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Abstract: The classical design of cocyclic Hadamard matrices has recently been generalized by means
of both the notions of the cocycle of Hadamard matrices over Latin rectangles and the pseudococycle
of Hadamard matrices over quasigroups. This paper delves into this topic by introducing the concept
of the pseudococycle of a partial Hadamard matrix over a Latin rectangle, whose fundamentals are
comprehensively studied and illustrated.
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1. Introduction

A (binary) Hadamard matrix is a square matrix H of order n with entries in the set
{−1, 1} such that HHt = nIn. As such, all its rows (equivalently, columns) are pairwise or-
thogonal, and hence, its order must be 1, 2, or a multiple of 4. The Hadamard conjecture [1]
ensures the existence of Hadamard matrices for every order multiple of 4. It has remained
open for more than a century [2].

In 1993, as a new way for generating combinatorial designs that generalizes the group
development method, in combinatorial design theory, Horadam and de Launey [3] (see
also [4,5]) introduced the fundamentals of the so-called cocyclic development over finite
groups. In this context, a matrix with entries in the set {−1, 1} is said to be cocyclic over
a finite group (G, ·) if there exists a map φ : G × G → {−1, 1} satisfying the so-called
cocycle equation:

φ(i · j, k) φ(i, j)φ(j, k) φ(i, j · k) = 1, (1)

for all i, j, k ∈ G, so that the matrix under consideration is Hadamard equivalent to the
cocyclic matrix Mφ := (φ(i, j))i,j∈G. That is, they are equal up to permutation or negation
of rows and columns. The map φ is a cocycle [3,6] over the group. A cocyclic matrix
necessarily has a constant row and a constant column. According to the cocyclic test [6],
it is Hadamard whenever the summation of all the entries of each row is zero, except for
the ones in its constant row. As such, determining whether a cocyclic matrix is Hadamard
is computationally much faster than checking the definition of a Hadamard matrix.

In 1995, Horadam and de Launey [6] proved that this cocyclic framework provides
an excellent structural approach for dealing with the Hadamard conjecture, which would
be a consequence of the so-called cocyclic Hadamard conjecture [3], for which a cocyclic
Hadamard matrix of order 4t exists for every positive integer t. It is so that many known
families of Hadamard matrices are cocyclic over certain groups: Sylvester matrices [7],
Paley matrices [1], Williamson matrices [8], or Ito’s type Q matrices [9] (see also [2,10–14]
for some constructions in this regard). Nevertheless, the cocyclic framework turned out to
fail [12] for two of the most prolific families of Hadamard matrices: the two-circulant core
Hadamard matrices [15] and the Goethals–Seidel arrays [16].
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Very recently, a new approach introduced by the authors of [17] has successfully dealt
with a cocyclic development of Goethals–Seidel arrays, not over a group, but over a family
of Moufang loops. This approach is comprehended in the new theory of cocyclic devel-
opment over quasigroups and Latin rectangles, which has also recently been introduced
by the authors in [18]. More specifically, a cocycle φ over a quasigroup (Q, ·) is a map
φ : Q×Q→ {−1, 1} satisfying the cocycle Equation (1) for all i, j, k ∈ Q. If an ordering of
the elements of Q is established, then the cocycle φ is uniquely represented by the cocyclic
matrix Mφ := (φ(i, j))i,j∈Q. In particular, the quasigroup (Q, ·) must be a loop whenever
the matrix Mφ is Hadamard. Moreover, the cocyclic Hadamard test also holds in this case.

The main aspect of this new approach is the fact that associativity is no longer a
necessary condition for dealing with any of the concepts and results that are usually
involved in the cocyclic development over finite groups. It is so thatthe existence of
coboundaries over non-associative loops has already been proved [17]. In this regard, we
remind the reader that a cocycle φ over a quasigroup (Q, ·) is called a coboundary if there
exists a map ∂ : Q→ {−1, 1} such that

φ(i, j) = ∂(i)∂(j)∂(ij), for all i, j ∈ Q. (2)

This coboundary φ is said to be elementary if there exists an element h ∈ Q such that
∂ = ∂h, where ∂h(i) = −1, if i = h, and ∂h(i) = 1 otherwise. From the cocycle equation,
it is equivalent to say that

i(jk) = h⇔ (ij)k = h,

holds for all i, j, k ∈ Q. It is straightforwardly satisfied in the case where (Q, ·) is a group.
Moreover, the cocycle equation has turned out not to be necessary in the quasigroup
development theory. In this regard, a pseudocoboundary over the quasigroup (Q, ·) is
defined as any map ψh : Q × Q → Q with h ∈ Q, satisfying Equation (2) for some ∂h
described as above. By extension, a pseudococycle is any map ψ =

(
∏h∈H⊆Q ψh

)
φ that is

obtained as the product of some pseudocoboundaries ψh with h ∈ H ⊆ Q and a cocycle
φ, all of them over a given quasigroup (Q, ·). It is represented by the pseudococyclic
matrix Mψ := (ψ(i, j))i,j∈Q. If it is Hadamard equivalent to a given matrix, then the latter
is called a pseudococyclic Hadamard matrix. Unlike the cocyclic framework over finite
groups, every Goethals–Seidel array constitutes a pseudococyclic Hadamard matrix over a
Moufang loop [17].

This last assertion corroborates the relevant role that non-associative quasigroups play
in the generalization of the cocyclic framework over groups. This paper delves into this
topic by focusing on the fundamentals of the pseudococyclic framework not only over
quasigroups, but also over Latin rectangles. It enables us to generalize the classical notion
of the cocycle of Hadamard matrices over groups to that of the pseudococycle of partial
Hadamard matrices over Latin rectangles. We remind the reader in this regard that a partial
Hadamard matrix is an r× n (binary) matrix H with r ≤ n such that HHt = nIr. The recent
implementation of these types of matrices in cryptography [19], experimental design [20],
and quantum information [21] has awakened the interest in describing different ways of
constructing them [22–25]. In addition, Latin rectangles may be implemented in Internet
of Things (IoT) studies [26], coding theory [27,28], and modern 5G wireless networks [29].
Of particular interest in our study, the relevant role that quasigroups with few associative
triples play in cryptography [30,31] is remarkable. It is so that quasigroups with a high
amount of non-associative triples are receiving particular attention [32–36].

The paper is organized as follows. In Section 2, we review some preliminary concepts
and results on quasigroups and Latin rectangles that are used throughout the paper.
In Section 3, we introduce and illustrate the notions of both the pseudocoboundary and
pseudococycle over Latin rectangles. Then, we deal with the following two open problems
concerning the pseudocoboundary framework over Latin rectangles. Both of them are
completely answered in Section 4.
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Problem 1. Under which conditions may we ensure the existence of a partial Hadamard matrix
that is a pseudocoboundary over a given Latin rectangle?

Problem 2. Under which conditions is a given partial Hadamard matrix a pseudocoboundary over
a Latin rectangle?

We also deal with the problem of determining under which conditions we may
ensure the existence of a partial Hadamard matrix that is pseudococyclic over a given
Latin rectangle. In this regard, Sections 5 and 6 focus respectively on the pseudococyclic
framework associated with trivial cocycles and the pseudococyclic framework related to
non-trivial cocycles. Finally, since this paper has a high dependence on notation, a glossary
of symbols is shown in Appendix A.

2. Preliminaries

Let us review some of the basic concepts and results on quasigroups and Latin rect-
angles that are used throughout the paper. We refer the reader to [18,37] for more details
about these topics.

A quasigroup [38] of order n is a pair (Q, ·) formed by a finite set Q of n elements that
is endowed with a product · so that any two of the three elements i, j, k ∈ Q in the equation
i · j = k uniquely determine the third element. That is to say, the product ·makes possible
both the left and the right division in Q. A loop is a quasigroup (Q, ·) with a unit element e
such that i · e = e · i = i for all i ∈ Q. Every associative quasigroup is a group.

The Cayley table of a quasigroup of order n constitutes a Latin square of the same
order; that is, an n× n array with entries in a set of n distinct symbols so that each symbol
occurs exactly once per row and exactly once in each column. The removal of at least
one row of a Latin square constitutes a Latin rectangle. More specifically, an r× n Latin
rectangle, with r ≤ n, is an r× n array with entries in a set of n distinct symbols so that
each symbol occurs exactly once per row and at most once in each column. From here
on, letRr,n denote the set of r× n Latin rectangles with entries in the set [n] := {1, . . . , n}.
Further, L[i, j] denotes the symbol contained in the cell (i, j) of a Latin rectangle L ∈ Rr,n.

Let L ∈ Rr,n. If one defines the subset of symbols

S(L) := [r] ∪ {L[i, j] | 1 ≤ i, j ≤ r} ⊆ [n],

then a cocycle over L is any function φ : S(L) × [n] → {−1, 1} satisfying the cocycle
equation

φ(L[i, j], k)φ(i, j)φ(j, k)φ(i, L[j, k]) = 1, (3)

for all positive integers i, j ≤ r and k ≤ n. It is termed trivial if φ(i, j) = 1 for all
(i, j) ∈ S(L)× [n]. Notice that the negation -φ of a cocycle φ over L is also a cocycle over L.
Further, every cocycle φ over L is uniquely represented by the cocyclic matrix

Mφ := (φ(i, j))(i,j)∈S(L)×[n].

The following example illustrates all these concepts. From here on, we represent,
respectively, the symbols −1 and 1 in any given binary array with the symbols + and −.

Example 1. Let us consider the 2× 4 Latin rectangle

L ≡ 1 2 4 3
3 1 2 4

where we have highlighted those cells that are used to define the subset of symbols S(L) = {1, 2, 3}.
There exist exactly four cocycles over the Latin rectangle L: the trivial one and the function
φ : S(L)× [4] → {−1, 1}, which are represented by the following matrix, together with their
respective negations.
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Mφ ≡
+ + + +
+ + + −
+ + − +

In particular, let us check that the function φ satisfies the cocycle Equation (3).

• If i = 1, then L[i, j] = j for all j ∈ {1, 2}, and hence, the cocycle equation holds readily from
the fact that the first row of the matrix Mφ is constant.

• If (i, j) = (2, 1), then φ(3, k)φ(2, 1)φ(1, k)φ(2, L[1, k]) = φ(3, k)φ(2, L[1, k]) = 1 for all
k ≤ 4.

• If (i, j) = (2, 2), then φ(1, k)φ(2, 2)φ(2, k)φ(2, L[2, k]) = φ(2, k)φ(2, L[2, k]) = 1 for all
k ≤ 4.

3. Pseudocoboundaries and Pseudococycles over Latin Rectangles

In this section, we introduce the notions of both the pseudocoboundary and pseudo-
cocycle over a Latin rectangle as a natural generalization of the similar concepts described
over quasigroups in [17] by keeping in mind, to this end, the concepts introduced in [18].
Firstly, let us define the types of Latin rectangles where such a generalization is feasible.

Let r and n be two positive integers such that r ≤ n, and let L ∈ Rr,n be such that

L[L[i, j], k] 6= L[i, L[j, k]], (4)

for some triple (i, j, k) ∈ [r] × [r] × [n] such that L[i, j] ≤ r. We apply the term “non-
associative” to any such triple satisfying Condition (4). Let NS(L) denote from here on
the set of such non-associative triples within the Latin rectangle L. The cardinality of
this set is the index of non-associativity of L, which is denoted by ns(L). If r = n, then
Condition (4) implies that the associative property does not hold for the triple (i, j, k) in
the non-associative quasigroup with L as its Cayley table. In this case, the index ns(L)
measures the associativity of that quasigroup. This index has been studied for different
types of algebraic structures [39–42] since it was introduced in 1947 by Climescu [43] for
any given multiplicative system. Particularly, it is easily verified [44] that ns(L) ≤ n3 − n
for every Latin square L of order n. This upper bound has recently been proved [32] to be
sharp for order n > 1. Furthermore, it is also known [45] that 16n− 64 ≤ ns(L) for every
Latin square of even order n ≥ 168. The reader is also referred to [46,47] for some other
studies dealing with the number of non-associative triples of a Latin square.

In this paper, we are interested in the Latin rectangles L ∈ Rr,n such that ns(L) > 0.
The following lemma characterizes the case of r = 1.

Lemma 1. Let L ∈ R1,n. Then, ns(L) > 0 if and only if L[1, 1] = 1 and there exists a positive
integer k ≤ n such that L[1, k] 6= k.

Proof. Notice from Condition (4) that every non-associative triple of the 1 × n Latin
rectangle L would be of the form (1, 1, k) for some positive integer k ≤ n satisfying that
L[L[1, 1], k] 6= L[1, L[1, k]]. In addition, Condition (4) also implies that L[1, 1] = 1 and,
hence, L[1, k] 6= L[1, L[1, k]]. As a consequence, L[1, k] 6= k.

Let L ∈ Rr,n be such that ns(L) > 0. Every non-associative triple (i, j, k) ∈ NS(L) is
related to two distinct positive integers h1, h2 ≤ n such that h1 = L[L[i, j], k] 6= L[i, L[j, k]] =
h2. From here on, letH(L) denote the set of positive integers h ≤ n such that

{h} ⊂ {L[L[i, j], k], L[i, L[j, k]]}, (5)

for some (i, j, k) ∈ NS(L). It is readily verified that ns(L) = 0 whenever n ≤ 2. So, from
now on, we suppose that n > 2 throughout the paper. Notice also that every Latin square
in Rn,n with ns(L) > 0 is the Cayley table of a non-associative quasigroup of order n.
The case r < n is illustrated by the following example.
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Example 2. Let us consider the Latin rectangle L that is described in Example 1. Then,

NS(L) = {(1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 2, 4), (2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 2, 4)}.

Hence, ns(L) = 8. In addition,H(L) = [4]. To prove it, take, for instance, the triples (2, 2, 1)
and (1, 2, 1) in NS(L).

Let L ∈ Rr,n be such that ns(L) > 0 and let h ∈ H(L). We define the h-pseudocoboun-
dary over the Latin rectangle L as the map ψL;h : [r]× [n] → {−1, 1}, which is described
so that

ψL;h(i, j) := ∂h(i) ∂h(j) ∂h(L[i, j]), (6)

for all positive integers i ≤ r and j ≤ n, where

∂h(k) :=

{
−1, if k = h,

1, otherwise.

In addition, we apply the term “h-pseudocoboundary matrix” over L to the r × n
matrix MψL;h := (ψL;h(i, j))(i,j)∈[r]×[n]. When we want to refer to any h-pseudocoboundary
(matrix) over L, we omit the prefix h. As such, the concept of the pseudocoboundary over
a Latin rectangle constitutes a generalization of that over a quasigroup [17], which arises
when r = n. In any case, the following result establishes that the pseudococyclic framework
over Latin rectangles is not included in the cocyclic framework over such arrays. Hence,
it constitutes a new proposal that has to be independently studied.

Lemma 2. Let L ∈ Rr,n be such that ns(L) > 0 and let h ∈ H(L). The h-pseudococycle ψL;h is
not a cocycle over L.

Proof. Let us see that the h-pseudocycle ψL;h does not hold the cocycle Equation (3). To
this end, let (i, j, k) ∈ NS(L) be such that Condition (5) holds. Then,

ψL;h(L[i, j], k)ψL;h(i, j)ψL;h(j, k)ψL;h(i, L[j, k]) = ∂h(L[L[i, j], k])∂h(L[i, L[j, k]]) = −1.

Let us illustrate all of these concepts with a series of examples.

Example 3. Let L be the Latin rectangle described in Example 1. According to Example 2, we can
define four pseudocoboundaries over L, which are represented by the following matrices.

MψL;1 ≡
− − − −
− − + +

MψL;2 ≡
+ + + +
− + + −

MψL;3 ≡
+ + − −
− + − +

MψL;4 ≡
+ + − −
+ + + +

The following example enables us to ensure that, unlike the cocyclic development
over quasigroups, there exist Hadamard matrices that are pseudocoboundary matrices
over quasigroups that are not loops.
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Example 4. Let us consider the Latin square

L ≡

1 2 4 3
2 1 3 4
3 4 1 2
4 3 2 1

.

We have that ns(L) = 32 andH(L) = [4]. In order to prove this last end, take, for instance,
the subset {(1, 1, 3), (1, 3, 3)} ⊂ NS(L). It is simply verified that every h-pseudocoboundary
matrix of L with 1 ≤ h ≤ 4 is Hadamard.

MψL;1 ≡

− − − −
− − + +
− + − +
− + + −

MψL;2 ≡

+ + + +
+ + − −
+ − + −
+ − − +

MψL;3 = MψL;4 ≡

+ + − −
+ + + +
+ − + −
+ − − +

Observe that all the pseudocoboundary matrices shown in Examples 3 and 4 constitute
(partial) Hadamard matrices. Proposition 2 described in Section 4 enables us to ensure that
this condition does not hold in general. Finally, the following example enables us to ensure
the existence of Hadamard matrices that are not cocyclic over any Latin rectangle, but that
are pseudocoboundary matrices over a Latin square.

Example 5. It is known ([18] Example 41) that the following Hadamard matrix is not cocyclic
over any Latin rectangle.

M ≡

 + + + +
− + + −
− − + +
+ − + −


Nevertheless, it constitutes a 2-pseudocoboundary matrix over the Latin square

L ≡

1 2 3 4
3 4 2 1
2 1 4 3
4 3 1 2

.

Let us finish this section by introducing the notion of a pseudococycle over a Latin
rectangle as a generalization of both the concepts of a cocycle over a Latin rectangle [18]
and a pseudococycle over a quasigroup [17]. To this end, we take into account the previ-
ously described notion of a pseudocoboundary over Latin rectangles. Thus, we define a
pseudococycle over a given Latin rectangle L ∈ Rr,n with ns(L) > 0 as any map

ψ =

 ∏
h∈S⊆H(L)

ψh

φ

that is obtained as the product of some h-pseudocoboundaries with h ∈ S ⊆ H(L) and a
cocycle φ, all of them over the Latin rectangle L. It is represented by the pseudococyclic
matrix Mψ := (ψ(i, j))(i,j)∈[r]×[n]. In particular, notice from this definition that every
pseudocoboundary over a Latin rectangle is a pseudococycle over the latter by means
of the trivial cocycle. Further, if S = ∅, then all of these concepts refer to the cocyclic
framework over Latin rectangles, whose fundamentals were comprehensively studied
in [18].

In a similar way, if r = n, then they refer to the pseudococyclic framework over
quasigroups, which has only been briefly dealt with in [17]. This paper focuses, therefore,
on the fundamentals of the case S 6= ∅, whatever the positive integer r ≤ n is. The
following example illustrates this case.
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Example 6. Let L be the Latin rectangle described in Example 1. Then, the following assertions
are readily verified from the cocyclic matrix Mφ described in that example, together with the
pseudocoboundary matrices MψL;3 and MψL;4 described in Example 3.

• The pseudococyclic matrix over L that is associated with the pseudococycle ψL;3ψL;4 is partial
Hadamard.

MψL;3ψL;4 ≡
+ + + +
− + − +

• The pseudococyclic matrix over L that is associated with the pseudococycle ψL;3ψL;4φ is not a
pseudococyclic partial Hadamard matrix.

MψL;3ψL;4φ ≡
+ + + +
− + − −

4. Pseudocoboundary Partial Hadamard Matrices over Latin Rectangles

Let us start our study by dealing with Problem 1 concerning the conditions under
which we can ensure the existence of pseudocoboundary partial Hadamard matrices over
a given Latin rectangle L ∈ Rr,n with ns(L) > 0. Firstly, we focus on the case r = 1.

Proposition 1. There always exists a pseudocoboundary partial Hadamard matrix over a Latin
rectangle L ∈ R1,n satisfying that ns(L) > 0.

Proof. Let L ∈ R1,n be such that ns(L) > 0. From Lemma 1, it must be L[1, 1] = 1 and
L[1, j] = h for some positive integers j, h ≤ n such that 1 6= j 6= h 6= 1. Hence, the Latin
rectangle condition of no repetition of symbols in each row implies that L[L[1, 1], j] = h 6=
L[1, h] = L[1, L[1, j]]. Thus, (1, 1, j) ∈ NS(L) and h ∈ H(L). The matrix ψL;h is trivially
partial Hadamard over L.

Let us focus now on the case r > 1. Since ns(L) = 0 for all L ∈ R2,2, we also suppose
that the number n ≥ r of columns is a multiple of 4. We start with a preliminary lemma
that describes the entries within each row and column of any pseudocoboundary partial
Hadamard matrix over a given Latin rectangle. Particularly, it characterizes the rows and
columns that are uniformly signed.

Lemma 3. Let r and n be two positive integers such that 2 ≤ r ≤ n. Further, let ψL;h be the
h-pseudocoboundary over a Latin rectangle L ∈ Rr,n with ns(L) > 0 and h ∈ H(L). Then, the
following assertions hold.

1. Let i ≤ r be such that L[i, h] 6= h. Then,

ψL;h(i, j) =

{
−∂h(i), if either j = h or L[i, j] = h,

∂h(i), otherwise.

2. Let j ≤ n. Then,

ψL;h(i, j) =

 −∂h(j), if

{
h ≤ r, L[h, j] 6= h and either i = h or L[i, j] = h,
h > r and L[i, j] = h,

∂h(j), otherwise.

3. The ith row of the h-pseudocoboundary matrix MψL;h with i ≤ r is uniformly signed if and
only if L[i, h] = h. In such a case, ψL;h(i, j) = ∂h(i) for all j ≤ n. As a consequence, there
always exists at most one uniformly signed row.

4. Let j ≤ n. If h > r, then the jth column of Mψh is uniformly signed if and only if L[i, j] 6= h
for every positive integer i ≤ r. Otherwise, if h ≤ r, then the jth column of Mψh is uniformly
signed if L[h, j] = h. If r > 2, then this sufficient condition is also necessary. In any case,
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ψL;h(i, j) = ∂h(j) for all i ≤ r. Furthermore, there exists exactly one uniformly signed
column if h ≤ r and r > 2.

Proof. The first two assertions and the sufficient conditions of the last two assertions follow
from the Definition (6). Let us focus now on the proof of the necessary condition of the
third assertion (that one of the four statements follows similarly). Thus, let us suppose
the existence of a positive integer i ≤ r such that the ith row of the h-pseudocoboundary
matrix MψL;h is uniformly signed. Then, the mentioned Definition (6) implies that either
∂h(L[i, j]) = ∂h(j) or ∂h(L[i, j]) = −∂h(j) for all j ≤ n. Nevertheless, since n > 2, the
definition of the map ∂h, together with the Latin rectangle condition of no repetitions
of symbols per row, implies that the second option is not possible. Hence, it must be
L[i, h] = h. The final consequence described in the third assertion holds straightforwardly
from the Latin rectangle condition of no repetitions of symbols in each column.

Concerning the last sentence of the fourth assertion, the definition of the map ∂h,
together with (6) and the Latin rectangle condition of no repetitions of symbols per row,
implies the existence of exactly one uniformly signed column when r > 2.

Example 7. Let L be the Latin rectangle described in Example 1. The third assertion of Lemma 3
explains, for instance, the uniformity of signs of the first row of both matrices MψL;1 and MψL;2 , and
also of the second row of the matrix MψL;4 , all of them described in Example 3. In addition, it also
explains that there does not exist any uniformly signed row in the matrix MψL;3 .

The fourth assertion of Lemma 3 explains, for instance, the uniformity of signs of the first
column of MψL;1 and the third column of MψL;2 . It also explains the two uniformly signed columns
of both matrices MψL;3 and MψL;4 . Nevertheless, this fourth assertion of Lemma 3 does not explain
the uniformity of signs of the second columns of MψL;1 and MψL;2 , which follows indeed from the
second assertion of this lemma. It illustrates, in particular, the exceptional case r = 2 that was
discarded therein. The case r > 2 is illustrated by the existence of exactly one uniformly signed
column in any of the Latin squares described in Examples 4 and 5.

The following result characterizes the Latin rectangles over which a pseudocobound-
ary partial Hadamard matrix exists. As such, it constitutes, together with Proposition 1,
the answer to Problem 1.

Proposition 2. Let r and n be two positive integers such that 2 ≤ r ≤ n. Further, let ψL;h be
the h-pseudocoboundary over a Latin rectangle L ∈ Rr,n with ns(L) > 0 and h ∈ H(L). Then,
the pseudocoboundary matrix MψL;h is partial Hadamard if and only if n = 4.

Proof. Lemma 3 enables us to ensure that the h-pseudocoboundary ψL;h has at least r− 2
rows with precisely two negative entries. Hence, the pseudocoboundary matrix MψL;h

cannot be Hadamard if n > 4. Concerning the case n = 4, let us remind the reader that
there exist 576 Latin squares of order four, from which only 16 of them constitute the Cayley
table of an associative quasigroup. A simple and exhaustive computation enables us to
ensure thatH(L) = [4] for all of the 560 remaining Latin squares L ∈ R4,4, and also that all
of their related h-pseudocoboundary matrices are partial Hadamard, whatever the positive
integer h ≤ 4 is. As a consequence, every h-pseudocoboundary matrix of an r× 4 Latin
rectangle is partial Hadamard, whatever the two positive integers h, r ≤ 4 are.

For Latin squares of any given order, the following result holds as an immediate
consequence of Lemma 3, once it is noticed that its two last assertions always hold in the
case of L being a Latin square. It is illustrated by any of the pseudocoboundary matrices
described in Examples 4 and 5.

Proposition 3. Let ψL;h be the h-pseudocoboundary over a Latin square of order n > 2 with ns(L) >
0 and h ∈ H(L). Then, the h-pseudocoboundary matrix MψL;h contains exactly one uniformly
signed row and exactly one uniformly signed column.
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Let us finish this section by focusing on Problem 2 concerning the conditions under
which a given partial Hadamard matrix is a pseudocoboundary over some Latin rectangle
L ∈ Rr,n with ns(L) > 0. From Proposition 2, we may assume n = 4. Firstly, we focus on
the case r = 1. Notice in this regard that every 1× n binary array trivially constitutes a
partial Hadamard matrix by itself.

Lemma 4. Let M = (m1j) be a 1× 4 partial Hadamard matrix. It is a pseudocoboundary matrix
over a Latin rectangle if and only if m11 = 1 and it contains exactly two negative entries.

Proof. In order to prove the necessary condition, let us suppose that the partial Hadamard
matrix M is an h-pseudocoboundary over a Latin rectangle L ∈ R1,4 with h ∈ H(L) 6= ∅.
From Lemma 1, it must be L[1, 1] = 1, and then, the Latin rectangle condition of no
repetitions of symbols in each row implies that (1, 1, 1) 6∈ NS(L) and 1 6∈ H(L). Hence,
h 6= 1 and m11 = 1. In addition, since every non-associative triple in NS(L) is of the form
(1, 1, k) with k ∈ {2, 3, 4} and h ∈ H(L), it should be {h} ⊂ {L[L[1, 1], k0], L[1, L[1, k0]]} =
{L[1, k0], L[1, L[1, k0]]} for some positive integer k0 ∈ {2, 3, 4}. If k0 = h, then we get
{h} ⊂ {h}, which is a contradiction. So, L[1, h] 6= h, and hence, the matrix M contains
exactly two negative entries. More specifically, m1k0 = m1h = −1.

Now, in order to prove the sufficient condition, let us suppose that m11 = 1 and let
h, i, j ∈ [4] \ {1} be three distinct positive integers such that m1,h = m1,i = −1 and m1,j = 1.
Then, let L ∈ R1,4 be defined so that L[1, 1] = 1, L[1, h] = j, L[1, i] = h, and L[1, j] = i.
Then, L[L[1, 1], h] = j 6= i = L[1, L[1, h]]. Hence, (1, 1, h) ∈ NS(L) and h ∈ H(L). It is
straightforwardly verified that the partial Hadamard matrix M is an h-pseudocoboundary
over L.

Let us focus now on the case 2 ≤ r ≤ 4. The following preliminary lemma holds
straightforwardly from the definition (6) of a pseudocoboundary.

Lemma 5. Let r ∈ {2, 3, 4} and let M = (mij) be an r× 4 partial Hadamard matrix such that
there exists a Latin rectangle L ∈ Rr,4 with ns(L) > 0, over which M is an h-pseudocoboundary
matrix for some h ∈ H(L). The following assertions hold.

1. The ith row of the partial Hadamard matrix M with i ≤ r is uniformly signed if and only if
L[i, h] = h. In such a case, mij = ∂h(i) for all j ≤ 4.

2. If h ≤ r and L[h, h] = h, then mih = −1 for all i ≤ r. Moreover, if mij = −1 with i 6= h 6= j
then L[i, j] = h.

3. If L[i, h] = h for some i ∈ [r] \ {h}, then mjh = −∂h(j) for all j ∈ [r] \ {i}. Moreover,
if mjk = −∂h(j) for some j ∈ [r] \ {i} and k ∈ [4] \ {h}, then L[j, k] = h.

Example 8. Let us consider the following four partial Hadamard matrices.

M1 ≡
− − − −
+ − − +

M2 ≡
− − − −
− − + +

M3 ≡
+ + + +
+ + − − M4 ≡

+ + + +
− + − +

Let N = (nij) ∈ {M1, M2}. The first statement of Lemma 5 enables us to ensure that, if the
matrix N were an h-pseudocoboundary over some Latin rectangle L ∈ R2,4 with h ∈ H(L) 6= ∅,
then it should be h = 1 and L[1, 1] = 1. However, then, the second statement of the mentioned
lemma implies that n2,1 = −1, which is not the case when N = M1. As a consequence, the partial
Hadamard matrix M1 is not a pseudocoboundary over any Latin rectangle. Further, concerning
the case N = M2, the second statement of Lemma 5 also enables us to ensure that L[2, 2] = 1.
Thus, for instance, it is readily verified that the matrix M2 is a 1-pseudocoboundary over the
Latin rectangle
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L ≡ 1 4 2 3
2 1 3 4

.

In particular, (2, 1, 3) ∈ NS(L) = {(1, 1, 2), (1, 1, 3), (1, 1, 4), (2, 1, 2), (2, 1, 3), (2, 1, 4),
(2, 2, 2), (2, 2, 3), (2, 2, 4)} and 1 ∈ H(L) = [4]. More specifically, L[L[2, 1], 3] = 3 6= 1 =
L[2, L[1, 3]].

Notice also that the partial Hadamard matrices M3 and M4 are, respectively, 2-pseudocoboundaries
over the Latin rectangles

L′ ≡ 3 2 1 4
2 4 3 1

and L′′ ≡ 1 2 3 4
3 1 4 2

.

In particular, (2, 1, 3) ∈ NS(L′) = {(1, 2, 3), (1, 2, 4), (2, 1, 1), (2, 1, 3)} and 2 ∈ H(L′) =
{1, 2, 3}. More specifically, L′[L′[2, 1], 3] = 3 6= 2 = L′[2, L′[1, 3]]. Further, concerning the
Latin rectangle L′′, we have that (2, 2, 2) ∈ NS(L′′) = {(2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 2, 4)} and
2 ∈ H(L′′) = [4]. In fact, L′′[L′′[2, 2], 2] = 2 6= 3 = L′′[2, L′′[2, 2]].

The following result characterizes the partial Hadamard matrices that have a uni-
formly signed row with all its entries being negative, which are pseudocoboundaries over a
Latin rectangle. Its constructive proof is illustrated by the matrix M2 and the Latin rectangle
L described in Example 8.

Proposition 4. Let M = (mij) be an r × 4 partial Hadamard matrix with r > 1 such that
mhj = −1 for some h ≤ r and all j ≤ 4. It is a pseudocoboundary matrix over a Latin rectangle if
and only if mih = −1 for all i ≤ r.

Proof. The necessary condition follows from Lemma 5. Now, in order to prove the suffi-
cient condition, let i ∈ [r] \ {h} and j ∈ [4] \ {h} be such that mij = −1. It always exists be-
cause M is an r× 4 partial Hadamard matrix with r > 1. In addition, let k ∈ [4] \ {h} be such
that i 6= k 6= j. Finally, let L be any r× 4 Latin rectangle satisfying that L[h, h] = L[i, j] = h,
L[h, k] = j, L[i, h] = i, and L[i, k] = k. Moreover, it must be L[i′, j′] = h for all i′ ∈ [r] \ {h}
and j′ ∈ [4] \ {h} such that mi′ j′ = −1. In particular, L[L[i, h], k] = k 6= h = L[i, L[h, k]].
Hence, (i, h, k) ∈ NS(L) and h ∈ H(L). It is simply verified that the partial Hadamard
matrix M is h-pseudocoboundary over L.

In a similar way, the next result characterizes the partial Hadamard matrices have a
uniformly signed row with all its entries being positive, which are pseudocoboundaries
over a Latin rectangle. The two subcases described in its constructive proof are respectively
illustrated by the matrices M3 and M4, together with the Latin rectangles L′ and L′′,
which are described in Example 8.

Proposition 5. Let M = (mij) be an r× 4 partial Hadamard matrix with r > 1 such that mij = 1
for some positive integer i ≤ r and all j ≤ 4. It is a pseudocoboundary matrix over a Latin rectangle
if and only if there exists a positive integer h ∈ [r] \ [i] such that mjh = −∂h(j) for all j ∈ [r] \ {i}.

Proof. Again, the necessary condition follows from Lemma 5. Now, in order to prove the
sufficient condition, let j ∈ [4] \ {h} be such that mhj = 1. It always exists because M is an
r× 4 partial Hadamard matrix with r > 1. The following two cases arise.

• If j = i, then let k ∈ [4] \ {h, i} and let L be any r× 4 Latin rectangle satisfying that
L[i, h] = L[h, i] = h, L[i, k] = i and L[h, k] = k. In addition, it must be L[i′, j′] = h for
all i′ ∈ [r] \ {i} and j′ ∈ [4] \ {h} such that mi′ j′ = −∂h(i′). Then, L[L[h, i], k] = k 6=
h = L[h, L[i, k]].
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• If j 6= i, then let L be any r × 4 Latin rectangle satisfying that L[i, h] = L[h, j] = h,
L[h, h] = i, and L[h, i] = j. Again, we also impose that L[i′, j′] = h for all i′ ∈ [r] \ {i}
and j′ ∈ [4] \ {h} such that mi′ j′ = −∂h(i′). Then, L[L[h, h], h] = h 6= j = L[h, L[h, h]].

In any case, h ∈ H(L), and thus, the partial Hadamard matrix M is an h-pseudocoboun-
dary over L.

Finally, in order to give a complete answer to Problem 2, the following result char-
acterizes the r× 4 partial Hadamard matrices with r > 1 and without uniformly signed
rows, which are pseudocoboundaries over a Latin rectangle. Example 9 illustrates its
constructive proof.

Proposition 6. Let M = (mij) be an r × 4 partial Hadamard matrix with r > 1 and without
uniformly signed rows. Then, the following assertions hold.

1. If r = 4, then the matrix M is not a pseudocoboundary over any Latin square of order four.
2. If r ∈ {2, 3}, then the matrix M is pseudocoboundary over an r× 4 Latin rectangle if and

only if the following two conditions hold.

(a) There exists a positive integer h ≤ 4 such that mih = −∂h(i) for all i ≤ r.
(b) For each positive integer i ≤ r, there exists exactly one positive integer ji ∈ [4] \ {h}

such that mi,ji = mi,h. Moreover, the set {j1, . . . , jr} is formed by r distinct positive
integers.

If this is the case, then the matrix M is indeed an h-pseudocoboundary over an r× 4 Latin
rectangle.

Proof. Let us suppose that the partial Hadamard matrix M is an h-pseudocoboundary
over a Latin rectangle L ∈ Rr,4 with ns(L) > 0 and h ∈ H(L). From the first assertion of
Lemma 5, the non-existence of uniformly signed rows within M implies that L[i, h] 6= h
for every positive integer i ≤ r. It constitutes a contradiction when r = 4 because of the
Latin rectangle condition of no repetitions of symbols per column. Hence, the first assertion
holds. Further, if r ∈ {2, 3}, then mih = ψL;h(i, h) = ∂h(i)∂h(h)∂h(L[i, h]) = −∂h(i) for
every positive integer i ≤ r. Similarly, it is readily proven that the elements ji described in
Condition (2b) refer to the columns in which the symbol h appears in the ith row of L. That
is, L[i, ji] = h for all i ≤ r. Notice that all these columns are pairwise distinct from the Latin
rectangle condition of no repetition of symbols in each column.

In order to prove the sufficient condition of the second assertion, let us suppose that
both Conditions (2a) and (2b) hold. Then, let L be any r× 4 Latin rectangle satisfying that
L[i, h] 6= h = L[i, ji] for every positive integer i ≤ r. The following two cases arise.

• If h ≤ r, then let us consider a positive integer i ∈ [r] \ {h}. It exists because r ≥ 2.
The following two subcases arise.

– If i = ji, then let us impose that L[i, jh] = jh. Then, L[L[i, i], jh] = h 6= jh =
L[i, L[i, jh]].

– If i 6= ji, then let us impose that L[i, h] = i, L[i, jh] = ji and L[h, ji] = jh. Under
such assumptions, we have that L[L[i, h], ji] = h 6= ji = L[i, L[h, ji]].

• If h > r, then let us consider a pair of distinct positive integers i1, i2 ≤ r. Notice again
to this end that r ≥ 2. Similarly to the previous case, the following two subcases arise.

– Firstly, let us suppose the existence of a positive integer i ∈ {i1, i2} such that
i = ji. Without loss of generality, we can suppose that i1 = ji1 . Then, let us
impose that L[i2, i1] = i1 and L[i2, h] = i2. Under such assumptions, we have that
L[L[i2, i1], i1] = h 6= i2 = L[i2, L[i1, i1]].

– Otherwise, let us suppose that i1 6= ji1 and i2 6= ji2 . Then, let us impose
that L[i1, i1] = i1 and L[i1, h] = i2. Under such assumptions, we have that
L[L[i1, i1], ji1 ] = h 6= i2 = L[i1, L[i1, ji1 ]].

In any case, h ∈ H(L), and thus, the partial Hadamard matrix M is an h-pseudocoboun-
dary over L.
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Example 9. Let us consider the following six partial Hadamard matrices.

M1 ≡
+ − + +
+ − − −
+ + + −

M2 ≡
+ − + +
+ + + −
+ − − −

M3 ≡
− − + +
− + + −
+ − + −

M4 ≡
+ − − +
− + − +
− − + +

M5 ≡
− + + −
+ + − −
+ − + −

M6 ≡
+ + − −
− + + −
+ − + −

Condition (2a) in Proposition 6 implies that M1 is not a pseudocoboundary over any 3× 4 Latin
rectangle. It also enables us to ensure that the only possibility to get M2 to be an h-pseudocoboundary
over some 3× 4 Latin rectangle for some positive integer h ≤ 4 is by considering h = 2. However,
then, Condition (2b) implies that it neither is an option because, for instance, the first row only
contains one negative sign.

On the other hand, the partial Hadamard matrix M3 is a 2-pseudocoboundary over the
Latin rectangle

L ≡
2 1 3 4
1 4 2 3
4 3 1 2

.

Here, ns(L) = 20, (1, 1, 3) ∈ NS(L), and 2 ⊂ H(L) = [4]. More specifically, L[L[1, 1], 3] =
2 6= 3 = L[1, L[1, 3]].

Further, the partial Hadamard matrices M4 and M5 are, respectively, 2- and 4-pseudocoboundaries
over the Latin rectangle

L′ ≡
4 1 2 3
1 3 4 2
2 4 3 1

.

In particular, ns(L′) = 16, {(1, 2, 3), (2, 1, 1)} ⊂ NS(L′), and {2, 4} ⊂ H(L′) = [4].
More specifically, L′[L′[1, 2], 3] = 2 6= 3 = L′[1, L′[2, 3]] and L′[L′[2, 1], 1] = 4 6= 2 =
L′[2, L′[1, 1]].

Finally, the partial Hadamard matrix M6 is a 4-pseudocoboundary over the Latin rectangle

L′′ ≡
1 3 4 2
4 1 2 3
2 4 3 1

.

Particularly, ns(L′′) = 18, (1, 1, 3) ∈ NS(L), and 4 ∈ H(L′′) = [4]. More specifically,
L′′[L′′[1, 1], 3] = 4 6= 2 = L′′[1, L′′[1, 3]].

5. Pseudococyclic Partial Hadamard Matrices Associated with the Trivial Cocycle

Let us focus now on the characterization of the Latin rectangles L ∈ Rr,n with ns(L) > 0
over which there exists a pseudococyclic partial Hadamard matrix. As a first stage, we
focus in this section on the pseudococycles associated with the trivial cocycle; that is, on the
pseudococycles of the form ∏h∈S⊆H(L) ψL;h. Of course, the case |S| = 1 corresponds to the
pseudocoboundary framework that has already been studied in the previous subsection. It
is so that we start with a generalization of Lemma 3 that describes the rows and columns
of the pseudococyclic matrix associated with one such pseudococycle. To this end, for each
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given subset S ⊆ H(L) and each pair of positive integers i ≤ r and j ≤ n, we previously
define the sets

D−L (S, i) := {k ∈ [n] : L[i, k] ∈ S} and D+
L (S, j) := {k ∈ [r] : L[k, j] ∈ S}.

If r = n, then the sets D−L (S, i) and D+
L (S, i) constitute, respectively, the left division

of S by i and the right division of S by j, both of them within the quasigroup with the Latin
square L as its Cayley table. In addition, for all r ≤ n, the Latin rectangle condition of no
repetitions of symbols per row implies that |D−L (S, i)| = |S|. Further, let A∆B denote from
here on the symmetric difference between two given sets A and B.

Lemma 6. Let ψ = ∏h∈S⊆H(L) ψL;h be a pseudococycle over a Latin rectangle L ∈ Rr,n with
ns(L) > 0. Then, the following assertions hold.

1. Let i ∈ [r]. Then,

ψ(i, j) =

{
−∏h∈S ∂h(i), if j ∈ S∆D−L (S, i),

∏h∈S ∂h(i), otherwise.

2. Let j ∈ [n]. Then,

ψ(i, j) =

{
−∏h∈S ∂h(j), if i ∈ (S ∩ [r])∆D+

L (S, i),

∏h∈S ∂h(j), otherwise.

3. Let i ∈ [r]. The ith row of the pseudococyclic matrix Mψ is uniformly signed if and only if
one of the following two conditions hold.

(a) S∆D−L (S, i) = ∅, in whose case, ψ(i, j) = ∏h∈S ∂h(i), for all j ≤ n.
(b) S∆D−L (S, i) = [n], in whose case, ψ(i, j) = −∏h∈S ∂h(i), for all j ≤ n.

4. Let j ∈ [n]. The jth column of the pseudocyclic matrix Mψ is uniformly signed if and only if
one the following two conditions hold.

(a) (S ∩ [r])∆D+
L (S, i) = ∅, in which case ψ(i, j) = ∏h∈S ∂h(j) for all i ≤ r.

(b) (S ∩ [r])∆D+
L (S, i) = [r], in which case ψ(i, j) = −∏h∈S ∂h(j) for all i ≤ r.

Proof. The first two assertions and both sufficient conditions of the last two assertions
follow readily from the definition (6). So, let us focus on the necessary condition of the
third statement (that one of the last statements follows similarly). Thus, let us suppose
the existence of a positive integer i ≤ r such that the ith row of the pseudococyclic
matrix Mψ is uniformly signed. Then, the mentioned definition (6) implies that either
∏h∈S ∂h(j) = ∏h∈S ∂h(L[i, j]) or ∏h∈S ∂h(j) = −∏h∈S ∂h(L[i, j]) for all j ≤ n. In the first
case, j ∈ S if and only if L[i, j] ∈ S, and hence, Condition (3a) holds. In the second case,
j ∈ S if and only if L[i, j] 6∈ S, and hence, Condition (3b) holds. In any case, the result
follows then from the Latin rectangle condition of no repetitions of symbols in each row.

Example 10. Let L be the Latin rectangle described in Example 1. The third assertion of Lemma 6
explains, for instance, the uniformity of signs of the first row of the pseudococyclic matrix MψL;3ψL;4

appearing in Example 6. More specifically, if we consider the subset S = {3, 4}, thenD−L (S, 1) = S.
That is, the the first row of L satisfies the condition described in Lemma 6. (3a).

The third assertion of Lemma 6 also implies that S = [4] is the only way to get a pseudococyclic
matrix related to a pseudococycle ψ = ∏h∈S⊆[4] ψL;h of L, whose rows are all uniformly signed. In
such a case, all the signs within Mψ are negative.

Further, the fourth assertion of Lemma 6 explains, for instance, the uniformly signed columns
of the following two pseudococyclic matrices.

MψL;1ψL;2 ≡
− − − −
+ − + − MψL;2ψL;3 ≡

+ + − −
+ + − −



Mathematics 2021, 9, 113 14 of 20

Thus, concerning the first pseudococyclic matrix, we have that, if S = {1, 2}, thenD+
L (S, 2) =

S and D+
L (S, 4) = ∅. Concerning the second pseudococyclic matrix, we have that, if S =

{2, 3}, then D+
L (S, 1) = D+

L (S, 3) = {2} = S ∩ [2] and (S ∩ [2]) ∩ D+
L (S, 2) = (S ∩ [2]) ∩

D+
L (S, 3) = ∅.

Finally, the last statement of the fourth assertion of Lemma 6 explains, for instance, the
uniformity of signs of the second and fourth columns of the pseudococyclic matrix MψL;3 MψL;4 ,
which is described in Example 6. Here, if S = {3, 4}, then D+

L (S, 2) = ∅ and D+
L (S, 4) = {1, 2}.

The following result characterizes the Latin rectangles L ∈ Rr,n with r > 1 and
ns(L) > 0 over which a pseudococycle ∏h∈S⊆H(L) ψL;h exists, so that its related pseudoco-
cyclic matrix is partial Hadamard.

Proposition 7. Let ψ = ∏h∈S⊆H(L) ψL;h be a pseudococycle over a Latin rectangle L ∈ Rr,n with
r > 1 and ns(L) > 0. The pseudococyclic matrix Mψ is partial Hadamard if and only if, for each
pair of distinct positive integers i1, i2 ≤ r,∣∣D−L (S, i1)∆D−L (S, i2)

∣∣ = n
2

.

Proof. Since the pseudococyclic matrix Mψ is partial Hadamard, all its rows are pairwise
orthogonal and, hence, ∑j≤n ψ(i1, j)ψ(i2, j) = 0. Then, the first statement of Lemma 6
implies that∣∣(S∆D−L (S, i1)

)
∩
(
S∆D−L (S, i2)

)∣∣+ ∣∣([n] \ (S∆D−L (S, i1)
))
∩
(
[n] \

(
S∆D−L (S, i2)

))∣∣ = n
2

.

Equivalently, after all the set operations are done and simplified, we have that∣∣[n] \ (D−L (S, i1)∆D−L (S, i2)
)∣∣ = n

2

and the result follows straightforwardly.

The worst-case complexity of the implicit algorithm described in Proposition 7 corre-
sponds to a Latin square of order n. Thus, the time complexity of this algorithm is O(n4),
which is required for the computation of all the difference sets under consideration (notice
that the computation of all the sets D−L (S, i) with i ≤ n only requires a time complexity
of O(n3)).

Example 11. Let L be the Latin rectangle defined in Example 1, and let us consider the pseudoco-
cyclic matrix associated with the pseudococycle MψL;2 MψL;4 , which is partial Hadamard.

MψL;2 MψL;4 ≡
+ + − −
− + + −

If we consider the subset S = {2, 4}, then we have that D−L (S, 1) = {2, 3} and D−L (S, 2) =
{3, 4}. Hence, D−L (S, 1)∆D−L (S, 2) = {2, 4}, which is formed by two elements, as is required by
Proposition 7.

Proposition 7 establishes a lower bound of the cardinality ofH(L) for any r× n Latin
rectangle L with r > 1 over which a pseudococyclic partial Hadamard matrix associated
with the trivial cocycle exists.

Theorem 1. Let ψ = ∏h∈S⊆H(L) ψL;h be a pseudococycle over a Latin rectangle L ∈ Rr,n with
r > 1 and ns(L) > 0 such that |H(L)| < n

4 . Then, the pseudococyclic matrix Mψ is not
partial Hadamard.
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Proof. For each positive integer i ≤ r, we have already indicated that |D−L (S, i)| = |S|.
As a consequence, |D−L (S, i1)∆D−L (S, i2)| ≤ 2 · |S| ≤ 2 · |H(L)| < n

2 for all i1, i2 ≤ r. Then,
the result follows straightforwardly from Proposition 7.

The following example illustrates how the bound described in Theorem 1 does not
constitute a necessary condition for ensuring the non-existence of pseudococyclic partial
Hadamard matrices associated with the trivial cocycle.

Example 12. Let us consider the following 2× 12 Latin rectangle.

L ≡ 1 2 4 3 5 6 7 8 9 10 11 12
2 4 3 1 6 5 8 7 10 9 12 11

It is easily verified that NS(L) = {(1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), (2, 1, 3), (2, 1, 4)},
andH(L) = {1, 3, 4}. In addition, we have that

D−L ({1}, 1)∆D−L ({1}, 2) = {1, 4}, D−L ({3}, 1)∆D−L ({3}, 2) = {3, 4},
D−L ({4}, 1)∆D−L ({4}, 2) = {2, 3}, D−L ({1, 3}, 1)∆D−L ({1, 3}, 2) = {1, 3},
D−L ({1, 4}, 1)∆D−L ({1, 4}, 2) = {1, 2, 3, 4}, D−L ({3, 4}, 1)∆D−L ({3, 4}, 2) = {2, 4}

and D−L ({1, 3, 4}, 1)∆D−L ({1, 3, 4}, 2) = {1, 2}. Thus, |D−L (S, 1)∆D−L (S, 2)| 6= 6 for all S ⊆
H(L), and hence, no pseudococyclic partial Hadamard matrix associated with the trivial cocycle
over L exists.

The next result deals with the pseudococyclic partial Hadamard matrices that have a
uniformly signed row.

Theorem 2. Let ψ = ∏h∈S⊆H(L) ψL;h be a pseudococycle over a Latin rectangle L ∈ Rr,n with
ns(L) > 0 so that the pseudococyclic matrix Mψ is partial Hadamard. Then, there exists at most
one positive integer i ≤ r such that S∆D−L (S, i) ∈ {∅, [n]}. If it exists, then |S∆D−L (S, i′)| = n

2
for all i′ ∈ [r] \ {i}. Moreover, n

4 ≤ |S| ≤
3n
4 , and hence, |H(L)| ≥ n

4 .

Proof. Since the partial Hadamard matrix Mψ can only have at most one uniformly signed
row, the third statement of Lemma 6 implies the existence of at most one positive integer
i ≤ r such that S∆D−L (S, i) ∈ {∅, [n]}. Thus, D−L (S, i) ∈ {S, [n] \ S}. Now, let us consider
a positive integer i′ ∈ [r] \ {i}. The following two cases arise.

• If D−L (S, i) = S, then Proposition 7 implies that

n
2
= |D−L (S, i)∆D−L (S, i′)| = |S∆D−L (S, i′)|.

• If D−L (S, i) = [n] \ S, then Proposition 7 implies that

n
2
= |D−L (S, i)∆D−L (S, i′)| =

∣∣([n] \ S)∆D−L (S, i′)
∣∣ = n− |S∆D−L (S, i′)|.

Hence, |S∆D−L (S, i′)| = n
2 . The rest of the result follows easily from the fact that the Latin

rectangle condition of no repetitions of symbols per row implies that |D−L (S, i)| = |S|.

The worst-case complexity of the implicit algorithm in Theorem 2 corresponds to a
Latin square of order n. Thus, the time complexity of this algorithm is O(n3), which is
required for computing all the sets D−L (S, i) with i ≤ n, and also for computing all the
difference sets under consideration.

The following example illustrates the sharpness of both bounds concerning the cardi-
nality of the subset S in Theorem 2.

Example 13. Let L be the Latin rectangle defined in Example 1. In order to illustrate that the upper
bound described in Theorem 2 is sharp, it is enough to consider the pseudococyclic matrix over L
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MψL;1ψL;2ψL;3 ≡
− − + +
− − − − .

Thus, if we consider the subset S = {1, 2, 3}, then D−L (S, 2) = S ,and hence, S∆D−L (S, 2) =
∅. In addition,D−L (S, 1) = {1, 2, 4}, and thus, S∆D−L (S, 1) = {3, 4}. That is, |S∆D−L (S, 1)| = 2.

Now, in order to illustrate the sharpness of the lower bound described in Theorem 2, we
can make use of any of the h-pseudocoboundary matrices over L with h ∈ {1, 2, 4} that are
described in Example 3. Thus, for instance, if we consider S = {1}, then D−L (S, 1) = S and
S∆D−L (S, 2) = {1, 2}.

In order to illustrate the sharpness of this lower bound, but now avoiding the purely pseudo-
coboundary framework, let us consider the following 2× 8 Latin rectangle.

L′ ≡ 1 2 3 4 5 6 7 8
4 3 1 2 6 5 8 7

It is easily verified that NS(L′) = {(1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 2, 2)}, and H(L′) =
{3, 4}. If we consider the subset S = {3, 4}, then we have that D−L′(S, 1) = S and S∆D−L′(S, 2) =
{1, 2, 3, 4}. Then, the pseudococyclic matrix over L′ associated with the pseudococycle ψL′ ;3ψL′ ;4 is
partial Hadamard.

MψL′ ;3ψL′ ;4 ≡
+ + + + + + + +
− − − − + + + +

6. Pseudococyclic Partial Hadamard Matrices Associated with Non-Trivial Cocycles

Let us finish our study by focusing on the pseudococycles ∏h∈S⊆H(L) ψL;hφ over a
given Latin rectangle L ∈ Rr,n with ns(L) > 0 where the cocycle φ over L is not trivial. The
following result generalizes Proposition 7 by characterizing the Latin rectangles over which
one such pseudococycle exists so that its related pseudococyclic matrix is partial Hadamard.

Proposition 8. Let ψ = ∏h∈S⊆H(L) ψL;hφ be a pseudococycle over a Latin rectangle L ∈ Rr,n
with ns(L) > 0 for some cocycle φ over L. The pseudococyclic matrix Mψ is partial Hadamard if
and only if, for each pair of positive integers i1, i2 ≤ r, the set{

j ∈ D−L (S, i1)∆D−L (S, i2) : φ(i1, j) = φ(i2, j)
}
∪
{

j 6∈ D−L (S, i1)∆D−L (S, i2) : φ(i1, j) = −φ(i2, j)
}

(7)

has cardinality n
2 .

Proof. The result follows in a similar way to the proof of Proposition 7, once it is observed
that ∑j≤n ψ(i1, j)ψ(i2, j) = 0 if and only if

∑
j∈D−L (S,i1)∆D−L (S,i2)

φ(i1, j)φ(i2, j) = ∑
j 6∈D−L (S,i1)∆D−L (S,i2)

φ(i1, j)φ(i2, j).

Keeping in mind the observation made just after Proposition 7, the time complexity of
the implicit algorithm described in Proposition 8 is O(n5), which corresponds once more
to the Latin square case.

Example 14. Let L be the Latin rectangle defined in Example 1 and let us consider the pseu-
dococyclic matrix MψL2;3ψL2;4 φ2 described in Example 6, which is not partial Hadamard. If we
again take S = {3, 4}, then we have that D−L (S, 1) = {3, 4} and D−L (S, 2) = {1, 4}. Hence,
D−L (S, 1)∆D−L (S, 2) = {1, 3}. In this case, the set defined in (7) concerning the pseudococycle
ψL;3ψL;4φ2 is the set {2, 3, 4}, which is not formed by two elements, as is required by Proposition 8.



Mathematics 2021, 9, 113 17 of 20

Example 15. Let us consider the Latin rectangle L ∈ R2,12 that is described in Example 12, and
let us define the cocycle φ over L that is represented by the matrix

Mφ ≡
+ + + + + + + + + + + +
+ + + + − − + + + + + +
+ + + + + + + + + + + +

Notice here that the third row of this cocyclic matrix corresponds to the positive integer
4 ∈ S(L) = {1, 2, 4}. The pseudococyclic matrix associated with the pseudococycle ψL;1ψL;4φ is

MψL;1ψL;4φ ≡
− − + + − − − − − − − −
− − + + − − + + + + + +

which is partial Hadamard. If we consider the subset S = {1, 4}, then we have that D−L (S, 1)∆D−L
(S, 2) = [4]. Moreover, the set defined in (7) concerning the pseudococycle ψL;1ψL;4φ is the set
{1, 2, 3, 4, 5, 6}, which is formed by six elements, as is required by Proposition 8.

The pseudococyclic partial Hadamard matrix in Example 15 shows that Theorem 1
cannot be generalized for pseudococycles associated with non-trivial cocycles. Concerning
the possible generalization of Theorem 2, the following result deals with the case of
a pseudocycle related to a non-trivial cocycle whose pseudococyclic partial Hadamard
matrix contains a uniformly signed row.

Proposition 9. Let ψ = ∏h∈S⊆H(L) ψL;hφ be a pseudococycle over a Latin rectangle L ∈ Rr,n
with ns(L) > 0 for some cocycle φ over L. If the pseudococyclic matrix Mψ is partial Hadamard,
then there exists at most one positive integer i ≤ r and an integer a ∈ {−1, 1} such that

φ(i, j) =

{
a, if j ∈ S∆D−L (S, i),
−a, if j 6∈ S∆D−L (S, i).

Proof. Since the pseudococyclic matrix Mψ is partial Hadamard, it can only have at most
one uniformly signed row. Hence, there exists at most one positive integer i ≤ r such that
ψ(i, j1) = ψ(i, j2) for all pairs of positive integers j1, j2 ≤ n. The result then follows from
the third statement of Lemma 6, together with the definition of the cocycle φ.

Example 16. Let us consider the Latin rectangle L ∈ R2,12 that is described in Example 12 and
let us consider the cocycle φ over L that is represented by the matrix

Mφ ≡
− − + + − − − − − − − −
+ + − − − − − − − − − −
+ + + + + + + + + + + +

Further, let us consider the subset S = {1, 4}. Then, S∆D−L (S, 1) = {3, 4} and S∆D−L (S, 2) =
{1, 2}. According to Proposition 9, the pseudococyclic matrix MψL;1ψL;4φ over L is not partial
Hadamard. In fact,

MψL;1ψL;4φ ≡
+ + + + + + + + + + + +
− − − − − − − − − − − − .

7. Conclusions and Further Work

In this paper, we have introduced the concepts of both the pseudocoboundary and
pseudococycle over a Latin rectangle (see Section 3) as a natural generalization of the
similar notions recently described in [17] over quasigroups. To this end, we have made
use of the cocyclic framework over Latin rectangles previously introduced by the authors
in [18]. Both cocyclic and pseudococyclic developments over Latin rectangles together
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constitute a much more general framework than the classical cocyclic framework over
groups. Its potential has already been illustrated in the mentioned papers by means of
examples of (pseudo)cocyclic Hadamard matrices over quasigroups that are not cocyclic
over any group. This paper constitutes a step forward in this regard. Thus, for instance,
Example 5 illustrates a pseudocoboundary Hadamard matrix over a Latin square that is
not cocyclic over any Latin rectangle.

Let us remark that this paper is conceived as an introductory stage concerning the
fundamentals of both the pseudocoboundary and the pseudococyclic frameworks over
Latin rectangles. Particularly, in Section 4, we completely answered both Problems 1 and 2
concerning the conditions under which we may ensure either the existence of a partial
Hadamard matrix that is a pseudocoboundary over a given Latin rectangle or, reciprocally,
the existence of a Latin rectangle over which a given partial Hadamard matrix is a pseudo-
coboundary. More specifically, Propositions 1 and 2 give the answer of the first question,
whereas the second one is answered by Lemma 1, together with Propositions 4–6.

Furthermore, we have also dealt with the problem of determining under which
conditions we may ensure the existence of a partial Hadamard matrix that is pseudococyclic
over a given Latin rectangle. To this end, we have distinguished two distinct frameworks
(see Sections 5 and 6), depending on whether we make use of trivial cocycles or not.
The reciprocal problem concerning the conditions under which we may ensure the existence
of a Latin rectangle over which a given partial Hadamard matrix is pseudococyclic is
established as future work. Once this last question is solved, the next natural stage would
be the construction of pseudococyclic partial Hadamard matrices of higher dimensions in
order to deal with the Hadamard conjecture described in the introductory section, which
indeed constitutes the keystone of the theory of Hadamard matrices.

The following open questions are also established as future work. They generalize
similar ones described for the cocyclic development of Hadamard matrices over Latin
rectangles [18].

Problem 3. Let M be an r× n partial Hadamard matrix that is not pseudococyclic over any Latin
rectangle. Does there exist, however, a partial Hadamard equivalent matrix in the same equivalence
class of M for which one such Latin rectangle can be found?

Problem 4. Let us consider an equivalence class of Hadamard matrices such that none of them are
cocyclic over any finite group. Does there exist, however, a Hadamard matrix within such a class
that is pseudococyclic over a Latin rectangle?

Pseudococycles over Latin rectangles have been introduced in this paper as the prod-
uct of a cocycle with some pseudocoboundaries. A possible generalization of this notion
consists of enabling the product of a cocycle not only with pseudocoboundaries (related
to non-associative triples), but also with elementary coboundaries (related to associative
triples). This would constitute a more general framework that puts together both co-
cyclic and pseudococyclic frameworks over Latin rectangles. Its formal description and
characterization is also proposed as future work.

Finally, another question to take into consideration for further study is the following
one. Both the pseudocoboundary and the pseudococyclic frameworks over Latin rectangles
described in this paper are based on the existence of non-associative triples within a Latin
rectangle. As was already indicated in the introductory section and in Section 3, the study
of this type of triple in the case of dealing with Latin squares has received particular
attention in the recent literature [32–36] because of its possible application in different areas
as cryptography [30,31]. A comprehensive study of non-associative triples in the case of
dealing with Latin rectangles instead of Latin squares is established, therefore, as natural
further work.
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Appendix A. Glossary of Symbols

H(L) The set of positive integers satisfying Condition (5).
MψL;h The h-pseudocoboundary matrix associated to a Latin rectangle L ∈ Rr,n, with h ∈ H(L).
[n] The set {1, . . . , n}.
ns(L) The non-associative index of a Latin rectangle L.
NS(L) The set of non-associative triples of a Latin rectangle L.
Rr,n The set of r× n Latin rectangles with entries in [n].
S(L) The subset of symbols describing the rows of a cocyclic matrix over a Latin rectangle L.
ψL;h The h-pseudocoboundary over a Latin rectangle L, with h ∈ H(L).
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