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Abstract: One of the fastest known general techniques for computing permanents is Ryser’s formula.
On this note, we show that this formula over Sylvester Hadamard matrices of order 2m, Hm, can be
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1. Introduction

The theory of Boolean functions is a fascinating area of research in discrete mathemat-
ics with applications to cryptography and coding theory. Claude Shannon’s properties of
confusion and diffusion are fundamental concepts for achieving security in cryptosystems.
The notion of diffusion is related to the degree to which the influence of a single input
plaintext bit is spread throughout the resulting ciphertext, and the notion of confusion is
related to the complexity of the relationship between the secret key and ciphertext. Boolean
functions with high nonlinearity can be used to provide confusion in block encryption
algorithms [1,2]. Nonlinearity is the minimum number of bits which must change in the
truth table of a Boolean function to become an affine function. The Walsh transform is the
most important mathematical tool for the analysis of cryptographic properties of Boolean
functions. The understanding of the Walsh transform of a Boolean function uniquely
determines the function; therefore, working fully with the Walsh transform is possible.

Here we study a connection between the Walsh spectrum of m-variable Boolean
functions and Ryser’s formula of the permanent for Sylvester Hadamard matrices of
order 2m.

In 1812, Cauchy and Binet independently introduced the notion of the permanent as a
matrix function.

Definition 1. Let N be the set {1, . . . , n}, (n ∈ Z+). The symmetric group Sn is the group of all
n! permutations of N. The permanent of an n× n matrix A =

[
aij
]

is defined by

per (A) = ∑
σ∈Sn

n

∏
i=1

ai,σ(i).

At first glance, it seems to be a straightforward version of the determinant, but this
is a misleading impression. For instance, the determinant of an arbitrary matrix can
be evaluated efficiently using Gaussian elimination; however, the computation of the
permanent is much more complicated. Valiant [3] proved that it belongs to the class
of ]P-complete problems, which basically means that there is almost no possibility of
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finding a polynomial time deterministic algorithm for computing the permanent in general.
Precisely, the central problem studied in arithmetic complexity theory is the permanent
versus determinant problem, which is considered the arithmetic analogue of the NP vs. P
problem (see [4]).

There are wide applications of the permanent of certain matrices, such as 0,1 and/or
sparse matrices with special structures. Especially in combinatorial counting and graph
theory [5]. For instance, if G is a balanced (the two parts have equal size) bipartite graph
and MG is its adjacency matrix, the per (MG) counts perfect matchings in G. Nevertheless,
as far as we know, there is not any clear combinatorial interpretation of the permanent of
Hadamard matrices. Here we give some ideas towards an interpretation of the permanent
of the Sylvester Hadamard matrices in terms of Boolean functions with high nonlinearity.

Notation. Throughout the article, we make use of − for −1 and 1 for +1. We write
Hm for a Sylvester Hadamard matrix of order 2m. The cardinality of a set S is denoted ]S.
We use In for the identity matrix of order n and MT for the transpose of M. The Galois field
with two elements is denoted by GF(2) and the m-dimensional vector space over GF(2),
equipped with the canonical basis by GF(2)m. 〈gi, gj〉means the usual inner product for
gi, gj ∈ GF(2)n.

2. Preliminaries

Basic concepts and results on Hadamard matrices and Boolean functions will be
reviewed. We refer the reader to [6] for more details about Hadamard matrices and see [7]
and the references therein for some of the theories of Boolean functions.

2.1. Hadamard Matrices

A Hadamard matrix H of order n is an n× n matrix with entries±1 and HHT = nI. If a
Hadmard matrix has its first row and column all 1s are said to be normalized. A Hadamard
matrix can always be normalized by multiplying rows and columns by −1 . It is well-
known that n can only be either 2 or a multiple of 4 and it is conjectured that Hadamard
matrices exist for every n ≡ 0 mod 4 (see [6]).

It was observed by Sylvester in 1867 that, if H is a Hadamard matrix of order n, then[
H H
H −H

]
is a Hadamard matrix of order 2n. Matrices of this configuration are called Sylvester
Hadamard and are defined for all powers of 2. The Sylvester Hadamard matrix of order 2 is
given as

H1 =

[
1 1
1 −

]
.

Sylvester Hadamard matrices of order 2k, denoted by Hk, can be formed by
k−copies

H1 × · · · × H1
the Kronecker product of k copies of H1. These matrices have many interesting properties
(see [8]), for instance Hm = [(−1)〈gi ,gj〉]gi ,gj∈GF(2)m .

Two Hadamard matrices H and H′ are said to be equivalent when one can be acquired
from the other by a series of row and/or column interchanges and row and/or column
negations. The question of classifying Hadamard matrices of order n ≥ 36 remains
unanswered and only partial results are known.

We recollect that Hadamard proved that nn/2 is an upper bound for the absolute value
of the determinant of an n× n matrix with entries from the unic disc, and this bound
is attainable by matrices with entries ±1 if and only if they are Hadamard. However,
the permanent of a Hadamard matrix has hardly been worked on, and it is considered a
very difficult problem. From what we know, the permanents for all Hadamard matrices
of orders smaller or equal to 28 were calculated in [9], but for orders greater than 28 the
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permanent remains unknown in general. The permanent of the Sylvester Hadamard matrix
of order 32 is 6829323892021002240 ([10]).

2.2. Boolean Functions

A Boolean function is a mapping

f : GF(2)m → GF(2).

We denote by Bm the set of all m-variable Boolean functions. Since there are 2m

possible inputs of length m, ]Bm = 22m
.

Example 1. f (x) = 〈x, g〉+ c where g ∈ GF(2)m and c ∈ GF(2) represent a Boolean function,
the so-called affine function. In particular, if c = 0 then f (x) is called a linear function. We
denoted by Am the set of m-variable affine functions and ]Am = 2m+1.

A Boolean function can be displayed in several ways. One prospect is to simply list
all values in a fixed order. To this end we denote gi as the binary representation of the
integer i− 1 with m bits. For instance, g1 = (0, 0, . . . , 0) and g2 = (0, . . . , 0, 1), hence this
list g1, g2, . . . , g2m contains all the elements of GF(2)m. The vector

[ f (g1), f (g2), . . . , f (g2m)]

is called the truth table (TT) of a Boolean function f . The support of f is the set S f =
{g ∈ GF(2)m : f (g) = 1}, and the weight of f , wt( f ), is the cardinality of the support,
i.e., wt( f ) = ]S f .

The Hamming distance between two Boolean functions f and h on GF(2m) is defined
as wt( f + h). The nonlinearity of f and denoted by N f is the minimum distance between f
and the set of all affine functions. This concept has several applications in cryptography
and coding theory. For instance, nonlinearity can be utilized as a measure of the strength
of cryptosystems (see [11]). The Walsh-Hadamard transform is the main tool to study the
nonlinearity of Boolean functions, which is defined for an m-variable Boolean function f ,
such as

W f (g) = ∑
x∈GF(2)m

(−1) f (x)+〈x,g〉, g ∈ GF(2)m.

The vector [W f (g1), W f (g2), . . . , W f (g2n)] is called the Walsh spectrum (WS) of a Boolean
function f . Each component W f (g) of WS is called a Walsh coefficient. Its magnitude
is the correlation between f and the corresponding linear function lg(x) = 〈x, g〉 for
g, x ∈ GF(2)m.

Now, we recall some results involving the Sylvester Hadamard matrix and the WS of
a Boolean function.

Proposition 1. Assuming that f is an m-variable Boolean function and Hm = [hi,j] is the
Sylvester Hadamard matrix of order 2m. The following identities hold,

1. [F(g1), F(g2), . . . , F(g2m)] Hm = [W f (g1), W f (g2), . . . , W f (g2m)], where F(g) = (−1) f (g).

2. ∑
i∈S f

hi,k = 2m−1δ
gk
g1 −

1
2

W f (gk), k = 1, . . . , 2m where δ
gk
g1 is Kronecker’s symbol.
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Proof. The first identity follows from the fact that Hm = [(−1)〈gi ,gj〉]mgi ,gj∈GF(2) . For the

second, we have to take into account the following facts:

• W f (gk) = ∑
i∈S̄ f

hi,k − ∑
i∈S f

hi,k where S̄ f = {1, 2, . . . , 2m} \ S f .

•
2m

∑
i=1

hi,k =

{
2m k = 0
0 0 < k ≤ 2m

3. Ryser’s Formula for Hm and the Walsh Spectrum of Boolean Functions

H.J. Ryser found the following alternative method to evaluate the permanent of a
matrix A = [aij] of order n,

per (A) = (−1)n
n

∑
r=1

(−1)r ∑
α∈Qr,n

n

∏
j=1

∑
i∈α

ai,j, (1)

where Qr,n denotes the set of all strictly increasing sequences of r integers taken from
the set {1, 2, . . . , n}. This is one of the fastest known general algorithms for computing a
permanent.By counting multiplications it has an efficiency of O(2nn) (see pp. 31–11 [12]).

Proposition 2. Assuming that Hm = [hi,j] is the Sylvester Hadamard matrix of order 2m, f an
arbitary m-variable Boolean function and Φ( f ) = ∏2m

j=2 ∑i∈S f
hi,j. Then,

1. Φ( f ) = − 21−2m
2m

∏
j=2

W f (gj).

2. per (Hm) =
2m

∑
r=1

(−1)rr ∑
s f∈Qr,2m

Φ( f ).

Proof. The first identity follows from Proposition 1 and the second one is immediate.

The following result studies some properties of the function Φ that we will use later.

Lemma 1. 1. Let f be an arbitrary f ∈ Bm−1 and h = [ f | f ] be the result of concatenating the
TT of f to itself. Then Φ(h) = 0.

2. Let l ∈ Am−1, f ∈ Bm−1 and h = [ f |l]. If Φ( f ) = 0 then Φ(h) = 0. For instance,
Φ(h) = 0 when wt( f ) = 2 or 4.

3. Let l(x) = 〈x, gj〉+ c ∈ Am, f ∈ Bm and h = l + f . Then Φ(h) =
(2m − 2wt( f ))

W f (gj)
(−1)cΦ( f ).

Proof. Identities 1 and 2 follow from

Wh(gk) =

{
W f1(gk) + W f2(gk) 1 ≤ k ≤ 2m−1

W f1(gk)−W f2(gk) 2m−1 + 1 ≤ k ≤ 2m

for h = [ f1| f2] and Wl(gk) is null for some k > 1. For identity 3, we have to take into
account that Wh(gk) = (−1)cW f (gj + gk).

In the sequel, we will try to extract some consequences of the Proposition 2. Firstly, it may
help in finding an interpretation of the permanent of Hm in terms of nonlinearity.

Since
W f (g) = 2m − 2wt( f + lg),

the nonlinearity of f is computed from the Walsh sprectrum by

N f = 2m−1 − 1
2

max
g∈GF(2)m

|W f (g)|.
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If a maximum absolute value of W f occurs at gk, then either lgk is the best linear
approximation of f (when W f (gk) > 0) or its complement, the affine function 1 + lgk , is as
good as, or better than, the best linear approximation (when W f (gk) < 0).

It is a simple corollary of Parseval’s identity,

2m

∑
i=1

W f (gi)
2 = 22m,

that
max

i
|W f (gi)| ≥ 2

m
2 . (2)

Therefore, for any Boolean function in m variables,

N f ≤ 2m−1 − 2
m
2 −1,

and this bound is achieved only when m is even and |W f (gi)| = 2
m
2 , ∀i. Hence,

wt( f ) =
2m − 2m/2

2
or

2m + 2m/2

2
.

An m-variable Boolean function with m even and maximum nonlinearity is called
bent. Furthermore, if f is bent then |Φ( f )| = 2m2m−2

. This is the maximum of |Φ| in Bm and
Φ( f ) < 0.

The affine functions are the other extreme, with respect to the Walsh spectrum. There
is only one non-null Walsh coefficient for an affine function, and its value is either 2m,
when it is linear, or −2m otherwise. Therefore,

Φ(lgk + c) = 0.

By Parseval’s identity, if some of the Walsh coefficients are smaller than average in
absolute value, especially if some are 0, then the others must be larger. Thus, if f is a
Boolean function with a small N f and wt( f ) even then it can be expected that Φ( f ) will be
null. For wt( f ) odd and after carrying out some computer searches up to m = 5, we found
that Φ more often takes positive than negative values.

Although the formula for nonlinearity is sign free, the quotient
per(Hm)

]Bm
could provide

some information of the “global” nonlinearity of the whole set m-variable Boolean functions.

Especially, when
per(Hm)

]Bm
<

per(Hm′)

]Bm′
could indicate a better density of Boolean functions

with high nonlinearity in Bm than in Bm′ . For m = 2 and 4, this is confirmed with the
behaviour of the quotient between the number of bent functions in m variables between
the number of Boolean functions (see [2], Chapter 7). Attending to our observation we also
claim the following.

Conjecture 1. If m is even, then

2(m−2)2m−4 ≤ per(Hm) ≤ 2m2m−2

and if m is odd, then
2(m−1)2m−2 ≤ per(Hm) ≤ 2(m+1)2m−2

.

Secondly, we will try to take advantage of computing the permanent of a Sylvester
Hadamard matrix from partitioning Bm in classes under the affine equivalence relationship.
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Definition 2 ([2]). Two m-variable Boolean functions f and h are said to be affine equivalent if
there exists an invertible matrix A with entries in GF(2) and a constant b ∈ GF(2)m such that for
all x ∈ GF(2)m it holds that

f (x) = h(A(x) + b).

The following Lemma studies the Walsh spectra of affine equivalent Boolean functions
f and h. As immediate consequence, we have N f = Nh.

Lemma 2 ([13]). Let f and h be two affine equivalent m-variable Boolean functions, f (x) =
h(A(x) + b), then

W f (g) = (−1)〈b,(A−1)T(g)〉Wh((A−1)T(g)).

Another important consequence is,

Proposition 3. If f and h are affine equivalent m-variable Boolean functions then

Φ( f ) = Φ(h).

Proof. This follows from Proposition 2 and Lemma 2. Since (A−1)T(g) runs over all the
elements of GF(2) \ {0} when g runs over all the elements of GF(2) \ {0} and the number
of times that 〈b, (A−1)T(g)〉 = 1 mod 2 is even for any fixed b ∈ GF(2) when when g runs
over all the elements of GF(2) \ {0}. This last statement is due to the fact that the number
of elements of GF(2)m with concrete values in certain positions divides 2m.

Now, the formula for the permanent of Hm can be rewritten in terms of classes under
the affine equivalence relation for the set of m-variable Boolean functions.

Proposition 4.

per(Hm) =
2m−1−1

∑
r=1

(−1)r(2r− 2m)
]Ωr,m

∑
i=1

][Xr
i ]Φ( fXr

i
). (3)

where Ωr,m is the set of classes under the affine equivalence for the m-variable Boolean functions of
weight r, fXr

i
is a representative of the class Xr

i ∈ Ωr,m, r = wt( fXr
i
).

Proof. It is immediate from Proposition 2, Proposition 3 and the fact that ∑
i∈α

hi,j =

−∑
i∈ᾱ

hi,j, j ≥ 2; where α ∪ ᾱ = {1, 2, . . . , 2m}.

Example 2. Now we are going to compute per (H3) using formula (3),

H3 =



1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1
1 1 1 1 − − − −
1 − 1 − − 1 − 1
1 1 − − − − 1 1
1 − − 1 − 1 1 −


.

Taking into account that Φ( f ) = 0 for any 3-variable Boolean function with wt( f ) even. Then,

per (H3) = (−1)1(2− 8)
]Ω1,3

∑
i=1

][X1
i ]Φ( fX1

i
) + (−1)3(6− 8)

]Ω3,3

∑
i=1

][X3
i ]Φ( fX3

i
)
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(Using Table 1, we get)

= 6× (8× 1) + 2× (56× 3) = 384.

Therefore, the problem of computing the permanent of a Sylvester Hadamard matrix
of order 2m can be carried out by enumerating m-variable Boolean functions with an arbi-
trary Walsh spectrum. This enumeration problem, although of interest in cryptography [14],
requires a huge amount of computational resources. For instance, the number of bent
functions (those Boolean functions with flat spectrum) so far has only been known for di-
mensions up to and including 8 (see [15]). Thus, Formula (3) only has a theoretical interest.

Finally, we give another formula for the permanent of Hm as a straightforward conse-
quence of some results from [16,17]. Let Sym(E) be the group of permutations on the set E
and ε(σ) be the parity +1 or −1 of σ for each σ ∈ Sym(E). Then, Γ( f ) is defined as the set
{σ ∈ Sym(GF(2)m) : ∀a ∈ GF(2)m, f (a + σ(a)) = 1}.

Now, taking into account the following facts:

1. Theorem 1 of [16] proves that the Walsh spectrum of f coincides with the spectrum of
G f , the Cayley graph associated to f , where the vertex set of G f is equal to GF(2)m,
while the edge set E f is defined as follows:

E f = {(gi, gj) | f (gi + gj) = 1}.

This connects the problem of analyzing the spectral coefficients of Boolean functions
with the framework of spectral analysis of graphs. Let us denote by w f (gi) the
eigenvalues of the adjacency matrix of the Cayley graph associated to f .

2. Corollary 2 of [17] proves that the product Π2m

i=1w f (gi) = ∑σ∈Γ( f ) ε(σ).

Therefore, the formula for the permanent of Hm given in Proposition 2 can be rewrit-
ten as

per (Hm) =
2m

∑
r=1

(−1)r+1r ∑
s f∈Qr,2m

∑σ∈Γ( f ) ε(σ)

22m−1w f (g1)
.

Table 1. Number of inequivalent m-variable Boolean functions of weight r under the affine equiva-
lence for m = 3 and r = 1, 3.

r # Inequivalent 3-Variable Boolean Functions # Orbits

1 1 8

3 1 56

4. Conclusions

The paper demonstrates a connection between two different mathematical areas:
Boolean functions and permanents. Firstly, Ryser’s formula for computing the perma-
nent of Sylvester Hadamard matrices has been rewritten in terms of the Walsh spectrum
of m-variable functions. Although this formula does not represent a real shortcut for
computing the permanent of Hm, it suggested the bounds given in Conjecture 1, since
|∏2m

j=2 W f (gj)| = 2m2m−2
when f is bent. Secondly, we show that the quotient per(Hm)/22m

provides information about the density of m-variable Boolean functions with high non-
linearity (i.e., Boolean functions with linearity close to the minimum). We have checked
until m = 5 that per(Hm)/22m

is a strictly increasing function and the quotient between the
number of bent functions in m variables and the number Boolean functions (22m

) is a strictly
decreasing function (up to m = 8) which means that density Boolean functions with high
nonlinearity are worse when m increase. Finally, let us point out the following asymptotic
result about the linearity of random Boolean functions due to Olejár and Stanek.
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Theorem 1 ([18]). There is a constant c, such that if m is big enough, then for almost every Boolean
function in m variables

N f ≥ 2m−1 − c
√

m2m/2.
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