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Abstract: This paper proposes a method for learning the process of curve fitting through a general
class of totally positive rational bases. The approximation is achieved by finding suitable weights
and control points to fit the given set of data points using a neural network and a training algorithm,
called AdaMax algorithm, which is a first-order gradient-based stochastic optimization. The neural
network presented in this paper is novel and based on a recent generalization of rational curves which
inherit geometric properties and algorithms of the traditional rational Bézier curves. The neural
network has been applied to different kinds of datasets and it has been compared with the traditional
least-squares method to test its performance. The obtained results show that our method can generate
a satisfactory approximation.

Keywords: normalized totally positive bases; normalized B-bases; rational bases; curve fitting;
neural network

1. Introduction

The problem of obtaining a curve that fits a given set of data points is one of the fundamental
challenges of Computer Aided Geometric Design (CAGD), and it has become prevalent in several
applied and industrial domains, such as Computer-Aided Design and Manufacturing (CAD/CAM)
systems, Computer Graphics and Animation, Robotics Design, Medicine and many others. To face this
issue, several families of bases of functions have been considered. There is a large body of literature on
this topic and there are numerous methods to solve this issue, such as several least-squares techniques
and different progressive iterative approximation methods (see [1–3] and the references therein).

Given a system (u0, . . . , un) of linearly independent functions defined on an interval I ⊆ R and
P0, . . . , Pn ∈ Rk, we can define a parametric curve as γ(t) = ∑n

i=0 Piui(t), t ∈ I. The polygon P0 · · · Pn,
formed by the ordered sequence of points Pi ∈ Rk, i = 0, . . . , n, is called the control polygon of γ and
the points Pi, i = 0, . . . , n, are named the control points of γ with respect to (u0, . . . , un). A matrix is
totally positive (TP) if all its minors are nonnegative (see [4]). A system of functions (u0, . . . , un) defined
on I is TP if all its collocation matrices

(
uj(ti)

)
i,j=0...,n with t0 < · · · < tn in I are TP. A TP system of

functions on I is normalized (NTP) if ∑n
i=0 ui(t) = 1, for all t ∈ I. A basis provides shape-preserving

representations if the shape of the curve imitates the shape of its control polygon. Normalized totally
positive bases provide shape-preserving representations. The normalized B-basis of a given space is an
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NTP basis such that the matrix of change of basis of any NTP basis with respect to the normalized
B-basis is TP and stochastic. This property implies that the control polygon of a curve with respect to
the normalized B-basis can be obtained by a corner cutting algorithm from its control polygon with
respect to any other NTP basis. Thus, the control polygon with respect to the normalized B-basis is
closer in shape to the curve than the control polygon with respect to any other NTP basis. Furthermore,
the length of the control polygon with respect to the normalized B-basis lies between the length of the
curve and the length of its control polygon with respect to any other NTP basis. Similar properties
hold for other geometric properties such as angular variation or number of inflections (see [5–7]). So,
the Normalized B-basis has the optimal shape-preserving properties among all NTP bases of the
space. The Bernstein bases and the B-spline bases are the normalized B-bases of their corresponding
generated spaces.

It is well known that the bases obtained by rationalizing Bernstein bases are also the normalized
B-bases of the generated spaces of rational functions. These spaces are made up of rational polynomial
functions where the denominator is a given polynomial. Rational Bernstein bases add adjustable
weights to provide closer approximations to arbitrary shapes and have become a standard tool in
CAGD since they allow the exact representation of conic sections, spheres and cylinders. In [8],
the generalization of rational Bernstein bases obtained when replacing the linear polynomial factors by
trigonometric or hyperbolic functions or their mixtures with polynomials were analyzed. The generated
rational curves inherit geometric properties and algorithms of the traditional rational Bézier curves
and so, they can be considered as modeling tools in CAD/CAM systems.

As mentioned before, the weights of rational bases can be used as shape parameters. However,
it is well known that the effect of changing a weight in a rational basis is different from that of moving a
control point of the curve (see Figure 1). Thus, the interactive shape control of rational curves through
adjusting weights is not a straightforward task and it is not easy to design algorithms to obtain the
appropriate weights (see [9], Chapter 13).

Figure 1. Initial curve (line) and curve obtained (dotted line) after changing the weights and/or control
points. Left: changing the fourth weight; center: changing the fourth control point; and right: changing
the fourth weight and the fourth control point.

Some recent papers have shown that the application of Artificial Intelligence (AI) techniques can
achieve remarkable results regarding the problem of obtaining rational curves that fit a given set of
data points. To face this issue, in [10], a bio-inspired algorithm was applied through the use of rational
Bézier curves. Besides, in [11,12], evolutionary algorithms were applied to rational B-spline curves.
As a novelty, in this paper, we define a one-hidden-layer neural network using the general class of
rational bases with optimal shape-preserving properties proposed in [8]. In that work, the authors
presented evaluation and subdivision algorithms. However, this is the first time that the problem
of obtaining a rational fitting curve using these general class of totally positive rational bases is
modeled by a neural network and its weights and control points optimized using a training algorithm.
In this paper, we extend [8] for their application in curve fitting training the neural network with a
recent stochastic learning process, the AdaMax algorithm [13], to find suitable weights and control
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points. In this approximation process, the rational basis is a hyperparameter and can be changed by
substituting the linear factors by polynomial, trigonometric or hyperbolic functions, thus expanding
the potential range of applications to include more difficult shapes.

The layout of the paper is as follows. In Section 2, we recall several concepts regarding CAGD
and we present a general class of rational bases which are normalized B-bases. Then, in Section 3,
we present a one-hidden-layer neural network based on the rational bases presented in the previous
section to approximate a given set of data points. This neural network is trained with an optimization
algorithm to update the weights and control points used to construct a curve that approximates the
given set of data points, while decreasing a loss function. In Section 4, several experiments are provided
illustrating the use of the neural network with different normalized B-bases to test its performance
giving an approximation of different kinds of sets of data points. Moreover, the proposed method has
been compared with the traditional least-squares method. Finally, conclusions and future work are
presented in Section 5.

2. Shape-Preserving and Rational Bases

Let us suppose that I ⊆ R and f , g : I → R are nonnegative continuous functions. Then, for n ∈ N,
we can define the system (un

0 , . . . , un
n) where:

un
k (t) =

(
n
k

)
f k(t)gn−k(t) such that t ∈ I, k = 0, . . . , n. (1)

For any positive weights wn
i , i = 0, . . . , n, let us define ωn(t) = ∑n

i=0 wn
i un

i (t) and denote by
(ρn

0 , . . . , ρn
n) the rational basis described by

ρn
i (t) = wn

i
1

ωn(t)
un

i (t), i = 0, . . . , n, (2)

where (un
0 , . . . , un

n) is defined in (1). Clearly, this system spans a space of rational functions with
denominator ωn(t),

Rn = span{ρn
i (t) | i = 0, . . . , n} = {u(t)/ωn(t) | u(t) ∈ Un}, (3)

where Un is the space generated by (un
0 , . . . , un

n).
The following result corresponds to Corollary 4 of [8] and provides the conditions characterizing

that the system given in (2) has optimal shape-preserving properties.

Proposition 1. The system of functions given in (2) is the normalized B-basis of the spaceRn defined in (3) if
and only if the function f /g defined on I0 = {t ∈ I | g(t) 6= 0} is increasing and satisfies

inf
{

f (t)
g(t)

| t ∈ I0

}
= 0, sup

{
f (t)
g(t)

| t ∈ I0

}
= +∞. (4)

Let us see several choices of functions f and g satisfying the conditions of Proposition 1. Let us
consider the functions

f (t) =
t− a
b− a

, g(t) =
b− t
b− a

, t ∈ [a, b]. (5)

It is well known that the corresponding rational basis (2), which is the rational Bernstein basis,
is the normalized B-basis of its generated space (3).

We can also consider the functions

f (t) = t2, g(t) = 1− t2, t ∈ [0, 1]. (6)
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The corresponding rational basis (2) spans the space

Rn = span{u(t)/ωn(t) | u(t) ∈ Un, ωn(t) =
n

∑
i=0

wn
i un

i (t)},

where the system (u0, . . . , un) given in (1) spans the space 〈1, t2, . . . , t2n〉 of even polynomials defined
on [0, 1] of degree less than or equal to 2n.

Trigonometric and hyperbolic bases are attracting a lot of interest, for instance in Isogeometric
Analysis (cf. [14]). Let 0 < ∆ < π/2. Define

f (t) = sin ((∆ + t)/2) and g(t) = sin ((∆− t)/2) for t ∈ I = [−∆, ∆]. (7)

Let us notice that the functions f and g satisfy f (t) > 0 and g(t) > 0 for all t ∈ (−∆, ∆). Moreover,
it can be checked that

(
f (t)
g(t)

)′
=

 sin
(

∆+t
2

)
sin
(

∆−t
2

)
′ = 1

2
sin(∆)

sin2
(

∆−t
2

) > 0, ∀t ∈ (−∆, ∆). (8)

Therefore, for any 0 < ∆ < π/2, the function f /g is a strictly increasing function on (−∆, ∆) and
f and g satisfy the conditions of Proposition 1. The corresponding rational basis (2) spans the space

Rn = span{u(t)/ωn(t) | u(t) ∈ Un, ωn(t) =
n

∑
i=0

wn
i un

i (t)},

where, for a given n = 2m, the system (u0, . . . , un) given in (1) is a basis that coincides, up to a positive
scaling, with the normalized B-basis of the space 〈1, cos t, sin t, . . . , cos mt, sin mt〉 of trigonometric
polynomials of degree less than or equal to m on I (see Section 3 of [15]).

Finally, let ∆ > 0. Define

f (t) = sinh ((∆ + t)/2)) and g(t) = sinh ((∆− t)/2) for t ∈ I = [−∆, ∆]. (9)

Clearly, f (t) > 0 and g(t) > 0 for all t ∈ (−∆, ∆). Moreover, it can be checked that

(
f (t)
g(t)

)′
=

 sinh
(

∆+t
2

)
sinh

(
∆−t

2

)
′ = 1

2
sinh∆

sinh2
(

∆−t
2

) > 0, ∀t ∈ (−∆, ∆). (10)

Therefore, for any ∆ > 0, f /g is a strictly increasing function on (−∆, ∆) and f and g satisfy the
conditions of Proposition 1. The corresponding rational basis (2) spans the space

Rn = span{u(t)/ωn(t) | u(t) ∈ Un, ωn(t) =
n

∑
i=0

wn
i un

i (t)},

where, for n = 2m, the system (u0, . . . , un) given in (1) spans the space 〈1, et, e−t, . . . , emt, e−mt〉 of
hyperbolic polynomials of degree less than or equal to m on I.

In Figure 2, we illustrate two examples of the rational basis (2) of degree 3. Let us observe the
effect on the shape of the functions of the basis as weights change.
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Figure 2. (Left): Rational basis (2) using f (t) = t, g(t) = 1− t, t ∈ [0, 1]. Weights w = [1, 2, 3, 2]
(black line) and weights w = [1, 2, 3, 8] (blue dotted line). (Right): Rational basis (2) using f (t) =

sin ((∆ + t)/2) , g(t) = sin ((∆− t)/2), t ∈ I = [−∆, ∆], 0 < ∆ < π/2. Weights w = [1, 2, 3, 2]
(black line) and weights w = [1, 8, 3, 2] (blue dotted line).

Section 4 will show examples of approximations of given sets of data points using all the above
mentioned normalized B-bases. Moreover, the neural network presented in the following section will
be used to compute the optimal weights and control points of their corresponding fitting curves.

3. Curve Fitting with Neural Networks

It is well known that curve fitting is the process of constructing a curve, or mathematical function,
that has the best fit of a given set of data points. A related topic is Regression Analysis in Machine
Learning. In the literature (see [16] (Chapter 11)), a regression problem is the problem of predicting
a real value for each input data. Let us consider an input space X ⊂ Rm and target values Y ⊂ Rk,
and a distribution over X×Y, denoted by D. Then, a regression problem consists of a set of labeled
samples S = {(xi, yi)}i∈{0,...,`} ∈ X×Y drawn according to D where yi are the target real values we
want to predict. There exists a huge variety of regression algorithms, i.e., algorithms solving regression
problems, such as Linear Regression, Decision Trees, Support Vector Regression, and Neural Networks,
among others. The quality of the prediction of an algorithm or model depends on the difference
between the target (i.e., the true value) and the predicted one, and it is measured using a loss function.
Then, given a setH (also called “hypothesis”) of function mappings X to Y, the aim of the regression
algorithm is to use S to find h ∈ H such that the expected loss is small.

Specifically, the problem that we want to solve can be stated as follows. Suppose that f and g
are functions defined on [a, b] satisfying the conditions of Proposition 1. Consider a set of parameters
a ≤ t0 < · · · < t` ≤ b and a sequence of data points s0, . . . , s` ∈ Rk, where each parameter ti is
associated with a data point si. For some n ≤ `, we want to obtain a rational curve

c(t) =
n

∑
i=0

wn
i (

n
i ) f i(t)gn−i(t)

∑n
i=0 wn

i (
n
i ) f i(t)gn−i(t)

Pi, t ∈ [a, b], (11)

to approximate the set of data points s = (si)
`
i=0. Therefore, the goal is to obtain the weights wn

0 , · · · , wn
n

and the control points P0, · · · , Pn of the rational curve (11) that best fits the set of data points. In order
to compute them, we have used a stochastic optimization process to train a neural network that models
the rational curve c(t).

The problem to be solved can be interpreted then as a regression problem where the set of labeled
samples is composed of the input data, X, that is the set of parameters a ≤ t0 < · · · ≤ t` ≤ b and the
target set of data points Y = s = (si)

`
i=0.

Then, the expression in (11) can be represented as a hierarchical computational graph with just
one hidden layer that we will denote as Nw,P : R→ Rk where the computations are organized as in
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Figure 3. The obtained curve Nw,P(t) is the rational curve c(t) that approximates the given set of data
points and we denote as the fitting curve.

t ∈ R

ρn
0 =

wn
0 (n

0) f 0(t)gn−0(t)
∑n

i=0 wn
i (n

i ) f i(t)gn−i(t) ρn
i =

wn
i (n

i ) f i(t)gn−i(t)
∑n

i=0 wn
i (n

i ) f i(t)gn−i(t)
ρn

n =
wn

n (n
n) f n(t)gn−n(t)

∑n
i=0 wn

i (n
i ) f i(t)gn−i(t)

Nw,P(t) = ∑n
i=0 ρn

i (t)Pi

wn
0 wn

i
wn

n

P0 Pi Pn

Figure 3. From top to bottom. The input layer has the parameter t ∈ R as input. The hidden layer is of
width n + 1 and its parameters are the weights. Then, the output layer computes the approximation of
the target curve and its parameters are the control points.

The key idea is to iteratively change the input weights w = (wn
i )

n
i=0 and control points P = (Pi)

`
i=0

of the active curve Nw,P(t), and so it deforms towards the target shape represented by the set of data
points s = (si)

`
i=0 (see Figure 4).

Figure 4. Evolution of the fitting curve Nw,P(t). Set of data points from the target curve (dotted)
and the fitting curve (line). From top to bottom and left to right: Increment d = 0, d = 250, d = 500,
d = 1000, d = 1500, d = 2000 and d = 3000.

Then, we apply an adaptive learning rate optimization algorithm to train the neural network to
find the weights and control points, which can be, for example, the Adaptive Moment Estimation



Mathematics 2020, 8, 2197 7 of 19

(Adam) algorithm or its variant Adaptive Moment Estimation Maximum (AdaMax) algorithm based
on infinity norm. These methods are used for stochastic optimization, to solve the supervised learning
problem and to find the parameters where a minima is located. In this paper, we have mainly used
the AdaMax variant (see Algorithm 1) because of its stability and simplicity [13]. However, the Adam
method can be useful depending on the shape of the set of data points to be approximated and the
choice of the loss function. The stochastic objective function, also called the loss function, measures
the goodness of the fitting curve. Let us notice that there exist different loss functions such as the
mean absolute error, the cross-entropy loss, the mean squared error, among others (the different loss
functions implemented in Tensorflow can be consulted in the tensorflow documentation), that can be
chosen depending on the problem. In our case, we have considered the mean absolute error as the loss
function because of the choice of the training algorithm, given by the following expression:

E(w, P) = ∑`
i=0 |si −Nw,P(ti)|

`+ 1
. (12)

The Adam and the AdaMax algorithms are stochastic gradient-based optimization algorithms
and, as previously mentioned, they update the weights and the control points iteratively. The step
size is a real number that measures how much the weights and the control points are updated upon
each iteration. Besides, the Adam algorithm uses the first and the second moment estimate to update
the weights and the control points which are updated following exponential decay rates (β1 and β2).
Finally, as AdaMax is a variation of Adam using infinity norm, the second moment estimate has a
simple recursive formula which will be denoted in Algorithm 1 as exponentially weighted infinity
norm. See [13] for a detailed description of the both Adam and AdaMax algorithms.

Algorithm 1: The AdaMax algorithm [13] adapted to our context.
Result: A set of weights w and control points P.
Require: The number of iterations k or an upper bound e ∈ R for E(w, P);
Require: The stepsize α;
Require: The exponential decay rates β1, β2 ∈ [0, 1);
Require: The stochastic objective function E(w, P);
Require: A small constant ε for numerical stability;
Initialize: Time step d := 0;
Initialize: The set of weights and control points in time step d = 0, w(0) and P(0) randomly
sampled;
Initialize: First moment vector γ(0) := 0;
Initialize: Exponentially weighted infinity norm δ(0) := 0;
while d < k or E(w, P) > e do

d := d + 1 (Increment the time step);
γ(d) := β1 · γ(d−1) + (1− β1) · ∇w(d−1),P(d−1)E(w(d−1), P(d−1)) (Update the biased first
moment estimation);

δ(d) := max (β2 · δ(d−1),∇w(d−1),P(d−1)E(w(d−1), P(d−1))) (Update the exponentially
weighted infinity norm);

w(d) := w(d−1) − α
1−βd

1
· γ(d−1)

δ(d−1)+ε
(Update the weights);

P(d) := P(d−1) − α
1−βd

1
· γ(d−1)

δ(d−1)+ε
. (Update the control points);

end

The number of units (i.e. weights and control points) is a hyperparameter and is determined
based on the complexity of the shape to be approximated. Besides, the step size, α, can be changed
depending on the state of the convergence of the training procedure, for example, when the loss values

https://www.tensorflow.org/api_docs/python/tf/keras/losses
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(i.e., the evaluation of the loss function) gets stuck or the update of the parameters is too big. Then,
it is useful to increase or reduce, respectively, the step size according to the values of the loss function.

4. Experiments Results

In order to show the performance of the neural networkNw,P, we have taken different sets of data
points s = (si)

`
i=0. They have been chosen to reflect the variety of situations where the proposed neural

network can be applied. The first set of data points belongs to a closed conic curve, the second one
belongs to a transcendental curve, the third one is a curve with a twisted shape and, finally, the fourth
one is a noisy set of data points from a baroque image.

In all cases, we have taken different functions f and g satisfying the conditions of Proposition 1
and allowing that the corresponding rational bases (2) have the optimal shape-preserving properties.

Remark 1. One of the requirements for a rational basis to be the normalized B-basis of its generated space is the
positivity of the weights. This makes it necessary to apply the absolute value to the weights in the weight update
step of Algorithm 1. However, in the experiments shown, we opted to avoid this choice because we have observed
that, although in the intermediate steps the weights could be negative, at the end of the training, the weights
were positive and the convergence was faster. Nevertheless, we can add the restriction depending on the needs.

Let us notice that we have used an uniform distribution of the parameters ti, i = 0, . . . , `, in all the
examples. This choice of parameters does not have to be the optimal but we have preferred it because
of its simplicity. Besides, a normalization of the data points, s = (si)

`
i=0, between 0 and 1, was applied

in order to facilitate the training procedure following the formula:

ŝi =
si −min S

max S−min S
, for i ∈ {0, . . . , `}. (13)

The AdaMax algorithm was applied to solve the minimization problem with the
mean absolute error loss function (12) with the following choice of hyperparameters:
α = 0.0001, β1 = 0.9, β2 = 0.999, and ε = 10−7. Then, the number of iterations of the algorithm
depends on the desired accuracy of the fitting curve to the set of data points. In this case, we
have used between 3000 to 5000 iterations of the algorithm but, with more iterations and a better
tuning of the parameters, the results provided here may be improved. Finally, in order to reach a better
approximation, the first and the last control point of the fitting curve were fixed to be the same as the
first and the last point of the set of data points, thus the obtained fitting curve is always exactly at those
points. We can see in Table 1, a summary of the loss values from different fitting curves. Let us observe
that the value n is the degree of the fitting curve and it depends on the complexity of the shape to be
approximated. Moreover, let us notice that the proposed neural network is able to obtain a suitable
accuracy with low degrees and, as a generalization of other methods, we can choose, depending on the
shape of the set of data points, the basis that best fits. Note that, in CAGD, it is important to properly
address the problem of curve fitting, finding a balance between accuracy and degree of the curve
since high-degree curves are computationally expensive to evaluate. The AdaMax algorithm has been
selected because it is computationally efficient with little memory requirements, suited for problems
with large data or parameters. In Table 2, the time of execution of the Algorithm 1 using different
numbers of units (i.e., weights and control points) and numbers of iterations is provided.
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Table 1. Loss values of the mean absolute error (12) for different fitting curves of degree n with
f (t) = t, g(t) = 1− t, t ∈ [0, 1] (Basis 1), f (t) = t2 and g(t) = 1− t2, t ∈ [0, 1], (Basis 2), f (t) =

sin ((∆ + t)/2) and g(t) = sin ((∆− t)/2), ∆ < π/2, ∆ < π/2, t ∈ [−∆, ∆], (Basis 3) and finally
f (t) = sinh ((∆ + t)/2) and g(t) = sinh ((∆− t)/2), ∆ < π/2, t ∈ [−∆, ∆], (Basis 4). They were all
trained with 4000 iterations, α = 0.0001, β1 = 0.9, β2 = 0.999, ε = 10−7. The process was repeated
5 times, with the loss values provided being the best values reached.

n Basis 1 Basis 2 Basis 3 Basis 4

Circle

3 3.3946 × 10−2 3.7129 × 10−2 7.0468 × 10−2 3.6438 × 10−2

4 2.1757 × 10−3 1.5338 × 10−2 3.1678 × 10−3 2.5582 × 10−3

5 1.7333 × 10−4 9.2269 × 10−3 2.8083 × 10−4 2.2488 × 10−3

Cycloid

8 1.0849 × 10−3 3.6855 × 10−4 3.6017 × 10−4 3.1674 × 10−4

9 4.6163 × 10−4 3.6855 × 10−4 3.6017 × 10−4 2.4914 × 10−4

10 3.3944 × 10−4 3.6855 × 10−4 3.6017 × 10−4 2.4914 × 10−4

Archimedean spiral

11 1.5982 × 10−3 1.0474 × 10−2 2.2349 × 10−2 7.8109 × 10−4

12 1.5982 × 10−3 7.8916 × 10−3 5.7801 × 10−3 7.8109 × 10−4

13 1.4106 × 10−3 5.2853 × 10−3 5.7801 × 10−3 7.8109 × 10−4

Table 2. Time of execution of the proposed algorithm measured in seconds for different numbers of
units and iterations. The values provided are the mean of 5 repetitions with a set of data points of
size 100.

n + 1
Number of Iterations

1 25 50 100 3000

5 0.1259 1.4284 2.8381 5.7259 189.5386
10 0.0989 2.0781 4.1325 10.2672 268.8726
15 0.1244 2.7142 5.3781 10.9886 347.6139
50 0.6479 8.2589 13.3576 27.4398 850.6713
100 1.1624 14.3999 32.6576 65.3298 1521.3971

The implementation (the code of the experimentation can be found in
https://github.com/Cimagroup/Curve-approximation-NN) was developed using TensorFlow 2.0 [17]
allowing developers to easily use it to build and deploy Machine Learning powered applications.
All experiments were ran on a Quad-Core Intel Core i7 CPU, 2.8 GHz with 16 GB RAM. Let us see a
detailed description of the experiments.

4.1. Circle Curve

Circles and conic sections play a relevant role in curve design and have been approximated
in several works (see [18,19]). Let us show different approximations to the circle given by the
parametric equations {

xc(t) = cos(t),

yc(t) = sin(t),
(14)

t ∈ [0, 2π]. First, let us see an approximation obtained performing the neural network Nw,P using
polynomial functions.

We have taken the following sequence of points s = (si)
99
i=0 on the circle (14):

si = (xc(2πti), yc(2πti)), i = 0, . . . , 99,

https://github.com/Cimagroup/Curve-approximation-NN
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being the parameters ti = i/99, i = 0, . . . , 99.
For n = 5, we have approximated the set s by the fitting curve (Nw,Px (t),Nw,Py(t)) considering

the functions f (t) = t and g(t) = 1− t at the vector nodes t = (ti)
99
i=0 with ti as above. After training

the neural network Nw,P, performing the Algorithm 1 for 3000 iterations, we have obtained the
following weights:

w5
0 = 1.253390550613403320, w5

1 = 0.6930422186851501465, w5
2 = 0.7461462020874023438,

w5
3 = 0.7428795099258422852, w5

4 = 0.7499830722808837891, w5
5 = 1.511020541191101074,

and the following control points:

P0 = (1, 0), P1 = (0.9514569678202488, 2.265164366524486),

P2 = (−2.041393043066488, 1.823594836649781), P3 = (−2.573274681480492,−1.594942712567735),

P4 = (0.9104298578262079,−2.558222347419337), P5 = (1, 0).

We can see in Figure 5 the obtained fitting curve of degree 5 and its corresponding control polygon.

Figure 5. Fitting curve of degree 5 obtained using the functions f (t) = t and g(t) = 1− t, t ∈ [0, 1],
and its corresponding control polygon.

In order to analyze the performance of the obtained approximation to the circle, we depict some
geometric approximations of the approximation error. In Figure 6, we plot the radial and curvature
errors given, respectively, by

εr(t) = r(t)− 1, εk = k(t)− 1,

where r(t) =
√
N 2

w,Px
(t) +N 2

w,Py
(t) and k(t) = (N ′w,Px

(t)N ′′w,Py
(t)−N ′′w,Px

(t)N ′w,Py
(t))/

(√
(N ′w,Px

(t))2 + (N ′w,Py
(t))2

)3

.

We can observe that the radial error vanishes at t = −∆, ∆ because the approximation is exact for
the initial and the last points of the curve.

Let us see another approximation example of the unit circle performing the neural network Nw,P
using trigonometric functions. We have the following set of data points s = (si)

99
i=0 on circle (14):

si = (xc((ti/∆ + 1)π), yc((ti/∆ + 1)π), i = 0, . . . , 99,

being the parameters ti = −∆ + 2∆i/99, i = 0, . . . , 99, with 0 < ∆ < π/2. For n = 5,
we have approximated the set s by the fitting curve (Nw,Px (t),Nw,Py(t)) using the functions
f (t) = sin ((∆ + t)/2) and g(t) = sin ((∆− t)/2) at the vector nodes t = (ti)

99
i=0 with ti as above.
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After training the neural network Nw,P, performing Algorithm 1 for 3000 iterations, and with
α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−7, we have obtained the following weights:

w5
0 = 2.193439722061157227, w5

1 = 0.6315788030624389648, w5
2 = 0.4818322956562042236,

w5
3 = 0.4559116661548614502, w5

4 = 0.6407876610755920410, w5
5 = 2.386862277984619141,

and the following control points:

P0 = (1, 0), P1 = (1.094536581177390, 2.759880482316126),

P2 = (−3.104044853918599, 2.85189370210171), P3 = (−3.702726956127786,−2.817369554402328),

P4 = (1.085284693582619,−3.000573791799708), P5 = (1, 0).

Figure 6. (Left): The x-axis represents the parameters t in [0, 1] and the y-axis represents the radial
error value of the fitting curve obtained using the functions f (t) = t and g(t) = 1− t, t ∈ [0, 1].
(Right): The x-axis represents the parameters t in [0, 1] and the y-axis represents the curvature error
value of fitting curve obtained using the functions f (t) = t and g(t) = 1− t, t ∈ [0, 1].

We can see in Figure 7 the fitting curve of degree 5 obtained and its control polygon.

Figure 7. Fitting curve of degree 5 using f (t) = sin ((∆ + t)/2) and g(t) = sin ((∆− t)/2), t ∈ [−∆, ∆],
and its control polygon.

Figure 8 shows its corresponding radial and curvature errors. We can observe that the radial error
vanishes at t = −∆, ∆ because the approximation is exact for the initial and the last points of the curve.
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Figure 8. (Left): The x-axis represents the parameters t in [−∆, ∆] and the y-axis represents the radial
error value of the fitting curve obtained using the trigonometric basis. (Right): The x-axis represents
the parameters t in [−∆, ∆] and the y-axis represents the curvature error value of the fitting curves
obtained using the trigonometric basis.

Finally, for different values of n, Figure 9 shows the history of the loss function given in (12)
through the training process on 3000 iterations of the neural network Nw,P using the polynomial
functions and the trigonometric functions. We can observe, in both cases, that the convergence to the
circle of the fitting curves is faster as n increases.

Figure 9. For different values of n, the history of the loss function, i.e., the mean absolute error values,
through the training process on 3000 iterations while the fitting curves converges. (Left): Loss values
of the fitting curve using f (t) = t, g(t) = 1− t, t ∈ [0, 1]. (Right): Loss values of the fitting curve using
f (t) = sin ((∆ + t)/2), g(t) = sin ((∆− t)/2), t ∈ [−∆, ∆]. The x-axis represents the iteration of the
training algorithm and the y-axis represents the mean absolute error value.

4.2. Cycloid Curve

Cycloids are commonly used in manufacturing applications (e.g. gear tooth geometry).
The cycloid is a transcendental curve and thus, it cannot be expressed by polynomials exactly. Creating
a complex curve in a CAD/CAM system is not always straightforward. In [20], it is shown the need to
new methods for approximating this curve. Let us show different approximations to the cycloid by
several fitting curves obtained by training the neural network Nw,P using polynomial, trigonometric
and hyperbolic functions f and g that satisfy the conditions of Proposition 1.

The cycloid is given by the parametric equations{
xcc(t) = t− sin t,

ycc(t) = 1− cos t,
(15)

t ∈ [0, 2π]. We have taken the following sequence of points s = (si)
99
i=0 on the cycloid (15):

si = (xcc(2πti), ycc(2πti)), i = 0, . . . , 99,

being the parameters ti = i/99, i = 0, . . . , 99.
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For n = 10, we have approximated the set s by two fitting curves at the vector nodes t = (ti)
99
i=0

with ti as above. One of the fitting curves is obtained using the functions f (t) = t and g(t) = 1− t,
and the other fitting curve is obtained using the functions f (t) = t2 and g(t) = 1− t2.

We can see in Figure 10, the fitting curves and their corresponding fitting error. The fitting error is
given by the Euclidean norm between the approximated curve—in this case, the cycloid curve—and the
obtained fitting curve. Observe that the cycloid curve is better approximated by the fitting curve
obtained using the functions f (t) = t2 and g(t) = 1− t2 than by the fitting curve obtained using the
functions f (t) = t and g(t) = 1− t.

Figure 10. (Left): Set of data points on the cycloid (dotted), fitting curve obtained using the functions
f (t) = t, g(t) = 1− t, t ∈ [0, 1] (blue) and fitting curve obtained using the functions f (t) = t2,g(t) =
1− t2, t ∈ [0, 1] (green). (Right): Fitting error comparison.The x-axis represents the parameters t in
[0, 1] and the y-axis represents the fitting error value of the fitting curves obtained using the functions
f (t) = t, g(t) = 1− t, t ∈ [0, 1] (green) and the functions f (t) = t2, g(t) = 1− t2, t ∈ [0, 1] (blue).

Let us see two more approximations of the cycloid. We have taken the following sequence of
points s = (si)

99
i=0 on the cycloid (15):

si = (xcc((ti/∆ + 1)π), ycc((ti/∆ + 1)π), i = 0, . . . , 99,

being the parameters ti = −∆ + 2∆i/99, i = 0, . . . , 99, with 0 < ∆ < π/2.
For n = 10, we have approximated the set s by two fitting curves at the vector nodes t = (ti)

99
i=0

with ti as above. One of the fitting curves is obtained by training the neural network Nw,P using the
trigonometric functions f (t) = sin ((∆ + t)/2) and g(t) = sin ((∆− t)/2) and the other one using the
hyperbolic functions f (t) = sinh ((∆ + t)/2) and g(t) = sinh ((∆− t)/2).

We can see in Figure 11, the fitting curves and their corresponding fitting error. Let us observe
that the cycloid is better approximated by the fitting curve obtained using the hyperbolic functions
than the fitting curve obtained using the trigonometric functions.

Figure 11. (Left): Set of data points on the cycloid (dotted), fitting curve obtained using the
trigonometric functions f (t) = sin ((∆ + t)/2) and g(t) = sin ((∆− t)/2) and fitting curve
obtained using the hyperbolic functions f (t) = sinh ((∆ + t)/2) and g(t) = sinh ((∆− t)/2).
(Right): Fitting error comparison. The x-axis represents the parameters t in [−∆, ∆] and the y-axis
represents the curvature error value of the fitting curve obtained using the trigonometric and
hyperbolic bases.
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4.3. Archimedean Spiral Curve

Finally, let us show different approximations of the Archimedean spiral given by the
parametric equations {

xsa(t) = t cos(t),

ysa(t) = t sin(t),
(16)

t ∈ [0, 4π]. First, let us see an approximation obtained training the neural network Nw,P using
polynomial functions. We have taken the following sequence of points s = (si)

99
i=0 on the Archimedean

spiral (16):

si = (xsa(4πti), ysa(4πti)), i = 0, . . . , 99,

being the parameters ti = i/99, i = 0, . . . , 99.
For n = 11, we have approximated the set s by the fitting curve using the functions f (t) = t and

g(t) = 1− t at the vector nodes t = (ti)
99
i=0 with ti as above. Figure 12 shows the fitting curve of degree

11 and its corresponding fitting error.

Figure 12. (Left): Set of data points on the Archimedean spiral (dotted) and the fitting curve of degree
11 obtained using the functions f (t) = t and g(t) = 1− t, t ∈ [0, 1]. (Right): The x-axis represents the
parameters t in [0, 1] and the y-axis represents the fitting error value of the fitting curve obtained using
the functions f (t) = t and g(t) = 1− t.

Let us see other examples in which the Archimedean spiral is approximated by the neural
network using hyperbolic functions. We have taken the following sequence of points s = (si)

99
i=0 on

the Archimedean spiral (16):

si = (xsa((ti + ∆)2π/∆), ysa((ti + ∆)2π/∆), i = 0, . . . , 99,

being the parameters ti = −∆ + 2∆i/99, i = 0, . . . , 99. For n = 11, we have approximated the set s by
the fitting curve using the functions f (t) = sinh ((∆ + t)/2) and g(t) = sinh ((∆− t)/2) at the vector
nodes t = (ti)

99
i=0 with ti as above.

Figure 13 shows the fitting curve of degree 11 and its corresponding fitting error.
We can see in Figure 14, the convergence of the two above fitting curves. Let us observe that

the fitting curve corresponding to the hyperbolic rational basis has a faster convergence. Therefore,
once again, it seems that the choice of the functions f and g, hence the choice of the rational basis,
is relevant to the approximation.
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Figure 13. (Left): Set of data points on the Archimedean spiral (dotted) and the fitting curve of
degree 11 with the functions f (t) = sinh ((∆ + t)/2) and g(t) = sinh ((∆− t)/2). (Right): The x-axis
represents the parameters t in [−∆, ∆] and the y-axis represents the fitting error value of the fitting
curve obtained using the hyperbolic basis.

Figure 14. The history of the loss values, i.e., the mean absolute error values, through 3000 iterations
of the training algorithm while the fitting curves converge is pictured. The blue line corresponds to
the fitting curve of degree 11 obtained using f (t) = t and g(t) = 1− t, t ∈ [0, 1], and the orange
line corresponds to the fitting curve of degree 11 obtained using f (t) = sinh ((∆ + t)/2) and g(t) =
sinh ((∆− t)/2). The x-axis represents the iteration of the training algorithm and the y-axis represents
the mean absolute error value. The values are the mean of 50 repetitions.

4.4. Comparison of Least-Squares Fitting and the Neural Network Nw,P

In this section, the proposed neural network is compared with the least-squares method and the
regularized least-squares method. It is well known that least-squares fitting is a common procedure to
find the best fitting curve to a given set of data points by minimizing the sum of the squares of the
data points from the curve ([9,21,22]). The least-squares method is sensitive to small perturbations in
data and, in those cases, regularization methods can be applied such as the regularized least-squares
method (see [23]). Therefore, two experiments have been developed. The set of data points used in the
first experiment is a non-noisy parametrization of known curves, so the least-squares method has been
applied. In the second experiment, we used an image to obtain a noisy set of data points and applied
the regularized least-squares method.

The problem that we want to solve is stated as follows. Suppose that f and g are functions defined
on [a, b] satisfying the conditions of Proposition 1. Consider a set of parameters a ≤ t0 < · · · ≤ t` ≤ b
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and a sequence of data points s0, . . . , s` ∈ Rk, where each parameter ti is associated with a data point
si. For some n ≤ `, we want to compute a rational curve

c(t) =
n

∑
i=0

wn
i (

n
i ) f i(t)gn−i(t)

∑n
i=0 wn

i (
n
i ) f i(t)gn−i(t)

Pi, t ∈ [a, b], (17)

minimizing the sum of the squares of the deviations from the set of data points s = (si)
`
i=0, that is,

∑`
i=0(si − c(ti))

2. In order to compute the control points P = (Pi)
n
i=0 of the fitting curve, we have to

solve, in the least-squares sense, the overdeterminated linear system AP = s, where the matrix A is

A =
( wn

i (
n
i ) f i(tj)gn−i(tj)

∑n
i=0 wn

i (
n
i ) f i(tj)gn−i(tj)

)
0≤i≤n;0≤j≤`.

In this fourth experiment, let us see two examples comparing the fitting curves obtained applying
this traditional method and the fitting curves obtained by training the neural network Nw,P. We have
seen previously an approximation of the circle (14) obtained with the neural network Nw,P for n = 5
using the polynomial functions f = t and g = 1− t, t ∈ [0, 1]. Besides, we have seen an approximation
of the Archimedean spiral (16) obtained with the neural networkNw,P for n = 11 using the polynomial
functions f = t and g = 1− t, t ∈ [0, 1]. Using the same parameters and sets of data points, we solved
the corresponding overdeterminated linear systems AP = s to obtain the control points of the curve
that best fits the given data points in the least-squares sense. For this purpose, following the steps
shown in Section 6.4 of [1], we have obtained the solutions of AP = s, firstly, by using the Matlab
command SVD and, secondly, by using the Matlab command mldivide .

Since the weights are unknown and are necessary for solving the linear system AP = s in the
least-squares sense, these have been randomly chosen within a positive range. Let us observe that
one of the advantages of the neural network Nw,P with respect to the least-squares method is that the
neural network Nw,P not only finds suitable control points, but it also finds suitable weights to fit the
given set of data points.

In Table 3, the execution time of the least-squares method using a different number of weights and
control points is provided. We can see that, although for low-degree fitting curves, the least-squares
method is faster than the method proposed in this paper, for the fitting curves of degree greater than
n = 18, the proposed method is faster than the least-squares method.

We can see in Figures 15 and 16 that the fitting curves obtained by training the neural network are
more accurate than the fitting curves obtained by applying the traditional least-squares method.

In the last experiment, we have taken 31 points from a baroque image as a set of data points
(see Figure 17). We have approximated them by two fitting curves of degree 8 with hyperbolic functions
f (t) = sin ((∆ + t)/2) at the vector nodes t = (ti)

30
i=0, such that ti = −∆ + 2∆(i− 1)/30, 0 < ∆ < π/2.

The first fitting curve was obtained by training the neural network Nw,P during 1000, reaching a
final mean absolute error on the set of data points of 9 × 10−3. Besides, this example shows the
robustness of the proposed method to noisy data points. The second fitting curve was obtained with
random vector weights and the regularized least-squares method by using an adaptation of the Matlab
library available in [24]. This last fitting curve reached a mean absolute error of 1.95× 10−2. Visually,
in Figure 17, it is appreciated that the fitting curve obtained by training the neural network Nw,P
achieves better curvature than the regularized least-squares method (which is more evident at the
beginning and at the end of the curve). Finally, we would like to highlight that we have observed in all
the executed experiments a good performance of the neural network for small values of n, in spite of
the complexity of the set of data points.
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Table 3. For different number of weights and control points, the time of execution of the least-squares
method using the Matlab commands mldivide and SVD, and the time of execution of the Algorithm 1
for 3000 iterations are provided. The values have been measured in seconds with a set of data points of
size 100 and they are the mean of 5 repetitions.

n + 1
Least-Squares Method Algorithm 1

mldividemldividemldivide SVDSVDSVD 3000 Iterations

5 63.3014 65.6015 189.5386
10 167.0402 237.0386 268.8726
15 309.5811 457.8987 347.6139
20 478.1141 774.3472 429.2819
30 961.2860 978.6830 568.5647
50 2552.4064 4097.9278 850.6713

Figure 15. (Left): Set of data points on circle (dotted), fitting curve of degree 5 obtained with the
neural network, fitting curve of degree 5 obtained with the least-squares method by using the Matlab
commmand mldivide (LS1), fitting curve of degree 5 obtained with the least-squares method by using
the Matlab command SVD (LS2). (Right): The x-axis represents the parameters t in [0, 1] and the y-axis
represents the radial error value of the fitting curves obtained with the different methods.

Figure 16. (Left): Set of points on the Archimedean spiral curve, fitting curve of degree 11 obtained
with the neural network, fitting curve of degree 11 obtained with the least-squares method by using the
Matlab command mldivide (LS1) and fitting curve of degree 11 obtained with the least-squares method
using the Matlab command SVD (LS2). (Right): The x-axis represents the parameters t in [0, 1] and the
y-axis represents the fitting error value of the fitting curves obtained with the different methods.
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Figure 17. Noisy set of data points obtained from the baroque image (points in blue), fitting curve
obtained by training the proposed neural network (points in green) and fitting curve obtained using
the regularized least-squares method (pink). Baroque motif image source: Freepik.com.

5. Conlusions and Future Work

In this work, we have tackled the problem of finding a rational curve to fit a given set of data points.
To solve this issue, we have proposed a one-hidden-layer neural network based on a general class
of totally positive rational bases belonging to spaces mixing algebraic, trigonometric and hyperbolic
polynomials, thus expanding the potential range of applications to include more difficult shapes.
In order to obtain the weights and control points of the rational curve to fit the data points, the neural
network is trained with an optimization algorithm to update the weights and control points while
decreasing a loss function. The fitting curves of the numerical experiments show that for certain curves,
the use of particular rational bases provides better results.

In future work, we wish to extend the neural network to obtain a suitable parametrization of
the data points. The choice of the parameters can help to improve the approximation. Additionally,
we plan to apply our method to curves, surfaces and high-dimensional data, and analyze, as in [25]
for Bezier curves, its application to industrial software, CAD/CAM systems (such as Blender (https:
//www.blender.org/), Maya (https://www.autodesk.es/products/maya/overview) or Solid Edge
(https://solidedge.siemens.com/en/)), and other real-world problems. Finally, we plan to explore the
applicability of our approach to the resolution of linear differential equations (cf. [26,27]).
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