑n
i=1∑ki

j=1ci j xi j ≤ c0,

xi j ∈ Z+ for all i, j.

Each inequality must be converted to an equality, so we must introduce a new
slack variable for each inequality:

(LRP) min ∑n
i=1 ∑ki

j=1 ci j xi j

s.t.

∑ki
j=1xi j −di = 1, i = 1, . . . ,n,

xi j + ti j = ui j , i = 1, . . . ,n,
j = 1, . . . ,ki ,

∑n
i=1 ∑ki

j=1 ci j xi j +b= c0,

xi j ∈ Z+ for all i, j.

If we put N = k1+ . . .+kn and

Dn×N =










k1
︷ ︸︸ ︷

1. . .1

k2
︷ ︸︸ ︷

0. . .0 . . .

kn
︷ ︸︸ ︷

0. . .0
0. . .0 1. . .1 . . . 0. . .0

...
0. . .0 0. . .0 . . . 1. . .1










the restrictions in matrix form can be written as





D −In 0n×N 0n×1

IN 0N×n IN 0N×1

c1×N 01×n 01×N 1



 ·







xxxN×1

dddn×1

tttN×1

b







=










1n

uuu1
...

uuun

c0










,
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where

c1×N =
(

c11 . . . c1k1 . . . cn1 . . . cnkn

)
,

xxx=
















x11
...

x1k1
...

xn1
...

xnkn
















, ttt =
















t11
...

t1k1
...

tn1
...

tnkn
















,ddd =






d1
...

dn




 ,uuui =






ui1
...

uiki




 , i = 1, . . . ,n,

and1n denotes then-vector with all the componentes equal to 1. We can assume
that, for eachi = 1, . . . ,n, the costsci j are ordered in descending order:ciq ≥ cip if
q< p. Let

zzz= (x11, . . . ,xnkn,d1, . . . ,dn, t11, . . . , tnkn,b) = (xxx,ddd, ttt,b),

and consider the following set of binomials ink[zzz]:

G = {xikdi − tikbcik ,xiqtip −xiptiqbciq−cip},

for i = 1, . . . ,n,k = 1, . . . ,ki ,1 ≤ q < p ≤ ki . Let > be a term order ink[zzz] such
that xxx > ddd > ttt > b. Within each block, the variables are sorted lexicographically
as follows:

x11 > · · ·> x1k1 > x21 > · · ·> xnkn, t11 > · · ·> t1k1 > t21 > · · ·> tnkn,d1 > · · ·> dn.

Theorem 1. The setG is the reduced Gr̈obner basis of the toric ideal IA with
respect to the term orden>. Moreover,G is the reduced Gr̈obner basis with respect
to the order<ccc induced by the cost vectorc.

Proof. The proof follows similar steps and notation that [13, Thm. 4]. First of all,
the setG is a subset ofIA, because all the binomialszzzα −zzzβ in G verify Aα = Aβ .

The initial term of every binomial inG with respect to> is the underlined term.
It is enough to show that for every binomialzzzα −zzzβ ∈ IA, with initial termzzzα , there
is someg∈ G whose initial term divideszzzα . By definition of toric ideal,zzzα −zzzβ ∈
IA if and only if α − β ∈ K = {yyy ∈ Z

s : Ayyy = 0},s= n+ 2N+ 1. We denote
an elementyyy in K by yyy = (yx,yd,yt ,yb) to indicate the correspondence between
components ofyyy and the columns ofA. In addition, we denote the components of
yx by (X11, . . . ,Xnkn), and similarly for the others. We classify the elements inK in
the following manner:
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1. LetK1 = {yyy∈ K : yx = 0}. Now yyy∈ K1 if and only if (yd,yt ,yb) ∈ Z
s1,s1 =

n+N+1 belongs to the latticeS′ = {www∈ Z
s1 : A′www= 0} where

A′ =





−In
IN

1



 .

But S′ = 0 sinceA′ is a non singular matrix. ThereforeK1 = 0. This im-
plies that there are no binomials of the formzzzα −zzzβ that do not contain the
variablesxi j .

2. LetK2 = {yyy∈K : yd = 0}. Againyyy∈K2 if and only if (yx,yt ,yb)∈Z
s2,s2 =

2N+1 belongs to the latticeS′′ = {www∈ Z
s2 : A′′www= 0}, where

A′′ =





D 0 0
IN IN 0
c 0 1



 .

Let Xiq be the left most nonzero component ofyx. We may assume that
Xiq > 0 sinceS is the set of integer points in a vector space which implies
that it contains the negative of every element in it. Thei-th row of matrixD
in A′′ implies that there exists somep> q such thatXip < 0. Therefore,

xiq divideszzzyyy+ andxip divideszzzyyy−
.

Consider now the rows given by the block
(

IN IN 0
)

in A′′. These rows
imply thatTiq =−Xiq < 0 andTip =−Xip > 0. Therefore,

xiqtip divideszzzyyy+ andxiptiq divideszzzyyy−
.

The initial term ofzzzyyy+ − zzzyyy− with respect to> is zzzyyy+ sincexiq divideszzzyyy+

andxiq is the greatest variable that appears in this binomial. But this implies
that the initial term ofxiqtip − xiptiqbciq−cip ∈ G divides the initial term of
zzzyyy+ − zzzyyy− . Therefore, the initial term of all binomials associated with K2 is
divisible by the initial term of an element inG .

3. Consider now a general element inS= {yyy∈ Z
s : Ayyy= 0},s= n+2N+1,

with no variables restricted to be zero. By the previous cases we may assume
yx 6= 0,yd 6= 0. Let Di be the first nonzero component ofyd. As before, we
may assume thatDi > 0. Therefore,

di divideszzzyyy+
.
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Then there existsXik > 0, so

xikdi divideszzzyyy+
.

Similarly, there existsTik < 0 and

tik divideszzzyyy−
,

so the initial term ofzzzyyy+ − zzzyyy− is zzzyyy+ becausedi > tik. This initial term is
divisible byxikdi , which is the initial term ofxikdi − tikbcik . Therefore

in<(IA) = 〈in<(G )〉,

which proves thatG is a Gröbner basis ofIA with respecto to the term order
<. Clearly, it is reduced.

Moreover, with respect to the term order<ccc,

in<ccc(xikdi − tikbcik) = xikdi ,

because the weight of the first monomial is equal tocik > 0, and the weight of the
second monomial is equal to zero. Similarly,

in<ccc(xiqtip −xiptiqbciq−cip) = xiqtip,1≤ q< p< ki ,

because the weight of the first monomial isciq ≥ cip, which is the weight of the
second monomial. Ifciq = cip, the tie is broken with the lexicographical order
xiq > xip.

The above theorem gives areducedGröbner basis with respect to the term or-
der induced by the objective function of(LR). On the contrary, [13, Thm. 4] only
provides a Gröbner basis with respect to a lexicographicalorder, and not with re-
spect to the term order needed for the computation of the testset. Therefore, in
order for that Gröbner basis to be applied to solve their problem one more compu-
tational step is required whereas our construction gives directly the answer with its
consequent saving.

6 Computational results

The previous construction of the test set is used in our computational experi-
ments. In order to gain some insights of its efficiency, if a program like4ti2
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([4ti2 team(2008)]) were used to do the computation of the test set, a simple con-
figuration of 10 subsystems with 3 components would take morethan 60 minutes.
Therefore, it is very important to apply the result in Theorem 1 to be able to con-
struct the test set.

Our algorithm has been coded in MATLAB and run on a AMD Opteron 252 (2.6
GHz) with 5 GB RAM. For Table 1, all the data in the test problems are randomly
generated from uniform distributions, withl i j = 0,ui j = 4 andr i j ∈ [0.99,0.998],
as in [11]. The linear cost function∑n

i=1 ∑ki
j=1 ci j xi j has valuesci j ∈ [10,20].

The numbern is the number of subsystems, andk is the number of different
components in each subsystem.

Table 1:R0 = 0.90, r i j ∈ [0.99,0.998]

n k Nodes Iter. R-S Avg. CPU time (s)

10 2 0 696 0.0
10 3 0 5797 0.0
10 5 0 26427 0.0
15 2 0 15184 0.0
15 3 0.4 85103 0.1
20 2 7041 294747 276.0

The average CPU time, and the average number of generated nodes during the
algorithm has been obtained by running the program for 10 instances.

The column “Iter. R-S” contains the number of iterations according to the re-
sults given in [11, Table 1]. Comparing our results with [11], not only the CPU
time is improved, but also the effort measured by the number of processed nodes
by the walk back procedure is less than the number of iterations in [11]. We also
point out that the iterations in [11] compute two Lagrangiandiscrete relaxations
and their corresponding solutions for the best value, each time. After that, to dis-
card remaining boxes in their branch and bound tree, reliability of that solution
is needed. In our method in each iteration we only compute a node by adding a
vector, and then compute its reliability.

In order to better illustrate the results, new tests have been done with the ad-
ditional hypothesis that a greater reliability in a component implies a greater cost.
Note that if there is no correlation between cost and reliability of a component (as
in [11]), then it is likely that certain components are not going to be used, because
only more reliable components are going to be chosen regardless of their cost.
Hence the dimensionality of the problem is artificially reduced. The results of this
more realistic case appear in Table 2. It is clear the increasing computational effort
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Table 2:R0 = 0.90, r i j ∈ [0.99,0.998] (ordered)

n k Nodes Avg. CPU time (s)

10 2 0 0.0
10 3 0 0.0
10 5 0 0.0
15 2 45 0.2
15 3 661 4.4
15 4 28023 10571
17 2 12578 1355

showed by rowsn= 15,k= 3 andn= 15,k= 4. From the above, we conclude that
the computational experiments for this model should be donewith this additional
hypothesis of correlation between cost and reliability of each component.

We also note that the algorithm is very sensitive to changes in the value of
the reliability parametersr i j . For example, for less reliable components,r i j ∈
[0.980,0.990] and the same value,R0 = 0.90, for the overall reliability, we have
obtained the results in Table 3. The reader may observe that the system sizes that

Table 3:R0 = 0.90, r i j ∈ [0.98,0.99] (ordered)

n k Nodes Avg. CPU time (s)

6 4 14 0
6 5 39 0.1
7 4 1186 7.4
7 5 5662 140
8 4 46709 7010

can be solved are smaller. However, we have to point out that an exact solution has
been found in all the examples. An interesting remark is thatthe elapsed time is
significantly reduced if the algorithm is stopped with the first best point found in
the walk back procedure. Obviously, this approach does not guarantee optimality
but it gives very accurate approximations. From this observation, we think that a
promising open field is the combination of this technique with heuristic methods
to get a good approximation of the optimal solution.
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7 Conclusion

We have presented in this paper an exact method for solving a nonlinear integer
programming problem arising from the design of series-parallel reliability systems.
The method is based on the construction of a test set of an integer linear problem
through the theory of Gröbner bases. We provide an explicitformula of the test
set, avoiding the high cost of this computation. Computational tests show that this
approach improves existing methods already applied for this problem.

This paper deepens the challenge given in [13] to yield efficient algorithms for
problems in integer problems based on attractive bases.
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