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Abstract: This article has two objectives. Firstly, we use the vector variational-like inequalities
problems to achieve local approximate (weakly) efficient solutions of the vector optimization problem
within the novel field of the Hadamard manifolds. Previously, we introduced the concepts of
generalized approximate geodesic convex functions and illustrated them with examples. We see the
minimum requirements under which critical points, solutions of Stampacchia, and Minty weak
variational-like inequalities and local approximate weakly efficient solutions can be identified,
extending previous results from the literature for linear Euclidean spaces. Secondly, we show
an economical application, again using solutions of the variational problems to identify Stackelberg
equilibrium points on Hadamard manifolds and under geodesic convexity assumptions.

Keywords: generalized convexity; Hadamard manifold; approximate efficient solution; Stackelberg
equilibrium point

1. Introduction

The American statistician John W. Tukey said: “It was better to have an approximate answer to
the right question than an exact answer to the approximate question”.

This article is about Pareto’s approximate solutions for the unconstrained vector optimization
problem on Hadamard manifolds.

Sometimes, in practice, the best idea is not to get solutions to vector optimization problems by
solving them directly but through other problems that are related to the first ones. The variational
problems carried out in this intermediate work that this article deals in a novel context such as the
Hadamard manifolds. Similarly, sometimes we also have to be satisfied with finding approximate
solutions to the vector optimization problem instead of the exact solutions. Those feasible points whose
objective values are at a small ε distance from the optimal objective vector values are considered an
approximate Pareto solution. In some particular problems, the limit of approximate Pareto solutions,
when ε tends to zero, is a Pareto solution. Besides, many computer algorithms that exactly search
for efficient points after finite numbers of steps only reach an approximate solution. Sometimes,
obtaining exact solutions is impossible or very expensive in computational time. Thus, the search
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for approximate efficient points is relevant. In 1979, Kutateladze [1] introduced the concept of Pareto
ε-optimal solution. More recently, in 2010, Gutiérrez et al. [2] have studied the approximate solutions
for the multiobjective optimization problem profusely.

Concerning the variational problems, firstly, in 1980, Giannessi [3] introduced the vector
variational inequalities of Stampacchia type and secondly, in 1998, Giannessi [4] proposed Minty-type
inequalities. Later, Giannessi showed the equivalence between efficient solutions of a differentiable
convex vector optimization problem and solutions of a Minty vector variational inequality for gradients
and he proved the coincidence between solutions of weak Minty type and Stampacchia type vector
variational inequalities for gradients and weakly efficient solutions of a differentiable convex vector
optimization problem.

To achieve a solution to a vectorial optimization problem, we need appropriate convexity function
concepts. In 2000, Ngai et al. [5] studied the concept of approximate convexity previously introduced
in 1998 by Jofré et al. [6]. In this article, we extend these generalized convex concepts to Hadamard
manifolds. Besides, the design flight control architecture in aeroplanes uses generalized approximate
geodesic functions and non-smooth optimization problem [7].

The environment in which we are going to study them is that of Hadamard manifolds.
In non-linear spaces, such as the Hadamard manifolds, we extend concepts such as convex sets
where geodesic arcs connect two points instead of linear segments. Mathematically, working with
Hadamard manifolds has the advantage that sets that are not convex in the usual sense are convex
within these manifolds. For example, the set

X =
{
(x1, x2) ∈ R2

+ : x2
1 + x2

2 ≤ 4 ≤ (x1 − 1)2 + x2
2

}
is not convex in the usual sense with X ⊂ R2, but X is a geodesic convex on the Poincaré upper-plane
model (H2, gH), as it is the image of a geodesic segment. We can transform non-convex problems with
Euclidean metrics into convex problems with related metrics [8]. In this way, we can take advantage
of the excellent properties of convex sets.

Within applications, a considerable number of optimization problems related to engineering [9],
stereo vision processing [10], machine learning, and computer vision in fields such as cancer tissue
image analysis use Hadamard manifolds [11,12]. The Hadamard manifolds are also used in the social
sciences, for example, in economics, within game theory, specifically in the achievement of Nash
equilibrium points where strategy sets and payoff functions are geodesically convex, see [13].

In this article, we look for Stackelberg’s equilibrium points on Hadamard manifolds. Stackelberg
games were introduced in 1934 (see [14]). The Stackelberg competition model is a game in which the
leader player moves first, and then the follower player moves sequentially. Unlike Stackelberg’s model,
in the Nash model, the two players are competing with each other in the same level. In Novak et al. [15],
the authors propose Stackelberg’s model to describe the fight against terrorism.

State-of-the-art methods are as follows. Our paper has allowed us to extend another one from 2004,
by Ruiz-Garzón et al. [16], where we established the relationships between variational-like inequality
vector and optimization problems in Euclidean spaces.

The initial idea for this article comes from two groups of publications. The first is articles
dealing with the relations between vector variational inequality problems and non-smooth vector
optimization problems using quasi efficient points in n-dimensional Euclidean spaces but not on
Hadamard manifolds. Here would be the works of authors like Mishra and Upadhyay [17] in 2013
and Wang et al. [18] in 2017.

The other group of articles are the works in 2016 by Chen and Huang [19], Chen and Fang [20]
in 2016 and Jayswal, Ahmad, and Kumari [21] in 2019. This authors study the relations between
vector optimization problems and vector variational inequalities and give some existence theorems for
weakly efficient solutions on Hadamard manifolds but do not study the approximate solutions.
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Hence, this paper comes to fill those two gaps by studying the relations between approximate
solutions of vector optimization problems via solutions of variational-like inequalities problems on
Hadamard manifolds.

More recently, in 2019, in Ruiz-Garzón et al. [22], we studied the constrained vector optimization
problem as a particular case of the equilibrium vector with constraints problem on Hadamard manifolds.
In 2013, Nagy [23] studied the existence of Stackelberg equilibria points using appropriate variational
inequalities in Euclidean spaces. In 2019, Wang et al. [24] related the mixed variational inequality
with the Nash equilibrium problem on Riemannian manifolds. This same year, Ruiz-Garzón et al. [25]
have demonstrated the coincidence of Nash’s critical and equilibrium points on Hadamard context with
generalized convex payoff functions. All this is what this article completes.

In 2020, Ansari, Islam, and Yao [26] are making one of the latest efforts to relate variational and
optimization problems where they have proved some existence results for non-smooth variational
inequality problem and Minty non-smooth variational inequality problem using fixed point theorem
on Hadamard manifolds. So, the topic of this article is currently popular.

Contributions. This work aims to fix the generalized geodesic convex conditions under which we
can move from solutions of the variational-like inequalities problems to the local approximate weakly
efficient solutions of the vector optimization problem or the Stackelberg equilibrium points because
we have assured the coincidence of solutions and on surfaces that do not have to be linear like the
Hadamard manifolds.

We have organized the contents of this paper as follows. Section 2 discusses the elements typical
of manifolds: geodesic curve, geodesic convex set, subdifferential, or Hadamard manifold. In Section 3,
we define the concepts of local approximate (weakly) efficient solution for vector optimization problem
on Hadamard manifolds. We formulate the Stampacchia and Minty variational-like problems in their
strong and weak form and introduce different concepts of generalized approximate geodesic convex
functions and illustrate them with examples. In Section 4, we relate approximate efficient points
of vector optimization problem to solutions of Stampacchia and Minty variational-like inequality
problems. We characterize the approximate geodesic pseudoconvex and strictly pseudoconvex
functions as the minimum requirement for all vector critical point vectors to be approximate weakly
efficient and approximate efficient solutions, respectively. We see that under generalized approximate
geodesic convex conditions, we can identify critical points, solutions of vector variational-like
problems, and locally approximate weakly efficient points of non-smooth vector optimization problems.
In Section 5, we obtain the Stackelberg equilibrium problem via variational problems with geodesic
convex loss functions. Finally, Section 6 presents the conclusions to this study.

2. Elements from Manifolds

We begin by presenting the environment of Hadamard manifolds in which we are going to move
in this article. We recall some definitions and notions from manifolds. Let M be a Riemannian manifold
endowed with a Riemannian metric < ·, · >x on a tangent space Tx M. We can define:

(a) The corresponding norm is denoted by ‖.‖x.
(b) The length of a piecewise C1 curve γ : [a, b]→ M is defined by

L(γ) =
∫ b

a
‖γ′(t)‖γ(t)dt.

(c) The distance d that induces the original topology on M, defined as

d(x, y) = inf
{

L(γ)| γ is a piecewise C1 curve joining x and y, ∀x, y ∈ M
}

.

This allows us to define the concept of minimal geodesic as any path γ joining x and y in M such
that L(γ) = d(x, y). If M is complete, then any points in M can be joined by a minimal geodesic.
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This work is dedicated to the Hadamard manifolds, a particular case of Riemannian manifolds.

Definition 1. Recall that a simply connected complete Riemannian manifold of nonpositive sectional curvature
is called a Hadamard manifold.

For differentiable manifolds, it is possible to define the derivatives of the curves on the manifold.
The derivatives at a point x on the manifold lie in a vector space Tx M. We denote by Tx M the
n-dimensional tangent space of M at x, and denote by TM =

⋃
x∈M Tx M the tangent bundle of M.

Whereas M is not a linear space, Tx M is. Therefore, many proofs are based on transferring
properties from the manifold to the tangent space and vice versa through two functions, the Riemannian
exponential function and its inverse, exp and exp−1, respectively.

Let T̄M be an open neighborhood of M such that exp : T̄M→ M is defined as expx(v) = γv(1, x)
for every v ∈ T̄M, where γv is the geodesic starting at x with velocity v (i.e., γ(0) = x, γ′(0) = v) [27].
It is easy to see that expx(tv) = γv(t, x). The exponential mapping has inverse exp−1

x : M → Tx M,
i.e., w = exp−1

x y.
The geodesic distance between x and y is d(x, y) = ‖ exp−1

x y‖. If M = Rp
+ then exp−1

x y = y− x
and we denote by Rp

+ the nonnegative orthant of Rp, and R+ := R1
+.

When M is a Hadamard manifold, then, expx is a diffeomorphism, and for any two points x, y ∈
M, there exists a unique minimal geodesic γx,y(t) = expx(t exp−1

x y) for all t ∈ [0, 1] joining x to y.
At this moment, we are in a position to define a generalization of the convex set concept to

Hadamard environment:

Definition 2. [28] A subset X of M is said to be a geodesic convex if, for any two points x, y ∈ X, the geodesic
γ of M joined the endpoints x and y is contained in X; that is, if γ : [0, 1]→ M is a geodesic such that γ(0) = x
and γ(1) = y, then γx,y(t) = expx(t exp−1

x y) ∈ X for 0 ≤ t ≤ 1.

We also extend the concept of convex function:

Definition 3. [28] Let M be a Hadamard manifold and let X ⊆ M be a geodesic convex set. A function
θ : X → R is said to be convex if, for every x, y ∈ X,

θ(γx,y(t)) ≤ tθ(x) + (1− t)θ(y), ∀t ∈ [0, 1]

where γx,y(t) = expy(t exp−1
y x) for every t ∈ [0, 1].

As we can see, we have replaced the segments with geodesic ones that join two points. Let us
now recall the following concepts of Lipschitz function in the non-smooth case.

Definition 4. A real-valued function θ defined on a Hadamard manifold M is said to satisfy a Lipschitz
condition of rank k on a given subset X of M if |θ(x)− θ(y)| ≤ kd(x, y) for every x, y ∈ X.

A function θ is said to be Lipschitz near x ∈ M if it satisfies the Lipschitz condition of some rank on an
open neighborhood of x.

A function θ is said to be locally Lipschitz on M if θ is Lipschitz near x for every x ∈ M.

Example 1. The space of positive-definite matrices Sn
++ is an example of Hadamard manifold and with the

Riemannian metric 〈U, V〉 = 〈X−1UX−1, V〉 the function θ : Sn
++ → R is Lipschitz on Sn

++.

In this article, we use non-smooth functions. With Lipschitz functions, generalized gradients, or
subdifferentials, replace the classical derivative.
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Definition 5. [29] Let θ : M→ R be a locally Lipschitz function on a Hadamard manifold M. We define the
subdifferential of θ at x, denoted by ∂θ(x), as the subset of Tx M with the support function given by θ0(x; .),
i.e., for every v ∈ Tx M,

θ0(x, v) = sup {〈A, v〉 : A ∈ ∂θ(x)} .

It can be proved that the generalized Jacobian is

∂θ(x) = conv
{

lim
i→∞

grad θ(xi) : {xi} ⊆ X, xi → x
}

where X is a dense subset of M on which θ is differentiable.
We briefly examine some particular cases:
Obviously, if θ is differentiable at x ∈ M, we define the gradient of θ as the unique vector

grad θ(x) ∈ Tx M that satisfies

dθx(v) = 〈grad θ(x), v〉, ∀v ∈ Tx M.

When θ is a locally Lipschitz convex function, we have θ0(x; v) = θ′(x; v) for all x ∈ M. For a
convex function θ : M→ R, the directional derivative of θ at the point x ∈ M in the direction v ∈ Ty M
is defined by

θ′(x, v) = lim
t→0+

θ(expx(tv))− θ(x)
t

and the subdifferential of θ at x is

∂θ(x) =
{

A ∈ Tx M| θ′(x; v) ≥ 〈A, v〉, ∀v ∈ Tx M
}

.

However, for the vector function f = ( f1, . . . , fp) : M → Rp, the generalized Jacobian ∂ f (x) is
contained and, in general, is different from the Cartesian product of Clarke subdifferentials of the
components of f .

So far all the math tools to work on Hadamard manifolds.

3. Definitions and Formulations

In this section, we consider the unconstrained multiobjective programming problem (VOP)
defined as:

(VOP) min f (x)
s.t. x ∈ X ⊆ M

where f = ( f1, . . . fp) : X ⊆ M → Rp, with fi : X ⊆ M → R for all i : 1, . . . , p, locally Lipschitz
functions on the open set X ⊆ M, and M assumed to be a Hadamard manifold.

In this formulation, the value of the variable is not necessarily a point in Euclidean space but for
example, a positive-definite matrix. For the vectorial optimization problem, we define concepts close
to efficiency. The following concepts are an extension to Hadamard manifolds of others defined by
Mishra and Upadhyay [17] and Wang et al. [18] in linear spaces.

Definition 6. A feasible point x̄ is said to be:

(a) A local approximate efficient (AE) solution for VOP if there exists α ∈ int(Rp
+) and a neighborhood

B(x̄, δ) of x̄ such that does not exist another feasible point x ∈ B(x̄, δ) ∩ X such that

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp

+ \ {0}.
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(b) A local approximate weakly efficient (AWE) solution for VOP if there exists α ∈ int(Rp
+) and a

neighborhood B(x̄, δ) of x̄ such that does not exist another feasible point x ∈ B(x̄, δ) ∩ X such that

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −intRp

+.

Obviously, all efficient (resp. weakly efficient) point is approximate efficient (resp. weakly efficient).
The reverse may not be true.

Example 2. Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian metric defined by the scalar
product < u, v >=< g(x)u, v > with g(x) = x−2. It is well known that M is a Hadamard manifold.

The geodesic curve γ : R→ M with the initial condition γ(0) = x and γ′(0) = w ∈ Tx M is given by
γ(t) = xe(w/x)t, implies that expx(tw) = xe(w/x)t and it follows that exp−1

x y = x ln( y
x ). The Riemannian

distance is given by d(x, y) = ‖ exp−1
x y‖ = | ln( x

y )|.
Consider the VOP as follows:

min f (x) = ( f1(x), f2(x)) = (ln(x + 1), ln(x + 2))
s.t. x ∈ X =

{
x|x = et, t ∈ [0, 1]

}
⊂ M

For x̄ = 1.5, there exists another feasible point x = 1.4 ∈ B(x̄, δ) ∩ X such that

f (x)− f (x̄) = (ln(2.4), ln(3.4))− (ln(2.5), ln(3.5)) = (−0.04,−0.03) < (0, 0)

Hence, x̄ = 1.5 is not a weak efficient solution for VOP.
Now, it is easy to see that for any α = (1, 1) > 0, there exists δ > 0 such that, for all x ∈ B(x, δ), does not

exist another feasible point x ∈ B(x̄, δ) ∩ X such that

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −intRp

+

Therefore, x̄ = 1.5 is a local approximate weakly efficient (AWE) solution for VOP.

Variational problem solving is an intermediate step in solving optimization problems since their
solutions coincide under convexity assumptions. We can study the vector optimization problem via
the vector variational-like inequality problems.

We define the Stampacchia and Minty version of these vector variational- like problems on
Hadamard manifold. We consider these problems as “primal” and “dual” version problems due to
solutions’ relations, in the same way, that it happens for the mathematical programming problem.
Generally, the Minty type formulation is more accessible to resolve than the Stampacchia type.

Definition 7. [19]

(a) Stampacchia Vector Variational-Like Inequality Problem (SV): Find a point x̄ ∈ X such that there exists
no x ∈ X ⊂ M such that

〈A, exp−1
x̄ x〉 ≤ 0, ∀A ∈ ∂ f (x̄).

(b) Stampacchia Weak Vector Variational-Like Inequality Problem (SWV): Find a point x̄ ∈ X such that there
exists no x ∈ X such that

〈A, exp−1
x̄ x〉 < 0, ∀A ∈ ∂ f (x̄).

(c) Minty Vector Variational-Like Inequality Problem (MV): Find a point x̄ ∈ X such that there exists no
x ∈ X such that

〈C, exp−1
x x̄〉 ≥ 0, ∀C ∈ ∂ f (x).

(d) Minty Weak Vector Variational-Like Inequality Problem (MWV): Find a point x̄ ∈ X such that there
exists no x ∈ X such that

〈C, exp−1
x x̄〉 > 0, ∀C ∈ ∂ f (x).
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Under conditions of generalized convexity it is possible to move from the solution of a vector
variational-like problem to another, for this we need the following definitions of generalized convexity
on Hadamard manifolds. Inspired by the work of Ngai, Luc, and Thera [5] where they introduced
the concept of approximate convex functions, we present generalized approximate geodesic convex
functions on Hadamard manifolds:

Definition 8. Let M be a Hadamard manifold, X is an open geodesic convex subset of M and f : X ⊆ M→ Rp

is a locally Lipschitz function. The function f is said to be:

(a) approximate geodesic convex (AGCX) at x̄ ∈ X if for all α ∈ int(Rp
+) there exists δ > 0 such that

∀x ∈ B(x̄, δ) ∩ X, ∀A ∈ ∂ f (x̄) we have

f (x)− f (x̄)− 〈A, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ ∈ Rp
+

(b) approximate geodesic strictly convex (AGSCX) at x̄ if for all α ∈ int(Rp
+) there exists δ > 0 such that

∀x ∈ B(x̄, δ) ∩ X, ∀A ∈ ∂ f (x̄) we have

f (x)− f (x̄)− 〈A, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ ∈ intRp
+

(c) approximate geodesic pseudoconvex (AGPCX) at x̄ if for all α ∈ int(Rp
+) there exists δ > 0 such that

∀x ∈ B(x̄, δ) ∩ X, ∀A ∈ ∂ f (x̄) we have

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −intRp

+ ⇒ 〈A, exp−1
x̄ x〉 ∈ −intRp

+

(d) approximate geodesic strictly pseudoconvex (AGSPCX) at x̄ if for all α ∈ int(Rp
+) there exists δ > 0 such

that ∀x ∈ B(x̄, δ) ∩ X, ∀A ∈ ∂ f (x̄) we have

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp

+ \ {0} ⇒ 〈A, exp−1
x̄ x〉 ∈ −intRp

+

The function f is said to be approximate geodesic convex (resp. strictly convex, pseudoconvex,
strictly pseudoconvex) on X if, for every x ∈ X, f is approximate geodesic convex (resp. strictly convex,
pseudoconvex, strictly pseudoconvex) at x on X.

The following examples illustrate the above definitions and relations on Hadamard manifolds.

Example 3. Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian metric defined by the scalar
product < u, v >=< g(x)u, v > with g(x) = x−2, where X =

{
x|x = et, t ∈ [0, 1]

}
⊂ M.

Let f (x) = ( f1, f2)(x) : X ⊂ M = R++ → R2 be a function with

f1(x) = x and f2(x) =


−x + 3

2 if x < 1.5
0 if 1.5 ≤ x ≤ 2
x− 2 if x > 2

The function f is approximate geodesic convex on M because its components are linear functions.

Example 4. Let f (x) = ( f1, f2)(x) : X ⊂ M = R++ → R2 be a function defined as

f1(x) = x and f2(x) =


−x + 1.5, if x < 1.5
0, if 1.5 ≤ x ≤ 2
2− x, if x > 2
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where X =
{

x|x = et, t ∈ [0, 1]
}
⊂ M and we can calculate

∂ f (x) =


(

x2,−x2) if x < 1.5 or x > 2(
x2, ax2) if x = 1.5 or x = 2 with − 1 ≤ a ≤ 0(
x2, 0

)
if 1.5 < x < 2.

The function f is approximate geodesic pseudoconvex on X because f (x)− f (x̄) + ‖ exp−1
x̄ x‖ ∈ −intR2

+

implies that f should be nondecreasing, but f2 is nonincreasing and this previous condition is not satisfied.

Example 5. Let f (x) = ( f1, f2)(x) : X ⊂ M = R++ → R2 be a function with f (x) = (|x− 1|,−|x− 1|),
where X =

{
x|x = et, t ∈ [0, 1]

}
⊂ M. The function f is approximate geodesic strictly pseudoconvex because

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp

+ \ {0} is not satisfied for x ∈ X ⊂ M.

We now have all the tools required to discuss approximate solutions of vector optimization
problems and vector variational-like inequalities problems.

4. Approximate Solutions of Vector Optimization Problems via Vector Variational-Like
Inequality Problems

This section aims to see how to relate the solutions of these problems on Hadamard manifolds.
We set out by endeavoring to calculate the approximate efficient points, starting with the solutions

to the Stampacchia vector variational-like inequality problem.

Theorem 1. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, and f : X ⊆ M→ Rp

is a locally Lipschitz and approximate geodesic convex (AGCX) function at x̄ ∈ X. If x̄ solves the Stampacchia
vector variational-like inequality problem (SV), then x̄ is a local approximate efficient (AE) point to the vector
optimization problem (VOP).

Proof. Suppose that x̄ is not a local approximate efficient (AE) point to VOP then there exists α ∈
int(Rp

+) and a neighborhood B(x̄, δ) of x̄ such that there exists another feasible point x ∈ B(x̄, δ) ∩ X
such that

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp

+ \ {0}.

Since f is AGCX function at x̄, we have ensured that if for all α ∈ int(Rp
+) there exists δ > 0 such

that ∀x ∈ B(x̄, δ) ∩ X, ∀A ∈ ∂ f (x̄) we have

〈A, exp−1
x̄ x〉 ≤ 0

therefore x̄ is not a solution to SV. Contradiction.

The above result extends the Theorem 3.2 given by Wang et al. [18] and Mishra and Upadhyay [17]
in Euclidean spaces to Hadamard manifolds and the Theorem 3.4 given in Jayswal et al. [21] to
approximate solutions.

Thus is, under conditions of approximate geodesic convexity functions, the solutions of the
Stampacchia vector variational-like inequality problem are local approximate efficient points. To prove
the sufficient condition, we need to impose stronger assumptions on the approximate geodesic
convexity of functions:

Theorem 2. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, and f : X ⊆ M→ Rp

is a locally Lipschitz and that − f is approximate geodesic strictly convex (AGSCX) function. If x̄ is a
local approximate weakly efficient point (AWE) then x̄ also solves the Stampacchia vector variational-like
inequality problem (SV).
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Proof. Suppose that x̄ is a local AWE solution for VOP, but not the SV. Then, ∃x ∈ X and A ∈ ∂ f (x̄)
such that 〈A, exp−1

x̄ x〉 ≤ 0.
By the approximate geodesic strictly convexity (AGSCX) of − f , we have that for all α ∈ int(Rp

+)

there exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩ X, ∀A ∈ ∂ f (x̄) we have

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ < 〈A, exp−1

x̄ x〉 ≤ 0

x̄ being a local AWE point, what is a contradiction.

Corollary 1. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, and f : X ⊆ M→ Rp

is a locally Lipschitz and − f is approximate geodesic strictly convex (AGSCX) function. If x̄ is a local
approximate efficient (AE) point then x̄ solves the Stampacchia vector variational-like inequality problem (SV).

Proof. Because every local AE point is a local AWE point and by the previous theorem 2, it would
be proven.

Let us now see what the relationship is between the local approximate efficient solutions of VOP
and the solutions of Minty vector variational-like inequality problem (MV):

Theorem 3. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, and f : X ⊆ M→ Rp

is a locally Lipschitz and f is approximate geodesic convex (AGCX) function on X. If x̄ is a local approximate
efficient (AE) for the vector optimization problem (VOP) then x̄ solves the Minty vector variational-like
inequality problem (MV).

Proof. By contradiction ad absurdum. Suppose that x̄ does not solve MV then there exists
x ∈ X satisfying

〈C, exp−1
x x̄〉 ≥ 0, ∀C ∈ ∂ f (x).

Noticing that f is AGCX, for all α ∈ int(Rp
+) there exists δ > 0 such that ∀x̄ ∈ B(x, δ) ∩ X, ∀C ∈

∂ f (x) such that
f (x̄)− f (x)− 〈C, exp−1

x x̄〉+ α‖ exp−1
x x̄‖ ∈ Rp

+.

If follows that
f (x̄)− f (x) + α‖ exp−1

x x̄‖ ≥ 0

which leads to a contradiction, since x̄ is an AE solution.

Then, in an environment of generalized approximate geodesic convexity we have to:

SV ⇔ AE⇒ MV

Thus is, the generalized approximate geodesic convexity allows us to relate solutions of SV
and MV problems and local approximate efficient solutions of the vector optimization problem on
Hadamard manifolds as an extension of what happened in Euclidean spaces, see Ruiz-Garzón et al. [16].

We go one step further, and we look for when we can identify solutions to Stampacchia weak
vector variational-like inequality problem (SWV) with the local approximate weakly efficient (AWE)
points for VOP.

Theorem 4. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, and f : X ⊆ M→ Rp

is a locally Lipschitz function.
If x̄ is local approximate weakly efficient (AWE) for the vector optimization problem (VOP) then x̄ solves

the Stampacchia Weak vector variational-like inequality problem (SWV).
If f is a approximate geodesic pseudoconvex (AGPCX) function and x̄ solves the SWV problem then x̄ is

a local AWE point for VOP.
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Proof. Firstly, we prove the necessary condition. Let x̄ be the local AWE solution of VOP, since X is
an geodesic convex set, there exists α ∈ int(Rp

+) and a neighborhood B(x̄, δ) of x̄ such that there does
not exist another feasible point x ∈ B(x̄, δ) ∩ X such that

f (expx̄(t exp−1
x̄ x))− f (x̄) < −αt‖ exp−1

x̄ x‖ ∈ −Rp
+, 0 < t < 1.

Dividing the above inequality by t and taking the limit as t tends to 0, we get to does not exist
x ∈ M such that 〈A, exp−1

x̄ x〉 < 0, ∀A ∈ ∂ f (x̄) then x̄ solve SWV.

Secondly, we prove the reciprocal condition by reductio ad absurdum. If x̄ is not a local AWE
point then there exists α ∈ int(Rp

+) and a neighborhood B(x̄, δ) of x̄ such that there exists another
feasible point x ∈ B(x̄, δ) ∩ X such that

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −intRp

+.

By AGPCX of f we have ensured that for all α ∈ int(Rp
+) there exists δ > 0 such that

∀x ∈ B(x̄, δ) ∩ X, ∀A ∈ ∂ f (x̄) we have

〈A, exp−1
x̄ x〉 ∈ −intRp

+.

Contradiction, with x̄ is a solution of the SWV.

Remark that Wang et al. [18] only proves the second part of the above theorem and not for
Hadamard manifolds. Theorem 4.3 given in Ruiz-Garzón et al. [16] in n-dimensional Euclidean space
is a particular case of the result proven here.

Every approximate efficient point is approximate weakly efficient, but when the reverse condition
occurs. The following theorem proves it:

Theorem 5. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, f : X ⊆ M→ Rp is a
locally Lipschitz and approximate geodesic strictly convex (AGSCX) function on X. If x̄ is a local approximate
weakly efficient (AWE) for vector optimization problem then x̄ is a local approximate efficient (AE) for vector
optimization problem (VOP).

Proof. Suppose that x̄ is a local AWE point for VOP, but not a local AE point. Then, there exists
α ∈ int(Rp

+) and a neighborhood B(x̄, δ) of x̄ such that there exists another feasible point
x ∈ B(x̄, δ) ∩ X such that

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp

+ \ {0}.

By the AGSCX of f we have that for all α ∈ int(Rp
+) there exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩

X, ∀A ∈ ∂ f (x̄) we have

f (x)− f (x̄)− 〈A, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ > 0

which is to say, ∃x ∈ X, such that 〈A, exp−1
x̄ x〉 < 0, ∀A ∈ ∂ f (x̄), therefore, x̄ does not solve the

SWV problem.
The contradiction arises from, on the other hand, the earlier theorem 4, we have that if x̄ is a local

AWE for VOP then x̄ solves also the SWV.

We know that we look for among the critical points to find solutions to optimization problems.
In Ruiz-Garzón et al. [30], the following definition is given:
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Definition 9. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, and f : X ⊆ M→ Rp

is a locally Lipschitz function. A feasible point x̄ ∈ X is said to be a vector critical point (VCP) if there exist
some x ∈ X ⊆ M and λ ∈ Rp

+ \ {0} such that

λT〈A, exp−1
x̄ x〉 = 0 for some A ∈ ∂ f (x̄).

In the following theorem, we show that the key to the relationship between vectorial critical points
(VCP) and local AWE solutions for VOP is the approximate geodesic pseudoconvexity (AGPCX):

Theorem 6. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, and f : X ⊆ M→ Rp

is a locally Lipschitz function. Every (VCP) is a local approximate weakly efficient solution (AWE) for VOP if
and only if the function f is approximate geodesic pseudoconvex (AGPCX) on X.

Proof. Firstly, we prove that if very VCP is a local approximate weakly efficient solution AWE for
VOP then the function f is AGPCX at x̄.

Let x̄ be a local AWE for VOP then there exists α ∈ int(Rp
+) and a neighborhood B(x̄, δ) of x̄

such that
f (x)− f (x̄) < −α‖ exp−1

x̄ x‖ (1)

has no solution x ∈ B(x̄, δ) ∩ X.
On the other hand, if x̄ is a vector critical point for some x ∈ X ⊆ M, λ ∈ Rp

+ \ {0}, and A ∈ ∂ f (x̄)
we have

λT〈A, exp−1
x̄ x〉 = 0.

By Gordan’s alternative theorem there exists a vector A ∈ ∂ f (x̄) such that the following system

λT〈A, exp−1
x̄ x〉 < 0 (2)

has no solution.
Therefore, the systems (1) and (2) are equivalent, hence, for all α ∈ int(Rp

+) there exists δ > 0
such that ∀x ∈ B(x̄, δ) ∩ X, ∀A ∈ ∂ f (x̄) we have

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −intRp

+ ⇒ 〈A, exp−1
x̄ x〉 ∈ −intRp

+.

Thus is, f is AGPCX at x̄.
We prove the sufficient condition. We assume by hypothesis that f is AGPCX and that x̄ is a

VCP. Thus,
λT〈A, exp−1

x̄ x〉 = 0 (3)

for some x ∈ X ⊆ M, λ ∈ Rp
+ \ {0}, and A ∈ ∂ f (x̄) and we need to prove that x̄ is a local AWE point.

By reductio ad absurdum, suppose that x̄ is not a local weakly approximate efficient solution AWE for
VOP. Then, there exists another feasible point x ∈ B(x̄, δ) ∩ X such that

f (x)− f (x̄) + α‖ exp−1
x̄ x‖ ∈ −intRp

+.

Using the fact that f is AGPCX at x̄ on X, we have 〈A, exp−1
x̄ x〉 ∈ −intRp

+, and so

λT〈A, exp−1
x̄ x〉 < 0

which contradicts (3).

Therefore, we have extended Theorem 4.2 given by Wang et al. [18], Theorem 3.5 given by
Mishra and Upadhyay [17], and Theorem 4.5 given by Ruiz-Garzón et al. [16] for Euclidean spaces to
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Hadamard manifolds with local approximate weakly efficient (AWE) points and approximate geodesic
pseudoconvex (AGPCX) functions.

For local approximate efficient solutions, the approximate geodesic strictly approximate
pseudoconvexity (AGSPCX) replaces the role of approximate geodesic pseudoconvexity (AGPCX).
Thus, in the same way, we can prove the following corollary.

Corollary 2. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, and f : X ⊆ M→ Rp

is a locally Lipschitz function. Every VCP is a local approximate efficient solution (AE) for VOP if and only if
the function f is approximate geodesic strictly pseudoconvex (AGSPCX) on X.

We must emphasize that Theorem 6 and Corollary 2 show that approximate geodesic
pseudoconvexity (resp. approximate geodesic strictly pseudoconvexity) is a minimal requirement
for the property that every VCP is a local weakly approximate efficient (resp. approximate efficient)
solution of problem VOP on a Hadamard manifold in the non-smooth case.

In summary, we have that

[VCP⇔ AWE]⇔ [AGPCX]

[VCP⇔ AE]⇔ [AGSPCX]

The following theorem tries to check what the relationships are between Stampacchia and Minty
weak type problems.

Theorem 7. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, f : X ⊆ M → Rp

is a locally Lipschitz and approximate geodesic convex (AGCX) function. If x̄ is a local approximate weakly
efficient (AWE) point then x̄ solves Minty weak vector variational-like inequality problem (MWV).

Proof. By reductio ad absurdum. Suppose that x̄ is not a solution for (MWV), then there exists x ∈ X
such that

〈C, exp−1
x x̄〉 > 0, ∀C ∈ ∂ f (x). (4)

Since f is AGCX on X, for all α ∈ int(Rp
+) there exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩ X, ∀C ∈

∂ f (x) we have
f (x̄)− f (x)− 〈C, exp−1

x x̄〉+ α‖ exp−1
x x̄‖ ∈ Rp

+. (5)

Froms (4) and (5), there exists another feasible point x ∈ B(x̄, δ) ∩ X such that

f (x̄)− f (x) + α‖ exp−1
x x̄‖ > 0

which gives us a contradiction that x̄ is a AWE point for VOP.

We also know that:

Theorem 8. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, f : X ⊆ M→ Rp is a
locally Lipschitz. The point if x̄ solves Minty weak vector variational-like inequality problem (MWV) then x̄
solves the Stampacchia weak vector variational-like inequality problem (SWV).

Proof. This condition is Theorem 3.4 proved in Chen and Huang [19].

Therefore, the relationship between SWV and MWV problems on Hadamard manifolds is
maintained. This relationship is at the base of the theorems of existence for local approximate weak
efficient solutions for VOP, for which it is sufficient to prove that SWV problem has a solution.

Moreover, we obtain as a final result:
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Corollary 3. Let M be a Hadamard manifold, X is an open geodesic convex subset of M, f : X ⊆ M → Rp

is a locally Lipschitz and approximate geodesic convex (AGCX). The point x̄ is a local approximate weakly
efficient (AWE) if and only if is a vector critical point (VCP) if and only if x̄ solves a Stampacchia weak vector
variational-like inequality problem (WSV) if and only if x̄ solves a Minty weak vector variational-like inequality
problem (WMV).

Proof. It is the result of applying the Theorems 4, 6, 7 and 8 and that AGCX implies AGPCX.

To sum up:

VCP⇔ SWV ⇔ AWE⇔ MWV

The above theorem is an extension to local approximative weak efficient (AWE) points of the
relationships obtained by Chen and Huang [19] in Theorem 3.8 for weakly efficient points.

Under approximate geodesic pseudoconvex conditions, we can identify vector critical points,
approximate weakly efficient points of VOP and solutions of Weak Stamppacchia variational-like
inequalities problems just as we did with finite-dimensional Euclidean spaces. Let us look at an
illustrative example.

Example 6. Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian metric defined by the product
< u, v >=< g(x)u, v > with g(x) = x−2. It is well known that exp−1

x y = x ln( y
x ) and the Riemannian

distance is given by d(x, y) = ‖ exp−1
x y‖ = | ln( x

y )|. Consider:

(VOP) min f (x) = ( f1, f2)(x)
subject to x ∈ X =

{
x|x = et, t ∈ [0, 1]

}
⊂ M

where let f be a function defined as

f1(x) = ln(x) and f2(x) =

{
0, if x < 2
x− 2, if x > 2

and we can calculate
∂ f1(x) = grad f1(x) = g(x)−1 ∂ f1

∂x
= x2 1

x
= x

similarly, we get

∂ f2(x) =


0 if x < 2
ax2 if x = 2 with a ∈ [0, 1]
x2, if x > 2

Obviously, the functions f1 and f2 are locally Lipschitz on X. Now, for the function f1 at x̄ = 1 and α = 1,
we have

f1(x)− f1(x̄)− 〈A, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ =

= ln(x)− 0− ln(x) + | ln( 1
x
)| ≥ 0, ∀x ∈ X.

Similarly, one can check for function f2 at x̄ = 1 and α = 1, we get

f2(x)− f2(x̄)− 〈B, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ =

= f2(x)− 0− 0 + | ln( 1
x
)| ≥ 0, ∀x ∈ X.

Therefore, the functions f1 and f2 are AGCX and therefore AGPCX at x̄ = 1 with constant α = 1 on X.
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The point x̄ = 1 ∈ X is a vector critical point (VCP) since there exist some x ∈ X ⊆ M and λ = (0, 1) ∈
Rp
+ \ {0} such that

λT〈A, exp−1
x̄ x〉 = (0, 1)T(ln(x), 0) = 0, for some A ∈ ∂ f (x̄).

Further, x̄ = 1 is a solution for WSV problem

〈A, exp−1
x̄ x〉 = (ln(x), 0) 6< (0, 0), ∀x ∈ X and t ∈ [0, 1]

and x̄ = 1 is a solution for WMV problem because

〈C, exp−1
x x̄〉 6> 0, ∀C ∈ ∂ f (x).

Also, for x̄ = 1, we get

( f1(x)− f1(x̄), f2(x)− f2(x̄)) = (ln(x)− 0, f2(x)− 0) 6< (0, 0), ∀x ∈ X.

Therefore, x̄ = 1 is a weak efficient solution for VOP and x̄ = 1 is a local approximate weakly efficient
(AWE) solution; the corollary 3 is verified.

5. Application: Stackelberg Equilibrium Problem via Variational Problems on
Hadamard Manifolds

In the same way that we can use the vector variational-like problems to reach the local approximate
weakly efficient solutions of VOP, we see that under geodesic convex functions we can reach the
Stackelberg equilibrium points through variational problems on Hadamard manifolds.

5.1. Definitions

The Stackelberg equilibrium problem (SEP) on Riemannian manifolds context is defined as

(SEP) min f1(x1, x2)

x1 ∈ K1

s.t x2 ∈ RSE = arg min f2(x1, x2)

x2 ∈ K2

with f1, f2 : K1 × K2 → R are the payoffs/loss functions for the players, and K1, K2 ⊂ M are their
strategy sets on a Hadamard manifold.

The first step is to solve

RSE(x1) = arg min f2(x1, x2)

x2 ∈ K2

for every fixed x1 ∈ K1. Thus is, we must determine the optimal or best response set of the follower in
SEP as a reaction function, i.e., the Stackelberg equilibrium Response set as

RSE = {x2 ∈ K2 : f2(x1, y)− f2(x1, x2) ≥ 0, ∀y ∈ K2}

for every fixed x1 ∈ K1.
The next step, for the leader player, insert the reaction function of the follower into its optimization

problem, where r is a reaction function selection of the set-valued map RSE and minimize

SSE(x1) = arg min f1(x1, r(x1))

x1 ∈ K1

i.e., more precisely, the Stackelberg Equilibrium Leader set is

SSE = {x1 ∈ K1 : f1(x, r(x))− f1(x1, r(x1)) ≥ 0, ∀x ∈ K1}
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An easier way to obtain those Stackelberg equilibrium points is via the solutions of variational
problems. Related to these sets we introduce two variational problems to obtain our Stackelberg
equilibrium points. We define a slightly larger set than the Stackelberg equilibrium response RSE(x1)

set by means of variational inequalities.

(a) The so-called Stackelberg Variational Response set defined by

RSV(x1) =

{
x2 ∈ K2 : 〈 ∂ f2

∂x2
(x1, x2), exp−1

x2
y〉 ≥ 0, ∀y ∈ K2

}
.

To check the solutions of Stackelberg variational response RSV(x1) set it is easier than the elements
of RSE(x1), thus, we can locate the elements of the Stackelberg equilibrium response set among
these points.

(b) We introduce the Stackelberg Variational Leader set

SSV =

{
x1 ∈ K1 : 〈 ∂ f1

∂x1
(x1, r(x1)), exp−1

x1
y〉 ≥ 0, ∀y ∈ K1

}
.

The set SSV contains the best strategies of the first player.

5.2. Results

Let us see under what conditions sets RSE(x1) and RSV(x1) coincide:

Theorem 9. Let f2 : K1 × K2 → R be a locally Lipschitz function and Ki ⊂ M geodesic convex sets, i = 1, 2.
Then, we have the following assertions:

(a) RSE(x1) ⊆ RSV(x1) for every x1 ∈ K1.
(b) If f2(x1, ·) is geodesic convex on K2 for some x1 ∈ K1 ⇒ RSE(x1) = RSV(x1).

Proof.

(a) Given x2 ∈ RSE(x1) then f2(x1, y) ≥ f2(x1, x2), ∀y ∈ K2. By definition, one has that

〈 ∂ f2

∂x2
(x1, x2), v〉 = lim

t→0+

f2(x1, expx2(tv))− f2(x1, x2)

t
, ∀v ∈ Tx2 M.

By the geodesic convexity of K2, then expx2
(t exp−1

x2
y) ∈ K2 for every t ∈ [0, 1] whenever y ∈ K2.

If v = exp−1
x2

y ∈ Tx2 M in the above expression, we conclude that

〈 ∂ f2

∂x2
(x1, x2), exp−1

x2
y〉 ≥ 0

which implies that x2 ∈ RSV(x1) for every x1 ∈ K1.
(b) We proof the reciprocal condition. By the geodesic convexity of f2(x1, ·) function, we have that

f2(x1, y)− f2(x1, x2) ≥ 〈
∂ f2

∂x2
(x1, x2), exp−1

x2
y〉, y ∈ K2.

Since x2 ∈ RSV(x1), one has that

〈 ∂ f2

∂x2
(x1, x2), exp−1

x2
y〉 ≥ 0, y ∈ K2.

Then f2(x1, y)− f2(x1, x2) ≥ 0 for all y ∈ K2, therefore x2 ∈ RSE(x1).
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Equality would be proven.

Hence, in geodesic convex context, thus is, Ki, i = 1, 2 are geodesic convex sets and f2(x1, ·)
geodesic convex functions, we have that:

RSE(x1) = RSV(x1)

We have proven that the relationship between variational point and equilibrium points is obtained
for geodesic convex payoff functions, extending the results obtained for convex payoff functions given
by Nagy [23]. Let us illustrate this property with an example.

Example 7. Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian metric defined by the scalar
product < u, v >=< g(x)u, v > with g(x) = x−2. Let K1 = K2 = [1, 2] be are convex sets and therefore
geodesic convex sets and consider a two-player game with payoff functions defined as:

f1(x1, x2) = x2
1 − 3x1 + |x1 − 1.5|x2

f2(x1, x2) =
x2

2
2
− x1x2

We can calculate:
∂ f1(x1, x2)

∂x1
=

{
2x1 − 3 + x2, if x1 > 1.5
2x1 − 3− x2, if x1 < 1.5

∂ f2(x1, x2)

∂x2
= x2 − x1

The f2(x1, ·) is geodesic convex on K2 for every x1 ∈ K1, then for previous Theorem 9, the Stackelberg
variational response is

RSV(x1) =

{
x2 ∈ K2 : 〈 ∂ f2

∂x2
(x1, x2), exp−1

x2
y〉 ≥ 0, ∀y ∈ K2

}
= {x2 ∈ K2 : x2 = x1, x1 ∈ K1} = RSE(x1)

and in this case, the Stackelberg variational leader set and Stackelberg equilibrium response are

SSV =

{
x1 ∈ K1 : 〈 ∂ f1

∂x1
(x1, r(x1)), exp−1

x1
y〉 ≥ 0, ∀y ∈ K1

}
SSV = {(1, 1)} = SSE(x1)

In our case, this solution is the point (x1, x2) = (1, 1), which is both a Nash equilibrium point.

6. Conclusions

This paper, for the first time, introduced concepts such as local approximate weakly solutions
of unconstrained multiobjective programming problem or generalized approximate geodesic convex
functions, to demonstrate that we can achieve local approximate weakly solutions by using
Stampacchia and Minty type solutions on Hadamard manifolds. We can also obtain Stackelberg
equilibrium points via solutions to variational problems in the case of geodesic convex payoff functions,
improving on previous results in the literature. The results presented lead us to the following strengths
of the study:
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• We have extended the approximate and weakly approximate solutions given by Mishra and
Upadhyay [17] and Wang et al. [18] in linear spaces to Hadamard manifolds.

• Inspired by the work of Ngai, Luc and Thera [5], we have introduced the concepts of generalized
approximate geodesic convex functions on Hadamard manifolds, and we have illustrated them
with examples.

• We have proved that, under conditions of approximate geodesic convexity functions,
the solutions of the Stampacchia vector variational-like inequality problem are local approximate
efficient points (AE).

• We have shown the relationships between the local approximate efficient solutions for VOP and
the solutions of Minty vector variational-like inequality problem (MV).

• We have been able to identify solutions to Stampacchia weak vector variational-like inequality
problem (SW) with the local approximate weakly efficient (AWE) points for VOP.

• We have gone one step further, and we have proved that approximate geodesic pseudoconvexity
(resp. approximate geodesic strictly pseudoconvexity) is a minimal requirement for the property
that every VCP is a local weakly approximate efficient (resp. approximate efficient) solution for
VOP on a Hadamard manifold in the non-smooth case.

• Under approximate geodesic pseudoconvex conditions, we have identified vector critical points,
approximate weakly efficient points for VOP and solutions of Weak Stamppacchia and Minty
variational-like inequalities problems just as we proved with finite-dimensional Euclidean spaces.

• We have introduced two variational problems to obtain Stackelberg equilibrium points, and we
have proved under what conditions Stackelberg equilibrium points and solutions of variational
problems coincide.

In our opinion, in the future, it is necessary to solve some weak points of the study. Specifically,
algorithms should be designed to obtain approximate efficient solutions from a non-smooth vector
optimization problem and look for more economical applications of the theoretical results achieved
here. There is already software to solve optimization problems on manifolds: Manopt, a Matlab
toolbox, available at www.manopt.org, see Boumal et al. [31]. Also, Jana and Nahak [32] have
generated algorithms that converge to the solution of mixed equilibrium problems over Hadamard
manifolds and Souza [33] has designed algorithms of the proximal point method to solve scalar and
vector optimization problems over Hadamard manifolds. In our opinion, it is necessary to persevere
in these efforts to obtain approximate efficient solutions.
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