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Universidad de Sevilla, c/ Tarfia s/n, 41012-Sevilla, Spain

Abstract

The paper addresses a kind of non-autonomous nonlocal parabolic equations when the ex-

ternal force contains hereditary characteristics involving bounded and unbounded delays. First,

well-posedness of the problem is analyzed by the Galerkin method and energy estimations in the

phase space Cρ(X). Moreover, some results related to strong solutions are proved under suitable

assumptions. The existence of stationary solutions is then established by a corollary of the Brower

fixed point theorem. By constructing appropriate Lyapunov functionals in terms of the charac-

teristic delay terms, a deep analysis on stability and attractiveness of the stationary solutions

is established. Furthermore, the existence of pullback attractors in L2(Ω), with bounded and

unbounded delays, is shown. We emphasize that, to prove the existence of pullback attractors in

the unbounded delay case, a new phase space, Eγ , has to be constructed.

Keywords: Non-autonomous nonlocal parabolic equations; Bounded and unbounded delays; Sta-

tionary solutions; Pullback attractors.

1 Introduction

It is well-known reaction-diffusion equations have been frequently used to model a great

amount of phenomena in the real world. However, in recent decades, nonlocal (reaction-diffusion)

problems have been investigated with great interest due to its usefulness in real applications (e.g.

[1, 3, 16, 20, 26]).

The nonlocal character in the equations has different sources. For example, the model in [26]

focused on the role of nonlocal (integral) terms describing the interactions between cancer cells

and the host tissue. The authors in [4] studied nonlocal problems that are analogous to the local

ones given by the Laplacian or the p-Laplacian with dynamical boundary conditions.
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One typical nonlocal problem, motivated by the mathematical modeling of a variety of phe-

nomena coming from industrial applications ([27]), and shear banding formation in high strain

metals ([3]), etc., has been studied by N. I. Kavallaris et al. [20]. The authors considered the

following nonlocal stochastic parabolic problem
∂u
∂t = ∆u+ F (u) + σ(u)∂tW (x, t),

u(x, t) = 0,

u(x, t) = ξ(x),

(x, t) ∈ DT := D × (0, T ),

(x, t) ∈ ∂D × (0, T ),

x ∈ D,

where T > 0 and D is a bounded subset of Rd, d ≥ 1, with smooth boundary. Here the nonlocal

term F (u) is defined by

F (u) :=
λeu(∫

D f(u)dx
)q , q > 0,

for some positive constant λ.

The authors examined in [17] one model of single-species dynamics which incorporates non-

local effects, comparing with the standard approach to model a single species domain Ω of “Kol-

mogorov” type,

ut = ∆u+ λug(u), in Ω, t > 0.

If we take into account the following backgrounds: (i) a population in which individuals compete

for a shared rapidly equilibrate resource; (ii) a population in which individuals communicate

either visually or by chemical means, then the most straightforward way of introducing nonlocal

effects is to consider, instead of g(u), a “crowding” effect of the form g(u, ū), where

ū(x, t) =

∫
Ω
G(x, y)u(y, t)dy,

and G(x, y) is some reasonable kernel.

Heuristically, Chipot et al. studied in [13] the behavior of a population of bacteria with

nonlocal term a(
∫

Ω u) in a container. Later, Chipot et al. extended this term to a general

nonlocal operator a(l(u)) (cf. [11, 12, 13, 14]), where l ∈ L(L2(Ω);R), for instance, if g ∈ L2(Ω),

l(u) = lg(u) =

∫
Ω
g(x)u(x)dx.

Then, the following nonlocal reaction-diffusion equation has received much attention due to its

wide application (such as, in the ecological context, the interactions in single-species population

dynamics cannot be local),
∂u

∂t
− a(l(u))∆u = f(u), (1.1)

where the function a ∈ C(R;R+), and it should fulfil natural conditions of non-degeneracy to

avoid the extinction and the existence of solutions only in finite time intervals. Therefore, assume

there exist positive constants m, M > 0 such that

0 < m ≤ a(s) ≤M, ∀s ∈ R. (1.2)
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Amongst the many notable results regarding such kind of nonlocal equations, it is worth

stressing the importance of the work in [10]. In this paper, the authors studied a non-autonomous

nonlocal parabolic equation similar to (1.1) but with an extra time-dependent term h(t), which

allows to model more complex situations.

On the other hand, in real life, time delays can arise everywhere, since every process, whether

it is long or short, would consume time. As a motivation, we can mention a simple situation

concerning the hemodynamical behavior of a person who has a decompensation of the glucose level

(either high or low). Then, this person can be prescribed some intravenous insulin to compensate

the level. Since the introduction of the drug in the bloodstream needs time to take effect, the

above situation can be interpreted as a delay problem. Therefore, there is an increasing interest

in studying biological, physical models with delay, for example, see [2, 6, 7, 8, 9, 21, 22, 25, 28]

and the references therein.

Consequently, in this context it is natural to take into account the effect of delay in the

investigation of non-autonomous nonlocal partial differential equations, which leads us to study

the following problem:
∂u
∂t − a(l(u))∆u = f(u) + h(t, ut)

u = 0

uτ (x, t) = ϕ(x, t)

in Ω× [τ,∞),

on ∂Ω× [τ,∞),

in Ω× (−ρ, 0],

(1.3)

where Ω ⊂ RN is a bounded open set, τ ∈ R, function a ∈ C(R;R+) is locally Lipschitz fulfilling

(1.2), f ∈ C(R) and h contains hereditary characteristics involving delays. Moreover, 0 < ρ ≤ ∞,

which implies, we consider both cases, bounded and unbounded delays in this manuscript.

From the technical point of view, some new difficulties appear with respect to all these works.

Due to the peculiarities of delay problems, we have to work in a phase space Cρ(X) or Eγ

which require a much more involved analysis to prove asymptotic compactness. Thanks to the

Ascoli-Arzelà theorem and energy estimations, we could prove long-time behavior successfully.

It is also worth observing that variable delay, distributed delay and long term-memory cases

can be contained in our functional delay term h(t, ut). In fact, the authors in [9] worked on the

following reaction-diffusion equation with memory:

∂u

∂t
−∆u+

∫ t

−∞
γ(t− s)∆u(x, s)ds+ g(x, t, u(x, t)) = f1(x, t, u(x, t− h)),

with Dirichlet boundary condition, and γ possesses the special form γ(t) = −γ0e
−d0t. In this way

the long-time behavior of solutions can be analyzed. However, if we consider a generalized kernel

with singularity, γ(t) = e−d0t

tα , where α ∈ (0, 1), the long-time behavior of this problem cannot be

handled with our analysis.

One of our main purposes is to prove existence, uniqueness and regularity properties of weak

solutions to problem (1.3). To this end, the well-known Galerkin method is adapted to our

3



problem properly. Moreover, we are able to analyze some stability properties (cf. Definition 3.3)

of stationary solutions to problem (1.3), when the delay term has special forms (variable delay/

distributed delay). By a direct approach or constructing Lyapunov functionals, our goals are

achieved successfully. At last, to make our analysis more complete, we establish the existence of

pullback attractors in L2(Ω) in the bounded and unbounded delay cases. We want to emphasize

that, due to the lack of asymptotic compactness for the unbounded delay case, it is impossible to

study the existence of pullback attractors in L2(Ω) if the phase space is defined by C∞(L2(Ω)).

Instead, the existence of pullback attractor is proved considering the phase space Eγ .

This paper is structured as follows. Section 2 is devoted to the existence, uniqueness and

continuous dependence on initial values of weak solutions to (1.3) by the Galerkin method. The

existence of strong solutions is also shown by energy estimations. In Section 3, existence and

uniqueness of stationary solutions are established and several methods are used to analyze the

stability of the stationary solutions. We consider the existence of pullback attractors in the last

section, providing more details about their structure in the bounded delay case.

2 Well-posedness to nonlocal partial differential equations with

delay

Here we consider the following nonlocal parabolic equation with bounded or unbounded delay,∂u
∂t − a(l(u))∆u = f(u) + h(t, ut)

u = 0

in Ω× [τ,∞),

on ∂Ω× [τ,∞),
(2.1)

with initial value

u(x, τ + θ) = ϕ(x, θ), θ ∈ (−ρ, 0], x ∈ Ω,

where Ω ⊂ RN is a bounded open set and the initial time τ ∈ R. The function a ∈ C(R;R+) and

there exists a constant m such that

0 < m ≤ a(s), ∀s ∈ R. (2.2)

In addition, we assume that l ∈ L(L2(Ω),R), f ∈ C(R) and there exist constants η > 0, Cf > 0

such that

|f(s)| ≤ Cf (1 + |s|), ∀s ∈ R, (2.3)

(f(s)− f(r))(s− r) ≤ η(s− r)2, ∀s, r ∈ R. (2.4)

Consider a fixed T > 0, given a function u : (τ − ρ, T ]→ L2(Ω), for each t ∈ (τ, T ], we denote

by ut the function defined on (−ρ, 0] via the relation

ut(s) = u(t+ s), s ∈ (−ρ, 0],

where 0 < ρ ≤ ∞.
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In order to state the problem in the correct framework, let us first establish some suitable

assumptions on the term where the delay is present. In a general way, let X and Y be two

separable Banach spaces, and

Cρ(X) = {φ ∈ C((−ρ, 0];X); lim
s→−ρ

φ(s) exists in X},

which is a Banach space with the standard sup norm ‖α‖Cρ(X) = sup−ρ≤θ≤0 ‖α(θ)‖X , and let

h : R×Cρ(X)→ Y , satisfy

(H1) for all ξ ∈ Cρ(X), the mapping t ∈ (τ, T ]→ h(t, ξ) ∈ X is measurable;

(H2) For each t ∈ (τ, T ], h(t, 0) = 0;

(H3) There exists Lh > 0 such that for all t ∈ (τ, T ], α, β ∈ Cρ(X),

‖h(t, α)− h(t, β)‖Y ≤ Lh‖α− β‖Cρ(X);

(H4) There exists Ch > 0 such that for all t ∈ (τ, T ], u, v ∈ C((τ − ρ, T ];X),∫ t

τ
‖h(s, us)− h(s, vs)‖2Y ds ≤ Ch

∫ t

τ−ρ
‖u(s)− v(s)‖2Xds.

Remark 2.1 (i) In order to simplify notation, we denote Cρ(X) := C((−ρ, 0];X), which repre-

sents: when it is bounded delay, Cρ(X) := C([−ρ, 0];X); when it is unbounded delay, Cρ(X) :=

C((−∞, 0];X).

(ii) Notice that when we consider bounded delay, namely ρ > 0 is a constant, then the

space Cρ(X) := {φ ∈ C([−ρ, 0];X)}, because if φ is a continuous function defined on [−ρ, 0],

lims→−ρ φ(s) exists automatically. The additional condition only makes sense for unbounded de-

lay.

(iii) Indeed, for the unbounded delay case ρ =∞, we have

C∞(X) := C((−∞, 0];X) = {φ ∈ C((−∞, 0];X); lim
s→−∞

φ(s) exists in X},

which is a Banach space equipped with the norm

‖φ‖C∞(X) = sup
θ∈(−∞,0]

‖φ(θ)‖X .

Throughout this paper, we make use of several notations which are introduced in what follows.

Let Ω be an open bounded set of RN , (·, ·) and | · | denote the L2-inner product and L2-norm,

((·, ·)) and ‖ · ‖ denote the H1
0 -inner product and H1

0 -norm. Recall that for every v ∈ H1
0 (Ω), the

Poincaré inequality

λ1(Ω)|v|2 ≤ ‖v‖2, (2.5)
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holds, where λ1(Ω) is related to the domain Ω and is the first eigenvalue of −∆ with the zero

Dirichlet boundary conditions. In the sequel, unless otherwise specified, we write λ1 instead of

λ1(Ω) for simplicity.

From now on, we identify L2(Ω) with its dual. Therefore, we have the usual chain of dense

and compact embeddings H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω). Thanks to the previous identification,

l(u) is in fact (l, u). However, we keep the usual notation in the existing previous literature l(u)

instead of (l, u) for the operator l acting on u.

Now we will show the definitions of solutions to problem (2.1).

Definition 2.2 A weak solution to (2.1), corresponding to the initial value ϕ ∈ Cρ(L
2(Ω)), is a

function u ∈ L2((τ, T ];H1
0 (Ω)) ∩ L∞((τ, T ];L2(Ω)) for all T > τ , such that u(t) = ϕ(t − τ) for

t ∈ (τ − ρ, τ ], and

d

dt
(u(t), v) + a(l(u(t)))((u(t), v)) = (f(u(t)), v)+ < h(t, ut), v >, ∀v ∈ H1

0 (Ω), (2.6)

where the previous equation must be understood in the sense of D′(τ,∞).

A notion of more regular solutions is also suitable.

Definition 2.3 A strong solution to (2.1) is a weak solution u which also satisfies that u ∈
L2((τ, T ];D(−∆)) ∩ L∞((τ, T ];H1

0 (Ω)) for all T > τ .

To prove the existence of weak and strong solutions to problem (2.1), we will use the Faedo-

Galerkin approximations and pass to the limit by using compactness arguments. Thanks to

spectral theory, there exists a sequence {wi}i≥1, which is a Hilbert basis of L2(Ω) consisting of

the eigenfunctions of −∆ in H1
0 (Ω).

Firstly, we consider the function un(t) :=
∑n

j=1 γ
nj(t)wj , for all n ≥ 1, d

dt(u
n(t), wj) + a(l(un(t)))((un(t), wj)) = (f(un(t)), wj)+ < h(t, unt ), wj >,

(un(τ + θ), wj) = (ϕ(θ), wj)

t ∈ (τ,∞),

θ ∈ (−ρ, 0],

(2.7)

where j = 1, 2, · · · , n. Observe that (2.7) is a Cauchy problem to the following ordinary differential

system in Rn,

dγnj(t)

dt
+ λja(l(un(t)))γnj(t) = (f(un(t)), wj)+ < h(t, unt ), wj >, j = 1, 2, · · · , n, (2.8)

where t ≥ τ , λj is the eigenvalue associated to the eigenfunction wj and the vector (γn1, · · · , γnn)

is unknown.

Proposition 2.4 Suppose that a ∈ C(R;R+) fulfils (2.2), f(·) ∈ C(R) verifies (2.3), l ∈ L2(Ω),

h(·, ·) satisfies conditions (H1)-(H4), with X = H1
0 (Ω) and Y = H−1(Ω), for an initial time τ ∈ R.
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Then for each initial value ϕ ∈ Cρ(L
2(Ω)), there exists at least one local solution (γn1, · · · , γnn)

of the ordinary differential system (2.8) defined on some interval (τ, tn]. Furthermore, if the

function a is locally Lipschitz, f satisfies (2.4), and

m2 ≥ 4Ch, (2.9)

the uniqueness of local solution to problem (2.8) is guaranteed.

Proof. We split the proof into several steps.

Step 1: Existence of local solution. To do this, we are going to use the method of [18,

Section 2.6], which is a generalization of Peano’s Theorem to delay problem. Define

g : Θ→ Rn,

(t, ξ) 7−→ (−λ1z(ξ(0))ξ1(0) + (f(
n∑
i=1

ξi(0)wi), w1)+ < h(t,
n∑
i=1

ξiwi), w1 > + · · · ,

− λnz(ξ(0))ξn(0) + (f(
n∑
i=1

ξi(0)wi), wn)+ < h(t,
n∑
i=1

ξiwi), wn >),

where

Θ = {(t, ξ) ∈ (τ, T ]×Cρ(Rn) : |ξ − ((ϕ,w1), · · · , (ϕ,wn))| ≤ b},

for any fixed b ∈ R+ and

ξ = (ξ1, · · · , ξn) 7−→ z(ξ(0)) = a(l(
n∑
i=1

ξi(0)wi)). (2.10)

Firstly, we are going to prove that g is a Caratheodory function. Consider ξ ∈ Cρ(Rn) fixed,

the function g(·, ξ) is measurable, because

gj(·, ξ) = −λjz(ξ(0))ξj(0) + f((

n∑
i=1

ξi(0)wi), wj)+ < h(t,

n∑
i=1

ξiwi), wj >

is a measurable function as a consequence of Fubini’s Theorem and condition (H1).

Secondly, we need to check that the function g(t, ·) is continuous a.e. t ∈ (τ, T ]. Indeed,

gj(t, ξ) = −λjz(ξ(0))ξj(0) + (f(
n∑
i=1

ξi(0)wi), wj)+ < h(t,
n∑
i=1

ξiwi), wj >

is a continuous function with respect to the second variable, because the functions z(ξ(0)), ξ(0) ∈
Rn → (f(

∑n
i=1 ξ

i(0)wi), wj), and ξ ∈ Cρ(Rn)→< h(t,
∑n

i=1 ξ
iwi), wj > are continuous.

Thirdly, we are about to prove for each (t, ξ) ∈ Θ, there exists a Lebesgue measurable function

m(·) ∈ L1(τ, T ) such that

|g(t̄, ξ̄)| ≤ m(t), ∀(t̄, ξ̄) ∈ V (t, ξ),
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where V (t, ξ) ⊂ Θ is a neighborhood of (t, ξ). From the definition of Θ, there exists a constant

CΘ (depending on ϕ) such that

|ξ| ≤ b+ |((ϕ,w1), · · · , (ϕ,wn))| ≤ CΘ.

Next (2.3) implies that

(f(
n∑
i=1

ξi(0)wi), wj) ≤ 2
1
2Cf |Ω|

1
2 |wj |+ 2

1
2CfCΘ(

n∑
i=1

|ξi(0)|)|wj |.

At last, applying conditions (H2)-(H3), we obtain

< h(t,
n∑
i=1

ξiwi), wj > =< (h(t,
n∑
i=1

ξiwi)− h(t, 0)), wj >

≤ ‖h(t,
n∑
i=1

ξiwi)− h(t, 0)‖H−1(Ω))‖wj‖

≤ Lh‖
n∑
i=1

ξiwi‖Cρ(H1
0 (Ω))‖wj‖

≤ Lh‖ξ‖Cρ(Rn)

(
n∑
i=1

‖wi‖2
)1/2

‖wj‖

≤ LhCΘ

(
n∑
i=1

‖wi‖2
)1/2

‖wj‖.

Taking into account (2.10) and owing to the continuity of the function a in the compact

interval I ′ := [−|l|CΘ
∑n

i=1 |wi|, |l|CΘ
∑n

i=1 |wi|], there exists a constant M > 0 such that

z(ξ) ≤M, ∀ξ ∈ Cρ(Rn), |ξ| ≤ CΘ.

Bearing this in mind, we obtain

|gj(t, ξ)| ≤ λjz(ξ(0))|ξj(0)|+ |(f(

n∑
i=1

ξi(0)wi), wj)|+ | < h(t,

n∑
i=1

ξiwi), wj > |

≤ λjMCΘ + 2
1
2Cf |Ω|

1
2 |wj |+ 2

1
2CfCΘ(

n∑
i=1

|ξi(0)|)|wj |

+ LhCΘ

(
n∑
i=1

‖wi‖2
)1/2

‖wj‖ ∈ L1(τ, T ).

In conclusion, there exists a local solution to problem (2.8).

Step 2: Uniqueness of local solution. Since the function a is locally Lipschitz, for any

bounded interval [−R,R] of R, there exists a positive constant La(R) such that

|a(x)− a(y)| ≤ La(R)|x− y|, ∀x, y ∈ [−R,R]. (2.11)
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Assume that there exist two solutions $n(t), ϑn(t) of the ordinary differential system (2.8) in

(τ, t1] and (τ, t2] respectively. Then it holds($nj(t)− ϑnj(t))′ = gj(t,$
n
t )− gj(t, ϑnt ),

($nj − ϑnj)(t) = 0,

t ∈ (τ,min{t1, t2}],

t ∈ (τ − ρ, τ ],
(2.12)

where

gj(t,$
n
t ) = −λj(a(l(un(t))))$nj(t) + (f(un(t)), wj)+ < h(t, unt ), wj >,

gj(t, ϑ
n
t ) = −λj(a(l(vn(t))))ϑnj(t) + (f(vn(t)), wj)+ < h(t, vnt ), wj >,

un(t) :=
∑n

j=1$
nj(t)wj and vn(t) :=

∑n
j=1 ϑ

nj(t)wj .

Multiplying (2.12) by $nj−ϑnj , summing from j = 1 to n and making use of (2.4), we obtain,

1

2

d

dt
|un(t)− vn(t)|2 + a(l(un(t)))‖un(t)− vn(t)‖2

≤ |a(l(un(t)))− a(l(vn(t)))||((un(t), un(t)− vn(t)))|+ η|un(t)− vn(t)|2

+ < (h(t, unt )− h(t, vnt )), un(t)− vn(t) > .

It is straightforward to deduce from (2.7) that un, vn ∈ C((τ,min{t1, t2}];L2(Ω)). When ρ > 0

is a constant, obviously, there exist a constant M ′ > 0 and some R > 0, such that

|un(t)|2 ≤M ′ and |vn(t)|2 ≤M ′, ∀t ∈ (τ,min{t1, t2}]. (2.13)

When ρ = ∞, by definition of the phase space C∞(L2(Ω)), the limit of un(t) and vn(t) exist as

t goes to minus infinity, (2.13) also holds. In addition, taking into account that l ∈ L2(Ω), it

satisfies {l(un(t))}t∈(τ,min{t1,t2}] ∈ [−R,R], {l(vn(t))}t∈(τ,min{t1,t2}] ∈ [−R,R]. Hence, using (2.2),

(2.4), (H4) and the fact that function a is locally Lipschitz (with Lipschitz constant La(·), cf.

(2.11)), integrating the above inequality between τ and t, we deduce that

|un(t)− vn(t)|2 +
m

2

∫ t

τ
‖un(s)− vn(s)‖2ds

≤ |un(τ)− vn(τ)|2 +

(
(La(R))2|l|2λn(M ′)2

m
+ 2η

)∫ t

τ
|un(s)− vn(s)|2ds

+
2Ch
m

∫ t

τ
‖un(s)− vn(s)‖2ds.

With the help of (2.9), we have

|un(t)− vn(t)|2 ≤ |un(τ)− vn(τ)|2eCt,

where

C =
(La(R))2|l|2λn(M ′)2 + 2mη

m
.

The proof of this proposition is finished. �
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Remark 2.5 Condition (2.9), i.e., m2 ≥ 4Ch can be read as: the combination of large effects

of the nonlocal term and small delay source ensure the existence and uniqueness of solutions to

ODE system (2.8). In fact, this condition also guarantees the existence and uniqueness of weak

solutions to problem (2.1), all the details will be given in the next theorem.

Now we will show the existence and uniqueness of weak solutions and the continuity of the

solutions in L2(Ω) with respect to the initial value. Before going further, we need an extra

condition:

(H5) If vm converges weakly to v in L2((τ − ρ, T ];H1
0 (Ω)) and strongly in L2((τ − ρ, T ];L2(Ω)),

then h(·, vm· ) converges weakly to h(·, v·) in L2((τ, T ];H−1(Ω)).

One example where our theory can be applied is as follows.

Example 2.6 Let k ∈ L∞((−ρ, T ];L(H1
0 (Ω);H−1(Ω))) (ρ ≥ ∞), and consider in problem (2.1),

a term of the form

h(t, ut) =

∫ 0

−ρ
k(t+ s)u(t+ s)ds,

defined for all u ∈ L2((−ρ, T ];H1
0 (Ω)). This term corresponds to the situation

h(t, ξ) =

∫ 0

−ρ
k(t+ s)ξ(s)ds,

for each t ∈ [0, T ] and ξ ∈ Cρ(H
1
0 (Ω)). In this case, it is easy to see that h is well defined and

satisfies (H1)-(H5).

Theorem 2.7 Suppose that a is locally Lipschitz and (2.2) is fulfilled, f(·) ∈ C(R) satisfies (2.3)-

(2.4), l ∈ L2(Ω) and h(·, ·) satisfies conditions (H1)-(H5), with X = H1
0 (Ω) and Y = H−1(Ω).

Also suppose (2.9) holds. Then, for each initial function ϕ ∈ L2((−ρ, 0];H1
0 (Ω)) ∩ Cρ(L

2(Ω)),

there exists a weak solution to problem (2.1). In addition, this solution is continuous in L2(Ω)

with respect to the initial data.

Proof. We split the proof into several steps.

Step 1: Existence of weak solution. Multiplying by γnj in (2.8), summing from j = 1 to

n and using (2.2), we obtain

d

dt
|un(t)|2 + 2m‖un(t)‖2 ≤ 2(f(un(t)), un(t)) + 2 < h(t, unt ), un(t) >, a.e. t ∈ (τ, tn),

where (τ, tn) is the interval of existence of maximal solution. By the Young inequality and (2.3),

for a.e. t ∈ (τ, tn), we have

d

dt
|un(t)|2 +m‖un(t)‖2 ≤

4C2
f

λ1m
|Ω|+

4C2
f

λ1m
|un(t)|2 +

2

m
‖h(t, unt )‖2H−1(Ω).

10



Integrating above inequality between τ and t ∈ (τ, tn), together with condition (H4), we

obtain

|un(t)|2 +m

∫ t

τ
‖un(s)‖2ds ≤ |un(τ)|2 +

4C2
f |Ω|(T − τ)

λ1m
+

4C2
f

λ1m

∫ t

τ
|un(s)|2ds

+
2Ch
m
‖ϕ‖2L2((−ρ,0];H1

0 (Ω)) +
2Ch
m

∫ t

τ
‖un(s)‖2ds.

The Gronwall lemma and (2.9) imply for each n ∈ N, un(·) is well defined on (τ, t] and un(t)

is bounded for all t ∈ (τ, tn). Therefore, it is straightforward to check that {un} is well defined

on (τ, T ] for all n ∈ N+. Actually, {un} is bounded in L∞((τ, T ];L2(Ω)) ∩ L2((τ, T ];H1
0 (Ω)).

Moreover, notice that, for each n ∈ N, un ∈ C((τ, T ];L2(Ω)), we deduce there exists a positive

constant C independent of n, such that

|un(t)| ≤ C, ∀t ∈ (τ, T ], ∀n ≥ 1.

Combining with a ∈ C(R;R+) and l ∈ L2(Ω), there exists a positive constant MC such that

a(l(un(t))) ≤MC , ∀t ∈ (τ, T ], ∀n ≥ 1.

Hence, ∫ T

τ
|a(l(un(t)))|2‖ −∆un(t)‖2H−1(Ω)dt ≤ (MC)2

∫ T

τ
‖un(t)‖2dt. (2.14)

Taking into account that {un} is bounded in L2((τ, T ];H1
0 (Ω)), we deduce that the sequence

{−a(l(un))∆un} is bounded in L2((τ, T ];H−1(Ω)).

On the other hand, using (2.3), we have∫ T

τ

∫
Ω
|f(un(t, x))|2dxdt ≤ 2C2

f

∫ T

τ

∫
Ω

(1 + |un(x, t)|2)dxdt

≤ 2C2
f |Ω|(T − τ) + 2C2

f

∫ T

τ
|un(t)|2dt.

(2.15)

Since {un} is bounded in L∞((τ, T ];L2(Ω)), {f(un)} is bounded in L2((τ, T ];L2(Ω)) holds imme-

diately.

In addition, to prove un converges to u strongly in L2((τ, T ];L2(Ω)), we need to state the

sequence {(un)′} is bounded in L2((τ, T ];H−1(Ω)). To this end, let us define the following pro-

jectors,

P̃n : H−1(Ω) −→ H−1(Ω)

f −→ [φ ∈ H1
0 (Ω) −→< P̃nf, φ >:=< f, Pnφ >],

where

Pn : L2(Ω) −→ Vn := span[w1, · · · , wn]

φ −→
n∑
j=1

(φ,wj)wj .

11



Observe that P̃n is the continuous extension in H−1(Ω) of Pn. Then, in what follows, we will

make an abuse of notation and denote this projection by Pn.

Bearing this in mind, together with (2.14)-(2.15), (H4) and the definition of the above pro-

jectors, we have∫ T

τ
‖du

n(t)

dt
‖2H−1(Ω)dt

=

∫ T

τ
‖a(l(un(t)))∆un(t) + Pnf(un(t)) + Pnh(t, unt )‖2H−1(Ω)dt

≤ 3(MC)2

∫ T

τ
‖un(t)‖2dt+

3

λ1

∫ T

τ
|Pn(f(un(t)))|2dt+ 3

∫ T

τ
‖Pnh(t, unt )‖2H−1(Ω)dt

≤

(
3(MC)2 +

6C2
f

λ2
1

+ 3Ch

)∫ T

τ
‖un(t)‖2dt+

6C2
f |Ω|
λ1

(T − τ) + 3Ch‖ϕn(t)‖2L2((−ρ,0];H1
0 (Ω)),

namely, the sequence {(un)′} is bounded in L2((τ, T ];H−1(Ω)).

Therefore, compactness arguments and the Aubin-Lions lemma imply there exists a subse-

quence of {un} (relabeled the same) and u ∈ L∞((τ, T ];L2(Ω))∩L2((τ, T ];H1
0 (Ω)) with {(un)′} ∈

L2((τ, T ];H−1(Ω)), such that

un → u weakly-star in L∞((τ, T ];L2(Ω)),

un → u weakly in L2((τ, T ];H1
0 (Ω)),

(un)′ → u′ weakly in L2((τ, T ];H−1(Ω)),

un → u strongly in L2((τ, T ];L2(Ω)),

un(x, t)→ u(x, t) a.e. (x, t) ∈ Ω× (τ, T ],

un(t)→ u(t) strongly in L2(Ω), a.e. t ∈ (τ, T ],

f(un(t))→ ξ1 weakly in L2((τ, T ];L2(Ω)),

a(l(un))un → ξ2 weakly in L2((τ, T ];H1
0 (Ω)),

(2.16)

for all T > τ .

In the end, we pass to the limit for each term to prove the existence of weak solutions to

problem (2.1). Firstly, by (2.16) and (H5), it follows

h(t, unt )→ h(t, ut) weakly in L2((τ, T ];H−1(Ω)). (2.17)

Secondly, we need to check that ξ1 = f(u). Since un(·) converges to u(·) strongly in L2(Ω), a.e.

t ∈ (τ, T ], we deduce that

un(x, t)→ u(x, t), ∀(x, t) ∈ Ω× (τ, T ]\N1, (2.18)

un(t)→ u(t) strongly in L2(Ω), ∀t ∈ (τ, T ]\N2, (2.19)

12



where N1 is a null set in RN+1 and N2 is a null set in R. From this, together with the fact

that f ∈ C(R), {f(un)} is bounded in L2((τ, T ];L2(Ω)) and converges pointwisely to f(u) a.e.

Ω× (τ , T ) (cf. (2.18)), by applying [22, Lemma 1.3] it follows ξ1 = f(u).

Finally, we will prove that ξ2 = a(l(u))u. As a ∈ C(R;R+), l ∈ L2(Ω) and (2.19) holds, we

have

a(l(un(t)))→ a(l(u(t))), ∀t ∈ (τ, T ]\N2.

Therefore,

a(l(un(t)))un(x, t)→ a(l(u(t)))u(x, t), ∀(x, t) ∈ Ω× (τ, T ]\(N1 ∪ (Ω×N2)),

where N1 ∪ (Ω×N2) is a null set in RN+1. ξ2 = a(l(u))u follows immediately again by applying

[22, Lemma 1.3], since {a(l(un))un} is bounded in L2((τ, T ];H1
0 (Ω)).

Now, passing to the limit in (2.7), taking into account (2.16) and the fact that ∪n∈NVn is dense

in H1
0 (Ω), (2.6) holds for all v ∈ H1

0 (Ω). Thus, till now, we have proved that u is a weak solution

to problem (2.1) for t ∈ (τ, T ]. Besides, when t ∈ (τ − ρ, τ), from the definition of projection Pn,

we have

un(t) = Pnϕ(t− τ)→ ϕ(t− τ) = u(t) as n→∞.

Therefore, to prove that u ∈ C((τ − ρ, T ];L2(Ω)) is a weak solution to (2.1), we only need to

check u(τ) = ϕ(0).

On the one hand, consider fixed n, φ ∈ H1(τ, T ] with φ(T ) = 0 and φ(τ) 6= 0, and w ∈ Vn.

Multiplying by φ in (2.7), integrating between τ and T , we obtain for all m > n,

− (ϕm(0), w)φ(τ)−
∫ T

τ
φ′(t)(um(t), w)dt+

∫ T

τ
a(l(um(t))) < −∆um(t), w > φ(t)dt

=

∫ T

τ
(f(um(t)), w)φ(t)dt+

∫ T

τ
< h(t, umt ), w > φ(t)dt.

Taking limit when m→∞ and using (2.16)-(2.17), we deduce

− (ϕ(0), w)φ(τ)−
∫ T

τ
φ′(t)(u(t), w)dt+

∫ T

τ
a(l(u(t))) < −∆u(t), w > φ(t)dt

=

∫ T

τ
(f(u(t)), w)φ(t)dt+

∫ T

τ
< h(t, ut), w > φ(t)dt.

(2.20)

On the other hand, multiplying by φ in (2.6) and integrating between τ and T , we obtain

− (u(τ), w)φ(τ)−
∫ T

τ
φ′(t)(u(t), w)dt+

∫ T

τ
a(l(u(t))) < −∆u(t), w > φ(t)dt

=

∫ T

τ
(f(u(t)), w)φ(t)dt+

∫ T

τ
< h(t, ut), w > φ(t)dt.

Comparing (2.20) and the above expression, we have (u(τ), w)φ(τ) = (ϕ(0), w))φ(τ). As φ(τ) 6= 0

and {wj} is a Hilbert basis of L2(Ω), we conclude that u(τ) = ϕ(0).
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Step 2: Uniqueness of solution and continuity w.r.t. initial data. Assume there exist

two weak solutions u and v, with the initial functions ϕ(·) and ν(·) respectively. From the energy

equality, we obtain

1

2

d

dt
|u(t)− v(t)|2 + a(l(u(t)))‖u(t)− v(t)‖2

= [a(l(u(t)))− a(l(v(t)))]((u(t), u(t)− v(t))) + (f(u(t))− f(v(t)), u(t)− v(t))

+ < h(t, ut)− h(t, vt), u(t)− v(t) > .

Since u, v ∈ C([τ, T ];L2(Ω)), there exists a bounded set S ⊂ L2(Ω) such that {z(t)}t∈[τ,T ] ⊂ S,

where z is either u or v. Besides, taking into account that l ∈ L2(Ω), there exists a constant

R > 0 such that {l(z(t))}t∈[τ,T ] ⊂ [−R,R]. Then, by means of (2.2), (2.4), (H3) and the locally

Lipschitz continuity of the function a (cf. (2.11)), we obtain

1

2

d

dt
|u(t)− v(t)|2 +m‖u(t)− v(t)‖2

≤ La(R)|l||u(t)− v(t)|‖v(t)‖‖u(t)− v(t)‖+ η|u(t)− v(t)|2

+ < h(t, ut)− h(t, vt), u(t)− v(t) > .

(2.21)

Integrating (2.21) between τ and t, by (H4) and the Young inequality, we have

|u(t)− v(t)|2 +
m

2

∫ t

τ
‖u(s)− v(s)‖2ds

≤ |ϕ(0)− ν(0)|2 +
(La(R))2|l|2

m

∫ t

τ
|u(s)− v(s)|2‖v(s)‖2ds

+
2Ch
m

(
‖ϕ− ν‖2L2((−ρ,0];H1

0 (Ω))

)
+

2Ch
m

∫ t

τ
‖u(s)− v(s)‖2ds.

Now, applying the Gronwall lemma and (2.9) to the above expression, we have

|u(t)− v(t)|2 ≤
(
|ϕ(0)− ν(0)|2 +

2Ch
m
‖ϕ− ν‖2L2((−ρ,0];H1

0 (Ω))

)

× exp

{
(La(R))2|l|2‖v‖2

L2((τ,T ];H1
0 (Ω))

m

}
(t− τ), ∀t ∈ (τ, T ].

Hence, both results, the uniqueness of solutions and the continuity with respect to the initial

data of problem (2.1), follow immediately. �

Remark 2.8 If we assume h(·, ·) : R ×Cρ(L
2(Ω)) → L2(Ω) satisfies (H1)-(H4) with X = Y =

L2(Ω), then we are able to obtain the same result as in Theorem 2.7 without assuming condition

(2.9). Moreover, the initial function ϕ can be taken with less regularity, i.e., we can prove the

result for ϕ ∈ Cρ(L
2(Ω)).
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In the following result, we will study the regularising effect of the equation. In addition,

taking a more regular initial datum, the existence of a strong solution to problem (2.1) will be

analyzed.

Theorem 2.9 Assume hypotheses of Theorem 2.7, where h : R ×Cρ(L
2(Ω)) → L2(Ω) satisfies

(H1)-(H4) with X = Y = L2(Ω). Then, for every ε > 0 and T > ε+τ , the weak solution u belongs

to C((τ, T ];H1
0 (Ω))∩L2((ε+τ, T ];D(−∆)). In fact, if the initial function ϕ ∈ L2((−ρ, 0];H1

0 (Ω)),

then the function u ∈ C((τ, T ];H1
0 (Ω)) ∩ L2((τ, T ];D(−∆)) for every T > τ .

Proof. We split the proof into two steps.

Step 1: Regularising effect. Multiplying by λjγ
nj in (2.7), summing from j = 1 to n, and

using (2.2), (2.4), the Cauchy and Poincaré inequalities, it yields

d

dt
‖un(t)‖2 +m| −∆un(t)|2 ≤

4C2
f |Ω|
m

+
4C2

f

λ1m
‖un(t)‖2 +

2

m
|h(t, unt )− h(t, 0)|2, a.e. t ≥ τ.

Integrating the above inequality between s and t with τ < s ≤ t ≤ T , we obtain

‖un(t)‖2 +m

∫ t

s
| −∆un(r)|2dr ≤ ‖un(s)‖2 +

4C2
f |Ω|
m

(T − τ) +
4C2

f

λ1m

∫ t

s
‖un(r)‖2dr

+
2

m

∫ t

s
|h(r, unr )− h(r, 0)|2dr.

(2.22)

Now, integrating in (2.22) between τ and t, by (H4), we deduce that

(t− τ)‖un(t)‖2 ≤
4C2

f |Ω|(T − τ)2

m
+

(
4C2

f (T − τ)

λ1m
+ 1

)∫ t

τ
‖un(r)‖2dr

+
2(T − τ)

m

∫ t

τ
|h(r, unr )− h(r, 0)|2dr

≤
4C2

f |Ω|(T − τ)2

m
+

(
4C2

f (T − τ) + 2Ch(T − τ)

λ1m
+ 1

)∫ t

τ
‖un(r)‖2dr

+
2Ch(T − τ)

λ1m
‖ϕ‖2L2((−ρ,0];H1

0 (Ω)).

Therefore,

‖un(t)‖2 ≤
4C2

f |Ω|(T − τ)2

εm
+

(
4C2

f (T − τ) + 2Ch(T − τ) + λ1m

λ1mε

)

×
∫ t

τ
‖un(r)‖2dr +

2Ch(T − τ)

λ1mε
‖ϕ‖2L2((−ρ,0];H1

0 (Ω)),

for all t ∈ (τ + ε, T ] with ε ∈ (0, T − τ).
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From this and taking into account the boundedness of {un} in L2((τ, T ];H1
0 (Ω)), we de-

duce that {un} is bounded in L∞((τ, T ];H1
0 (Ω)). As a byproduct, the boundedness of {un}

in L2((τ + ε, T ];D(−∆)) holds true just taking s = τ and t = T in (2.22). In addition, by

means of this more regular boundedness, we deduce that the sequence {(un)′} is bounded in

L2((ε+ τ, T ];L2(Ω)). Thanks to the uniqueness of the weak solution, {un} converges to u weakly

in L2((τ + ε, T ];D(−∆)) and {(un)′} converges to {u′} weakly in L2((τ + ε, T ];L2(Ω)). As a

consequence, u ∈ L2((τ + ε, T ];D(−∆)) ∩ C((τ, T ];H1
0 (Ω)).

Step 2: Strong solution. In this step, if ϕ ∈ L2((−ρ, 0];H1
0 (Ω)), we will show that u ∈

L2((τ, T ];D(−∆))∩C((τ, T ];H1
0 (Ω)) for all T > τ . To that end, we multiply (2.7) by λjγ

nj , sum

from j = 1 to n and use (2.2), obtaining

1

2

d

dt
‖un(t)‖2+m|−∆un(t)|2 ≤ (f(un(t)),−∆un(t))+(h(t, unt ),−∆un(t)), a.e. t ∈ (τ, T ]. (2.23)

Now, from (2.3) and the Young inequality, we have

(f(un(t)),−∆un(t)) ≤ 1

m
|f(un(t))|2 +

m

4
| −∆un(t)|2

≤
2C2

f |Ω|
m

+
2C2

f

m
|un(t)|2 +

m

4
| −∆un(t)|2,

and by (H2),

(h(t, unt ),−∆un(t)) ≤ 1

m
|h(t, unt )− h(t, 0)|2 +

m

4
| −∆un(t)|2.

Taking this into account, from (2.23), we deduce that

d

dt
‖un(t)‖2 +m| −∆un(t)|2 ≤

4C2
f |Ω|
m

+
4C2

f

mλ1
‖un(t)‖2 +

2

m
|h(t, unt )− h(t, 0)|2, a.e. t > τ.

(2.24)

Integrating (2.24) between τ and t, t ∈ (τ, T ], by (H4) we have

‖un(t)‖2 +m

∫ t

τ
| −∆un(s)|2ds

≤ ‖ϕ(0)‖2 +
4C2

f |Ω|(T − τ)

m
+

(
4C2

f + 2Ch

mλ1

)∫ t

τ
‖un(s)‖2ds

+
2Ch
mλ1

‖ϕ‖2L2((−ρ,0];H1
0 (Ω)).

Since {un} is bounded in L2((τ, T ];H1
0 (Ω)), the sequence {un} is bounded in L∞((τ, T ];H1

0 (Ω))

∩L2((τ, T ];D(−∆)). As a result, the sequence {(un)′} is bounded in L2((τ, T ];L2(Ω)). Thanks to

the uniqueness of weak solution, {un} converges to u weakly-star in L∞((τ, T ];H1
0 (Ω)) and weakly

in L2((τ, T ];D(−∆)), also {(un)′} converges to u′ weakly in L2((τ, T ];L2(Ω)). Therefore, we have

u ∈ C((τ, T ];H1
0 (Ω)), since u ∈ L∞((τ, T ];H1

0 (Ω))∩L2((τ, T ];D(−∆)), and u′ ∈ L2((τ, T ];L2(Ω))

as well. The proof is finished. �
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3 Analysis of the stationary problem

3.1 Statement of the problem

In this section, we are interested in studying the asymptotic behavior of the stationary (steady

state) solutions of problem (2.1). Recall that a stationary (steady state) solution to our problem

is an element u∗ ∈ H1
0 (Ω), such that

−a(l(u∗))∆u∗ = f(u∗) + h(t, u∗), ∀t ∈ R.

To state this problem, we need to assume h(t, u∗) is independent of t, i.e., there exists a mapping

H : H1
0 (Ω)→ H−1(Ω) such that

h(t, ξ) = H(ξ∗),

whenever ξ(θ) = ξ∗, for all θ ≤ 0.

For instance, if H : R → R is Lipschitz continuous and we define h(t, ξ) = H(ξ(−δ(t)))
via the Nemytskii operator, for δ(·) : R+ → (0, ρ), i.e., H(ξ(−δ(t)))(x) = H(ξ(−δ(t))(x)), then

h(t, ξ∗) = H(ξ∗).

Another example satisfying our problem is the case of distributed delay: h(t, ξ) =
∫ 0
−ρ k(s, ξ(s))ds

with k : R2 → R a Lipschitz continuous function with respect to its second variable. For more

details, see [23].

This leads us to first analyze the following elliptic problem,−a(l(u))∆u = f(u) +H(u),

u = 0,

in Ω,

on ∂Ω,
(3.1)

where the functions a and f are globally Lipschitz, with respective Lipschitz constants La, Lf ≥ 0

and there exist positive constants m and M , such that

0 < m ≤ a(s) ≤M, ∀s ∈ R. (3.2)

3.2 The existence and uniqueness of stationary solutions

Definition 3.1 A weak solution to (3.1) is an element u∗ ∈ H1
0 (Ω) such that

a(l(u∗))((u∗, v)) = (f(u∗), v)+ < H(u∗), v >, ∀v ∈ H1
0 (Ω).

In what follows, we analyze the existence of solutions to (3.1) by a corollary of the Brouwer

fixed point theorem. The uniqueness as well as the stability is also studied under suitable as-

sumptions.

Theorem 3.2 Let a, f and H : H1
0 (Ω)→ H−1(Ω) be globally Lipschitz functions, with Lipschitz

constants La, Lf and LH , respectively. Assume (3.2) is also satisfied, l ∈ L2(Ω) and m >

Lfλ
−1
1 + LH . Then:
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1. There exists at least one solution to (3.1). In addition, any solution u∗ to (3.1) fulfills

‖u∗‖ ≤ Υ :=
λ
−1/2
1 |Ω|1/2|f(0)|+ ‖H(0)‖H−1(Ω)

m− λ−1
1 Lf − LH

. (3.3)

2. If the mapping H : L2(Ω)→ L2(Ω), then every solution u∗ to (3.1) belongs to D(−∆).

3. Under the additional assumption

λ
−1/2
1 |l|2LaΥ < m− λ−1

1 Lf − LH , (3.4)

problem (3.1) possesses a unique solution.

Proof. (i) Let us prove the first result. Consider an orthonormal Hilbert basis {wj : j ≥ 1} of

L2(Ω) consisting of the eigenvectors associated with eigenvalues {λj : j ≥ 1} of the operator −∆

with zero Dirichlet boundary condition in Ω. For each n ≥ 1, let us denote Vn = span[w1, · · · , wn],

with the inner product ((·, ·)) and norm ‖ · ‖.
Now, we define operators Rn : Vn → Vn, for all n ≥ 1, as follows:

((Rnu, v)) =< −a(l(u))∆u, v > −(f(u), v)− < H(u), v >, ∀u, v ∈ Vn. (3.5)

Observe that the right hand side of (3.5) is a continuous linear map from Vn to R, thanks to

the Riesz Theorem, each Rnu ∈ Vn is well defined. In addition, by means of (3.2), the Poincaré

inequality and the Lipschitz continuity of the functions a, f and H, we deduce,

((Rnu−Rnũ, v))

=< −a(l(u))∆u+ a(l(ũ))∆ũ− f(u) + f(ũ)−H(u) +H(ũ), v >

=< −a(l(u))∆(u− ũ) + (a(l(ũ))− a(l(u))∆ũ, v >

+ (f(ũ)− f(u), v)+ < H(ũ)−H(u), v >

≤ (M + La|l|λ−1/2
1 ‖ũ‖+ Lfλ

−1
1 + LH)‖ũ− u‖‖v‖,

for all u, ũ, v ∈ Vn. Therefore,

‖Rnu−Rnũ‖ ≤ (M + La|l|λ−1/2
1 ‖ũ‖+ Lfλ

−1
1 + LH)‖ũ− u‖,

for all u, ũ ∈ Vn. Namely, Rn is continuous.

On the other hand, again by (3.2), the Poincaré inequality and the global Lipschitz continuity

of f , we have

((Rnu, u)) =< −a(l(u))∆u, u > −(f(u), u)− < H(u)−H(0), u > − < H(0), u >

≥ m‖u‖2 − Lfλ−1
1 ‖u‖

2 − |f(0)||Ω|1/2λ−1/2
1 ‖u‖ − LH‖u‖2 − ‖H(0)‖H−1(Ω)‖u‖

:= (m− Lfλ−1
1 − LH)‖u‖2 −

(
f(0)|Ω|1/2λ−1/2

1 + ‖H(0)‖H−1(Ω)

)
‖u‖,
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for all u ∈ Vn. Therefore, taking

Υ :=
λ
−1/2
1 |Ω|1/2|f(0)|+ ‖H(0)‖H−1(Ω)

m− λ−1
1 Lf − LH

,

we obtain

((Rnu, u)) ≥ 0, ∀u ∈ Vn such that ‖u‖ = Υ.

As a consequence of a corollary of the Brouwer fixed point theorem ([22, Lemma 4.3]), we

deduce that for each n ≥ 1, there exists un ∈ Vn such that Rn(un) = 0, with

‖u‖ ≤ Υ. (3.6)

Therefore,

< −a(l(un))∆un, v >= (f(un), v)+ < H(un), v >, ∀v ∈ Vn. (3.7)

Now, using the boundedness of {un} in H1
0 (Ω) by Υ and the compact embedding H1

0 (Ω) ↪→
L2(Ω), we can extract a subsequence {unk} ⊂ {un}, such thatunk → u∗,

unk → u∗,

weakly in H1
0 (Ω),

strongly in L2(Ω),
(3.8)

where u∗ ∈ H1
0 (Ω) is a solution to (3.1). To check that, we just take limit in (3.7) and use

assumptions imposed on a, l, f and H. Moreover, u∗ fulfils (3.6).

So far, we only have proved that there exists at least a solution u∗ to problem (3.1) and

verifies (3.3). But this does not imply that any solution u∗ to problem (3.1) fulfils (3.3) since the

uniqueness of solution is not guaranteed. Therefore, we are going to prove that any solution u∗

to problem (3.1) fulfils (3.3).

Let u∗ be a solution to (3.1). It holds

m‖u∗‖2 ≤ |f(u∗)− f(0)||u∗|+ |f(0)||Ω|1/2|u∗|

+ < H(u∗)−H(0), u∗ > +‖H(0)‖H−1(Ω)‖u∗‖.

Since the functions f and H are globally Lipschitz, by the Poincaré inequality, we obtain

m‖u∗‖2 ≤ (Lfλ
−1
1 + LH)‖u∗‖2 +

(
|f(0)||Ω|1/2λ−1/2

1 + ‖H(0)‖H−1(Ω)

)
‖u∗‖.

Therefore, each solution u∗ of problem (3.1) satisfies (3.3).

(ii) We will check that if H : L2(Ω) → L2(Ω), then every solution u∗ to (3.1) belongs to

D(−∆). In what follows, we represent (un)∗ = Pnu
∗ :=

∑n
i=1(u∗, wi)wi.

Since u∗ is a solution to (3.1), taking v = −∆(un)∗ in Definition 3.1, we deduce

a(l(u∗))| −∆(un)∗|2 = (f(u∗),−∆(un)∗) + (H(u∗),−∆(un)∗).
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Using the Cauchy-Schwartz and Young inequalities, the fact that f and H are globally Lipschitz

and (3.3), we deduce

(f(u∗),−∆(un)∗) ≤ 1

m
|f(u∗)|2 +

m

4
| −∆(un)∗|2

≤ 2

m
|f(u∗)− f(0)|2 +

m

4
| −∆(un)∗|2 +

2

m

∫
Ω
|f(0)|2dx

≤
2L2

f

mλ1
‖u∗‖2 +

2

m
|f(0)|2|Ω|+ m

4
| −∆(un)∗|2

≤
2λ−1

1 L2
fΥ2 + 2|f(0)|2|Ω|

m
+
m

4
| −∆(un)∗|2,

and

(H(u∗),−∆(un)∗) ≤ 1

m
|H(u∗)|2 +

m

4
| −∆(un)∗|2

≤
2L2

H

mλ1
‖u∗‖2 +

2

m
|H(0)|2|Ω|+ m

4
| −∆(un)∗|2.

Thus,

| −∆(un)∗|2 ≤ 2

m2

(
2λ−1

1 L2
fΥ2 + 2λ−1

1 L2
HΥ2 + 2(|f(0)|2 + |H(0)|2)|Ω|

)
.

Then, as the sequence {Pnu∗} is bounded in D(−∆) and Pnu
∗ converges to u∗ strongly in L2(Ω),

it holds that u∗ ∈ D(−∆).

(iii) Finally, we state the uniqueness to this problem. Assume u1 and u2 are two solutions of

(3.1). Then

< −a(l(u1))∆u1 + a(l(u2))∆u2, v >

= (f(u1)− f(u2), v)+ < H(u1)−H(u2), v >, ∀v ∈ H1
0 (Ω).

Adding ±a(l(u1))∆u2 into the above equality, taking v = u1 − u2, we obtain

m‖u1 − u2‖2 ≤ (λ
−1/2
1 |l|La‖u2‖+ λ−1

1 Lf + LH)‖u1 − u2‖2.

We now argue by contradiction, assume that u1 6= u2. Then, we can simplify the above expression

dropping the factor ‖u1 − u2‖2. However, using a priori estimate (3.3) for u2, we would arrive at

the opposite inequality to that one in (3.4), what is a contradiction. Therefore, u1 = u2 holds.

The proof of this theorem is complete. �

In the sequel, our goal is to establish sufficient conditions ensuring stability of stationary

solutions to (2.1). We first recall the stability definitions we will use in our analysis later.

Definition 3.3 (1) A stationary solution u∗ to (2.1) is said to be stable, if for any ε > 0, τ ∈ R,

there exists δ > 0 such that if ϕ ∈ L2((−ρ, 0];H1
0 (Ω)) satisfies ‖ϕ − u∗‖L2((−ρ,0];H1

0 (Ω)) < δ, then
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the corresponding solution u(·; τ, ϕ) to (2.1) exists for all t ≥ τ , and satisfies |u(t; τ, ϕ)−u∗| < ε,

for all t ≥ τ .

(2) A stationary solution u∗ to (2.1) is said to be attractive, if for every τ ∈ R there exists

δ̃ > 0 such that for ϕ ∈ L2((−ρ, 0];H1
0 (Ω)) with ‖ϕ−u∗‖L2((−ρ,0];H1

0 (Ω)) < δ̃, the solution u(·; τ, ϕ)

to (2.1) exists for all t ≥ τ , and satisfies limt→∞ |u(t; τ, ϕ)− u∗| = 0.

(3) A stationary solution u∗ to (2.1) is said to be asymptotically stable if it is stable and

attractive.

3.3 Analysis of stability: a direct approach

In this section, we prove the local stability of stationary solutions for a general delay term by

doing energy estimations directly. Moreover, the asymptotic stability of stationary solutions to

(2.1) with bounded delay will be presented later.

Theorem 3.4 Assume the hypotheses of Theorem 3.2 and (H4). If u(·) is any solution to (2.1),

and u∗ is the unique stationary solution of the same problem, then

|u(t)− u∗|2 ≤ |ϕ(0)− u∗|2 +
Ch
m
‖ϕ− u∗‖2L2((−ρ,0];H1

0 (Ω)), ∀t ≥ τ,

provided
2La|l|‖u∗‖√

λ1
+

2Lf
λ1

+
Ch
m
≤ m. (3.9)

Proof. From the energy equality,

1

2

d

dt
|u(t)− u∗|2 =< a(l(u(t)))∆u(t)− a(l(u∗))∆u∗ + f(u)

− f(u∗) + h(t, ut)− h(t, u∗), u(t)− u∗ > .

(3.10)

Adding ±a(l(u))∆u∗ in (3.10) and using (3.2), the Poincaré and Young inequalities, the global

Lipschitz continuity of the functions a and f , we have

d

dt
|u(t)− u∗|2 ≤ 2a(l(u))(∆(u− u∗), u(t)− u∗) + 2(a(l(u))∆u∗ − a(l(u∗))∆u∗, u(t)− u∗)

+ 2(f(u)− f(u∗), u(t)− u∗) + 2 < h(t, ut)− h(t, u∗), u(t)− u∗ >

≤ 2

(
−m

2
+
La|l|‖u∗‖√

λ1
+
Lf
λ1

)
‖u(t)− u∗‖2

+
1

m
‖h(t, ut)− h(t, u∗)‖2H−1(Ω).

Integrating the above expression between τ and t, by (H4), we obtain

|u(t)− u∗|2 ≤ |ϕ(0)− u∗|2 +
Ch
m

∫ 0

−ρ
‖ϕ− u∗‖2ds

+ 2

(
−m

2
+
La|l|‖u∗‖√

λ1
+
Lf
λ1

+
Ch
2m

)∫ t

τ
‖u(s)− u∗‖2ds.
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Neglecting the last term on the right-hand side of the above inequality since it is non-positive, it

follows,

|u(t)− u∗|2 ≤ |ϕ(0)− u∗|2 +
Ch
m
‖ϕ− u∗‖2L2((−ρ,0];H1

0 (Ω)), ∀t ≥ τ.

The proof is complete. �

Remark 3.5 Notice that, the sufficient condition (3.9) ensuring stability of the stationary solu-

tion involves its norm. It is possible to obtain another sufficient condition independently of ‖u∗‖.
Indeed, take into account that ‖u∗‖ ≤ ‖Υ‖, (see (3.3)). If we impose

2La|l|‖Υ‖√
λ1

+
2Lf
λ1

+
Ch
m
≤ m,

then condition (3.9) holds automatically, which means this condition is stronger than (3.9).

Next we will prove asymptotic stability of stationary solutions when the delay is bounded, in

fact, we will prove exponential asymptotic stability.

Theorem 3.6 Under the assumptions of Theorem 3.2, also, suppose there exist α0 > 0 and C(ρ)

(which may also depend on α0), such that for each α ∈ (0, α0], it holds∫ t

τ
eαs‖h(s, us)− h(s, vs)‖2H−1(Ω)ds ≤ C(ρ)

∫ t

τ−ρ
eαs‖u(s)− v(s)‖2ds, (3.11)

and

m >
2La|l|‖u∗‖√

λ1
+

2Lf
λ1

+
C(ρ)

m
. (3.12)

If problem (2.1) is driven by bounded delay, then for sufficiently small α, we have

|u(t)− u∗|2 ≤ e−α(t−τ)

(
|ϕ(0)− u∗|2 +

C(ρ)

m
‖ϕ− u∗‖2L2((−ρ,0];H1

0 (Ω))

)
, (3.13)

where u(·) is the solution to (2.1) corresponding to the initial value ϕ, and u∗ is the unique

stationary solution of (2.1).

Proof. Let 0 < α ≤ α0, then

d

dt
eαt|u(t)− u∗|2 = αeαt|u(t)− u∗|2 + eαt

d

dt
|u(t)− u∗|2.

Integrating the above equality between τ and t, together with (3.10),

eαt|u(t)− u∗|2 ≤ |ϕ(0)− u∗|2eατ +
C(ρ)

m

∫ 0

−ρ
eα(s+τ)‖ϕ(s)− u∗‖2ds+

α

λ1

∫ t

τ
eαs‖u(s)− u∗‖2ds

+

∫ t

τ
eαs
(
−m+

2La|l|‖u∗‖√
λ1

+
2Lf
λ1

+
C(ρ)

m

)
‖u(s)− u∗‖2ds.
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Notice, if α is small enough, combined with assumption (3.12), the sum of last two terms of the

above inequality keeps being negative. Therefore,

|u(t)− u∗|2 ≤ e−α(t−τ)

(
|ϕ(0)− u∗|2 +

C(ρ)

m
‖ϕ− u∗‖2L2((−ρ,0];H1

0 (Ω))

)
.

This finishes the proof. �

Remark 3.7 The previous result (Theorem 3.6) is valid only for bounded delay, because condition

(3.11) is not reasonable for unbounded delay, for more explanations, see [6].

3.4 Asymptotic stability via the construction of Lyapunov functionals

In this subsection, we will exploit the theory of Lyapunov functionals to complete our stability

analysis in the case of unbounded variable delay. In general, using Lyapunov functionals (instead

of Lyapunov functions) provides better stability results (cf. [19]), but the type of the delay terms

must be more specific. In our case, we will restrict to the case of variable delay (cf. (3.15)), for

simplicity, we will assume zero is the stationary solution. To this end, let us introduce an abstract

problem, consider operators Ã(t, ·) : H1
0 (Ω) → H−1(Ω) and f̃(t, ·) : C∞(H1

0 (Ω)) → H1
0 (Ω) with

Ã(t, 0) = 0 and f̃(t, 0) = 0. Assumedu
dt = Ã(t, u) + f̃(t, ut),

uτ (θ) = ϕ(θ),

t ∈ [τ,∞),

θ ∈ (−∞, 0],
(3.14)

is a well-posed problem, its solution, belonging to C∞(H1
0 (Ω)), is defined globally in time.

The stability of the trivial solution of (3.14) can be analyzed by constructing Lyapunov func-

tionals. Moreover, if we improve the decay of the functional, we gain not only stability but

asymptotic stability. Before proving the main theorem, let us recall the following well-known

result (see, e.g. [23]).

Proposition 3.8 Assume that there exist a functional V : R+×C∞(H1
0 (Ω))→ R+ and positive

constants γ1, γ2 such that, for any ϕ ∈ C∞(H1
0 (Ω)), the solution u(·) = u(·; τ, ϕ) to (3.14)

satisfies

V (t, ut) ≥ γ1|u(t)|2, t ≥ τ,

V (τ, uτ ) ≤ γ2‖ϕ‖2C∞(H1
0 (Ω)).

Then:

(i) If d
dtV (t, ut) ≤ 0 for t ≥ τ , the trivial solution to (3.14) is stable;

(ii) If there exists a positive constant γ3 such that d
dtV (t, ut) ≤ −γ3|u(t)|2 for t ≥ τ , the trivial

solution to problem (3.14) is asymptotically stable.
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We will apply the above results to the following equation, which is a particular case of (3.14),

du

dt
= a(l(u))∆u+ f(u) +H(u(t− ρ(t))), (3.15)

where H : H1
0 (Ω)→ H1

0 (Ω) is an appropriate function. Note that, assumption (3.2) implies

(a(l(u))∆u, u) ≤ −m‖u‖2, u ∈ H1
0 (Ω). (3.16)

Additionally, based on the condition that functions H are globally Lipschitz with Lipschitz con-

stant LH , we have

‖H(u)‖ ≤ LH‖u‖, u ∈ H1
0 (Ω). (3.17)

In the sequel, we will present the main result of this subsection.

Theorem 3.9 Assume that operators in (3.15) satisfy:

|f(u)| ≤ α1|u|, u ∈ H1
0 (Ω),

ρ ∈ C1(R;R+), ρ′(t) ≤ ρ∗ < 1.

Then the trivial solution to (3.15) is stable (resp. asymptotically stable) provided that

m ≥ α1

λ1
+

LH√
2(1− ρ∗)λ1

(
resp. m >

α1

λ1
+

LH√
2(1− ρ∗)λ1

)
. (3.18)

Proof. We construct the Lyapunov functional V : R+ ×C∞(H1
0 (Ω)) to (3.15) in the form

V (t, φ) = |φ(0)|2 +
C

1− ρ∗

∫ 0

−ρ(t)
|φ(θ)|2dθ,

where C > 0 is a constant to be determined later on. Denoting by V (t) = V (t, ut(·; τ, ϕ)), where

ut(·; τ, ϕ) is the solution to problem (3.15) with initial value ϕ, we have

V (t) = |u(t)|2 +
C

1− ρ∗

∫ 0

−ρ(t)
|u(t+ θ)|2dθ = |u(t)|2 +

C

1− ρ∗

∫ t

t−ρ(t)
|u(s)|2ds.

Consequently,

d

dt
V (t) = 2 < a(l(u))∆u, u > +2(f(u) +H(u(t− ρ(t))), u(t))

+
C

1− ρ∗
|u(t)|2 − C(1− ρ′(t))

1− ρ∗
|u(t− ρ(t))|2

≤ −2m‖u(t)‖2 +
2α1

λ1
‖u(t)‖2 +

2LH√
λ1
|u(t− ρ(t))|‖u(t)‖

+
C

(1− ρ∗)λ1
‖u(t)‖2 − C|u(t− ρ(t))|2

≤ 2

(
−m+

α1

λ1
+

C

2(1− ρ∗)λ1

)
‖u(t)‖2 +

L2
H

λ1ε
|u(t− ρ(t))|2

+ ε‖u(t)‖2 − C|u(t− ρ(t))|2,
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where the Poincaré and Young inequalities have been used. Pick up ε = L2
H/λ1C so that the

term containing |u(t− ρ(t))|2 vanishes in the above expression. Then we conclude that

d

dt
V (t) ≤ 2

(
−m+

α1

λ1
+

C

2(1− ρ∗)λ1
+

L2
H

2λ1C

)
‖u(t)‖2,

and minimizing the coefficient in brackets in the right-hand side, which is attained for C =

LH
√

1− ρ∗, we deduce

d

dt
V (t) ≤ 2

(
−m+

α1

λ1
+

LH

2
√

(1− ρ∗)λ1

)
‖u(t)‖2.

Then, the coefficient in the brackets in the right-hand side above is less than or equal or strictly

less than zero depending on the conditions in (3.18). This, jointly with the Poincaré inequality,

implies the good control of d
dtV (t) in order to apply Proposition 3.8. Therefore, both stability

and asymptotic stability statements follow respectively. �

4 Existence of pullback attractors

The purpose of this section is to prove some general results on the global asymptotic behavior

of problem (2.1) completing those shown in the previous sections.

In order to proceed, we start with some standard notations related to dynamical systems.

Definition 4.1 Given a metric space (X, d), a process U on X is a biparametric family of map-

pings U(t, τ) : X → X for −∞ < τ ≤ t < +∞, with the following properties:

(i) U(t, τ) ∈ C(X;X) for all t ≥ τ ;

(ii) U(τ, τ) = Id (the identity map) for all τ ∈ R;

(iii) U(t, τ) = U(t, r)U(r, τ) for all −∞ < τ ≤ r ≤ t < +∞.

Next, we recall some useful concepts in order to study the asymptotic behavior of a process.

Definition 4.2 For a process U defined on a metric space (X, d), a family B̂0 = {B0(t) : t ∈ R}
of subsets of X is said to be pullback absorbing for bounded sets, if, for any bounded set B of X,

and any t, there exists a time T (B, t) such that,

U(t, τ)B ⊂ B0(t), ∀τ ≤ T (B, t).

The process U is said to be B̂0-pullback asymptotically compact if, for any t, and any sequences

{τn}, {xn} ⊂ X with τn ≤ t, limn→+∞ τn = −∞, and xn ∈ B0(τn), the sequence {U(t, τn)xn} is

relatively compact in X.

Definition 4.3 A family A = {A(t) : t ∈ R} is said to be a pullback attractor for a process U if:

(i) Each A(t) is a compact subset of X for all t ∈ R;
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(ii) It is invariant, i.e.

U(t, τ)A(τ) = A(t), ∀τ ≤ t;

(iii) It attracts bounded sets in pullback sense, i.e., given a bounded subset B of X,

lim
τ→−∞

dist(U(t, τ)B,A(t)) = 0, ∀t ∈ R,

where dist(C1, C2) denotes the Hausdorff semi-distance between two sets C1 and C2, i.e.,

dist(C1, C2) = sup
x∈C1

inf
y∈C2

d(x, y).

The proof of the following result, which is a slight variant of Theorem 1.1 in [15], can be found

in [24].

Theorem 4.4 Consider a family B̂0 = {B0(t) : t ∈ R} of nonempty subsets of X and a process

U on X that is B̂0-asymptotically compact, and assume also that B̂0 is pullback absorbing for U .

Then, the family of sets Â = {A(t) : t ∈ R} given by

A(t) =
⋃

B bounded

Λ(B, t)
X

, (4.1)

where

Λ(B, t) :=
⋂
s≤t

⋃
τ≤s

U(t, τ)B
X

, ∀t ∈ R,

is a pullback attractor for U .

Remark 4.5 Observe that the pullback attractor defined by (4.1) is the minimal family of closed

sets that attracts all bounded sets; i.e., if Ã = {Ã(t)} also attracts bounded sets in a pullback

sense and Ã(t) is closed for all t, then A(t) ⊂ Ã(t).

4.1 Pullback attractors in L2-norm in the bounded delay case

Notice that we have proved the well-posedness of (2.1) for every T > τ , which implies, the

weak solution of (2.1) is defined globally in time. Now, under the initial setting of Section 2,

fulfilled with some more general assumptions, we are going to analyse the long-time behavior of

solutions to problem (2.1) in L2(Ω) by means of the theory of pullback attractors. Throughout

this section, we denote R2
d = {(t, τ) ∈ R2 : τ ≤ t}.

First of all, thanks to Theorem 2.7, the mapping U : R2
d ×Cρ(L

2(Ω))→ Cρ(L
2(Ω)), defined

by

U(t, τ)ϕ = ut(·; τ, ϕ) ∀ϕ ∈ Cρ(L
2(Ω)), ∀τ ≤ t, (4.2)

is obviously a process on Cρ(L
2(Ω)), where 0 < ρ < ∞ and ut(·; τ, ϕ), as usual, is the weak

solution to (2.1).
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From now on, besides (2.3)-(2.4), we assume that function f also satisfies

f(s)s ≤ α|s|2 + β, ∀s ∈ R, (4.3)

where α ∈ [0,mλ1/2) and β ≥ 0. Observe that if the constant Cf appearing in assumption (2.3)

belongs to [0,mλ1/2), this new assumption would be redundant.

Now we have the following result, which is essentially an estimation for absorbing set.

Lemma 4.6 Suppose that function a is locally Lipschitz and satisfies (2.2), f ∈ C(R) fulfilling

(2.3), (2.4) and (4.3), h : [τ, T ]×Cρ(L
2(Ω))→ L2(Ω) satisfying (H1)-(H2) with X = Y = L2(Ω),

l ∈ L2(Ω) and ϕ ∈ Cρ(L
2(Ω)). In addition, suppose that for each k0 > 0, there exists M(ρ) > 0

(which may also depend on k0), such that for all k ∈ (0, k0],∫ t

τ
eks|h(s, us|2ds ≤ L2

hM(ρ)

∫ t

τ−ρ
eks|u(s)|2ds, for u ∈ C([τ − ρ, T ];L2(Ω)). (4.4)

Then, the solution u(·) = u(·; τ, ϕ) to problem (2.1) fulfils

‖ut‖2Cρ(L2(Ω)) ≤
(
‖ϕ‖2Cρ(L2(Ω)) +

L2
hM(ρ)

λmλ1
‖ϕ‖2Cρ(L2(Ω))

)
×
(
e−λ(t−τ−ρ) + e

−
(
λ−L

2
hM(ρ)

λmλ1

)
(t−τ−ρ)

)
+

2β|Ω|
λ

+
2β|Ω|L2

hM(ρ)

λ1mλ2 − λL2
hM(ρ)

, (4.5)

where λ = mλ1 − 2α > 0 satisfying λ >
L2
hM(ρ)
mλ1

.

Proof. From the energy equality, the Cauchy-Schwartz inequality, (2.2) and (4.3), we deduce

d

dt
|u(t)|2 + 2m‖u(t)‖2 ≤ 2α|u(t)|2 + 2β|Ω|+ |h(t, ut)||u(t)|.

Applying the Poincaré and Young inequalities, (H2)-(H3) to the above expression, we obtain,

d

dt
|u(t)|2 + (mλ1 − 2α)|u(t)|2 ≤ 2β|Ω|+ 1

mλ1
|h(t, ut)|2.

By (4.4), it follows that

|u(t)|2 ≤ |ϕ(0)|2e−λ(t−τ) +
2β|Ω|
λ

+
1

mλ1

∫ t

τ
e−λ(t−s)|h(s, us)|2ds

≤ |ϕ(0)|2e−λ(t−τ) +
2β|Ω|
λ

+
L2
hM(ρ)

λmλ1
‖ϕ‖2Cρ(L2(Ω))e

−λ(t−τ)

+
L2
hM(ρ)

λ1m

∫ t

τ
e−λ(t−s)|u(s)|2ds.
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Gronwall’s Lemma implies for all t ≥ τ ,

|u(t)|2 ≤
(
‖ϕ‖2Cρ(L2(Ω)) +

L2
hM(ρ)

λmλ1
‖ϕ‖2Cρ(L2(Ω))

)
×
(
e−λ(t−τ) + e

−
(
λ−L

2
hM(ρ)

λmλ1

)
(t−τ)

)
+

2β|Ω|
λ

+
2β|Ω|L2

hM(ρ)

λ1mλ2 − λL2
hM(ρ)

.

Then,

‖ut‖2Cρ(L2(Ω)) ≤
(
‖ϕ‖2Cρ(L2(Ω)) +

L2
hM(ρ)

λmλ1
‖ϕ‖2Cρ(L2(Ω))

)
×
(
e−λ(t−τ−ρ) + e

−
(
λ−L

2
hM(ρ)

λmλ1

)
(t−τ−ρ)

)
+

2β|Ω|
λ

+
2β|Ω|L2

hM(ρ)

λ1mλ2 − λL2
hM(ρ)

, (4.6)

for all t ≥ τ + ρ. We note that if τ ≤ t < τ + ρ, then we obtain the following estimation

‖ut(θ)‖2Cρ(L2(Ω)) ≤ sup
θ∈[−(t−τ),0]

|u(t+ θ)|2 + sup
θ∈[−ρ,−(t−τ)]

|u(t+ θ)|2

≤ sup
s∈[τ,t]

|u(s)|2 + sup
s∈[t−ρ,τ ]

|u(s)|2

≤ sup
s∈[τ,t]

|u(s)|2 + ‖ϕ‖2Cρ(L2(Ω))

≤ sup
s∈[τ,t]

|u(s)|2 + e−λ(t−τ−ρ)‖ϕ‖2Cρ(L2(Ω)).

(4.7)

Combining (4.6) and (4.7), (4.5) holds true. �

Defining now

S =
4β|Ω|
λ

+
4β|Ω|L2

hM(ρ)

λ1mλ2 − λL2
hM(ρ)

,

we are able to prove the existence of an absorbing family in the space Cρ(L
2(Ω)).

Lemma 4.7 Under the assumptions of Lemma 4.6, the family B̂0 = {B(t), t ∈ R}, where B(t) =

BL2(Ω)(0, S), for all t ∈ R, is pullback absorbing for bounded sets in Cρ(L
2(Ω)).

Proof. To see that, we have to prove for every bounded set D ∈ Cρ(L
2(Ω)), and for every fixed

t ∈ R, there exists T = T (t,D), such that

sup
ϕ∈D
‖ut(·; τ, ϕ)‖2Cρ(L2(Ω)) ≤ S, ∀τ ≥ T.

As D is a bounded set in Cρ(L
2(Ω)), there is a constant d > 0, such that

‖ϕ‖Cρ(L2(Ω)) ≤ d, for all ϕ ∈ D.
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Thanks to Lemma 4.6, we have

‖ut(·;ϕ, τ)‖2Cρ(L2(Ω)) ≤ 2

(
d2 +

L2
hM(ρ)d2

λmλ1

)
e
−
(
λ−L

2
hM(ρ)

λmλ1

)
(t−τ−ρ)

+
S

2
,

for any t ≥ τ .

Now we do estimation on the first term of the right hand side of the above inequality. It is

clear that there exists a constant T = T (D, t), such that

2

(
d2 +

L2
hM(ρ)d2

λmλ1

)
e
−
(
λ−L

2
hM(ρ)

λmλ1

)
(t−τ−ρ)

≤ S

2
, ∀τ ≤ T.

Thus, we finish the proof of this lemma. �

To conclude with the existence of pullback attractors, we will prove that the process U given

by (4.2) is pullback asymptotically compact. First, we prove the following general result.

Lemma 4.8 Let B ⊂ Cρ(L
2(Ω)) be bounded, ϕn ∈ B and ϕn → ϕ weakly in H−1(Ω), ϕn(0) →

ϕ(0) weakly in L2(Ω). Then, denoting un(·) := ut(·; τ, ϕn), there exist a subsequence {unk(·)}
and a function u(·) such that {unk(·)} converges to u(·) in C([r, T ];L2(Ω)) for all τ < r < T . If

moreover, ϕn → ϕ in Cρ(L
2(Ω)), then unk → u in C([τ − ρ, T ];L2(Ω)), for all T > τ , and u is

a solution of (2.1) corresponding to the initial value ϕ.

Proof. Following the same lines of the proof of Theorem 2.7, we have

un → u weakly in L2((τ, T ];H1
0 (Ω)),

(un)′ → u′ weakly in L2((τ, T ];H−1(Ω)),

un → u strongly in L2((τ, T ];L2(Ω)),

un(t)→ u(t) strongly in L2(Ω), a.e. t ∈ [τ, T ],

f(un(t))→ f(u(t)) weakly in L2((τ, T ];L2(Ω)),

a(l(un))∆un → a(l(u))∆u weakly in L2((τ, T ];H1
0 (Ω)),

h(t, unt )→ ξh weakly in L2((τ, T ];L2(Ω)).

(4.8)

Lemma 4.6 implies that ‖unt ‖Cρ(L2(Ω)) is uniformly bounded on [τ, T ], therefore, the sequence

{un(t)} is uniformly bounded on [τ, T ]. This together with the compact embedding L2(Ω) ↪→
H−1(Ω), and the Ascoli-Arzelà theorem, leads un → u in C([τ, T ];H−1(Ω)). Then a standard

argument implies that un(tn) → u(t0) weakly in L2(Ω) for any sequence tn → t0, tn, t0 ∈ [τ, T ],

thus

|u(t0)|2 ≤ lim inf
n→∞

|un(tn)|2. (4.9)

In order to prove {unk} converges to u in C([r, T ];L2(Ω)), we need to check un(tn) → u(t0)

strongly in L2(Ω) for any sequence {tn}n∈N, t0 ∈ [r, T ], for any r ∈ [τ, T ]. To this end, it is

enough to ensure

lim sup
n→∞

|un(tn)|2 ≤ |u(t0)|2. (4.10)
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It is not difficult to see that the functions

Jn(t) =
1

2
|un(t)|2 − 2β|Ω|t− C1L

2
h(t− τ), τ ≤ t ≤ T,

are continuous and non-increasing in [τ, T ], where we have used the notation that ‖ut‖2Cρ(L2(Ω)) ≤
C1. Passing to the limit, we obtain that u(·) is a solution of the following problemdu

dt − a(l(u))∆u = f(u) + ξh(t),

uτ (0) = ϕ(0), u0 = ϕ in H−1(Ω).

Notice that, h(t, unt )→ ξh(t) weakly in L2((τ, T ];L2(Ω)) implies that∫ t

τ
|ξh(s)|2ds ≤ lim inf

n→∞

∫ t

τ
|h(s, uns )|2ds ≤ C1L

2
h(t− τ).

Therefore, the continuous function

J(t) =
1

2
|u(t)|2 − 2β|Ω|t− C1L

2
h(t− τ)

is also non-increasing in [τ, T ]. Moreover, (4.8) implies, passing to a subsequence, that Jn(t) →
J(t) for a.a. t ∈ (τ, T ]. Therefore, by a technical result ([9], Lemma 11), we have (4.10). Applying

now a diagonal argument, we prove that the result is valid in an arbitrary interval τ ≤ r ≤ T .

Assume now that in addition, ϕn → ϕ in Cρ(L
2(Ω)). Then, arguing as before, one check that

un → u in C([τ − ρ, T ];L2(Ω)). Hence, it follows that h(t, unt ) → ξh, and then u is a solution of

(2.1) corresponding to the initial value ϕ. �

Lemma 4.9 Assume conditions of Lemma 4.8 hold. Then the process U is B̂0-pullback asymp-

totically compact, where B̂0 is defined in Lemma 4.7.

Proof. Let ϕn ∈ BL2(Ω)(0, S) and τn ≤ t, then, we have to prove U(t, τn)ϕn is relatively compact

in Cρ(L
2(Ω)) as τn → −∞. Denote, for short, unt = U(t, τn)ϕn and B = BL2(Ω)(0, S). For each

fixed t, we first choose T := t̃(t, B), such that U(t, τ)B ⊂ B for all τ ≤ min{t,−T}. Then, for

this fixed T , there exists t̃(t− T,B) such that, for all τ ≤ −t̃(t− T,B), we have

U(t− T, τ)B ⊂ B.

Thus, since τn → −∞, there exists n0 ∈ N such that, for all n ≥ n0, we have τn ≤ min{−t̃(t −
T,B), t− T},

U(t, τn)B = U(t, t− T )U(t− T, τn)B ⊂ U(t, t− T )B.

Then unt = U(t, t−T )ξTn , where ξTn ∈ B. Let un(·) be a sequence of solutions such that unt−T = ξTn ,

namely, un(·+ t− T ) = ξTn (·) in L2(Ω).

In a similar way as in the proof of Lemma 4.8, it follows that {un} converges to some functions

u in the sense of (4.8). Then, Lemma 4.8 implies, moreover, that

un → u in C([r, t], L2(Ω)), for all t− T < r < t.

Hence, if we take T > ρ, then we obtain {unt } converges to ut in Cρ(L
2(Ω)). �
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Theorem 4.10 Assume the conditions of Lemma 4.6, and let B ⊂ Cρ(L
2(Ω)) be a bounded set,

ϕn ∈ B and ϕn → ϕ weakly in H−1(Ω), ϕn(0) → ϕ(0) weakly in L2(Ω). Then the process U

defined in Cρ(L
2(Ω)) associated to (2.1) has a pullback attractor Â = {A(t)}.

Proof. The existence of pullback attractor is a direct consequence of Theorem 4.4, Lemmas 4.6

and 4.9. �

In general, we cannot obtain much more information about the structure of pullback attractors

but just proved to exist. In fact, such attractor may have a complex structure, however, in some

cases we can provide more details of the geometrical structure of this set. Indeed, in the case

described below, we will be able to prove that it becomes a singleton u∗, which means the solutions

are attracted by a single point, the unique stationary solution u∗.

The result is based on Theorem 3.6.

Lemma 4.11 Assume the conditions of Theorem 3.2 and ϕ ∈ C([−ρ, 0];L2(Ω)), also, suppose

that for each κ0 > 0, there exists K(ρ) > 0 (which may also depend on κ0), such that for each

κ ∈ (0, κ0], it holds∫ t

τ
eκs|h(s, us)−h(s, vs)|2ds ≤ K(ρ)

∫ t

τ−ρ
eκs|u(s)−v(s)|2ds, for u, v ∈ C([τ−ρ, t];L2(Ω)), τ ≤ t,

(4.11)

and

mλ1 >
L2
a|l|2‖u∗‖2 + 2mLf +m+K(ρ)m

m
. (4.12)

If problem (2.1) is driven by bounded delay, then for sufficiently small κ, we have

|u(t)− u∗|2 ≤ e−κ(t−τ)
(
|ϕ(0)− u∗|2 +K(ρ)‖ϕ− u∗‖2L2((−ρ,0];L2(Ω))

)
,

where u(·) is the solution to problem (2.1) corresponding to the initial value ϕ, and u∗ is the

unique stationary solution of (2.1).

Proof. This proof follows the same lines of Theorem 3.6. Let 0 < κ ≤ κ0, then

d

dt
eκt|u(t)− u∗|2 = κeκt|u(t)− u∗|2 + eκt

d

dt
|u(t)− u∗|2. (4.13)

Using energy estimation, by (3.2) and the Young inequality, we have

d

dt
|u(t)− u∗| ≤ −2m‖u(t)− u∗‖2 + 2La|l||u(t)− u∗|‖u∗‖‖u(t)− u∗‖

+ 2Lf |u(t)− u∗|2 + |h(t, ut)− h(t, u∗)|2 + |u(t)− u∗|2

≤ (−mλ1 +
1

m
L2
a|l|2‖u∗‖2 + 2Lf + 1)|u(t)− u∗|2 + |h(t, ut)− h(t, u∗)|2.
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Integrating (4.13) between τ and t, together with the above expression and (4.11)-(4.12), we

have

eκt|u(t)− u∗|2 ≤ |ϕ(0)− u∗|2eκτ +K(ρ)eκτ‖ϕ− u∗‖2L2((−ρ,0];L2(Ω)) + κ

∫ t

τ
eκs|u(s)− u∗|2ds

+

∫ t

τ
eκs
(
−mλ1 +

1

m
L2
a|l|2‖u∗‖2 + 2Lf + 1 +K(ρ)

)
|u(s)− u∗|2ds,

Notice, if κ is small enough, combine with assumption (4.12), the sum of last two terms of the

above inequality keeps being negative. Therefore,

|u(t)− u∗|2 ≤ e−κ(t−τ)
(
|ϕ(0)− u∗|2 +K(ρ)‖ϕ− u∗‖2L2((−ρ,0];L2(Ω))

)
.

This finishes the proof. �

Theorem 4.12 Assume the same conditions of Lemma 4.11. Then the process U possesses a

pullback attractor A = {u∗}, which is a singleton. Moreover, it is also a forward attractor.

Proof. From Lemma 4.11, it follows there exists a unique stationary solution u∗, such that for

all τ ∈ R, ∀ϕ ∈ L2((−ρ, 0];L2(Ω)), the corresponding solution, u(·) = u(·; τ, ϕ) of problem (2.1)

satisfies

|u(t)− u∗|2 ≤ e−κ(t−τ)
(
|ϕ(0)− u∗|2 +K(ρ)‖ϕ− u∗‖2L2((−ρ,0];L2(Ω))

)
, (4.14)

which implies, for each fixed t, and any bounded set ϕ ∈ B,

dist(U(t, τ))B, u∗)→ 0 as τ → −∞.

Therefore, {u∗} attracts every bounded set of C([−ρ, 0];L2(Ω)), thanks to the property of

minimal attractor (Remark 4.5), A(t) ⊂ {u∗}, immediately, A(t) = {u∗}. Further, estimation

(4.14) also guarantees that {u∗} is forward attracting for every bounded set in C([−ρ, 0];L2(Ω)),

and then it is a forward attractor. �

4.2 Pullback attractors in L2-norm in the unbounded delay case

There are several phase spaces which allow us to deal with unbounded delay. For example, in

the previous 3 sections, we have proved all of results in the phase space C∞(L2(Ω)). However,

using this phase space, we are not able to prove asymptotic compactness of process U . To

overcome this difficulty, here, we will consider the space

Eγ = {ϕ ∈ C((−∞, 0];L2(Ω)) : ∃ lim
s→−∞

eγsϕ(s) ∈ L2(Ω)}, ∀γ > 0,

which is a Banach space endowed with the norm

‖ϕ‖γ := sup
s∈(−∞,0]

eγs|ϕ(s)|.
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Therefore, our process U : R2
d × Eγ → Eγ is defined by

U(t, τ)ϕ = ut(·; τ, ϕ) ∀ϕ ∈ Eγ , ∀τ ≤ t. (4.15)

With the help of the exponential appearing in this phase space, asymptotic compactness of the

process U can be presented. Also, the global existence of weak solution in time of problem (2.1)

with unbounded delay in Eγ can be proved under appropriate conditions.

Proposition 4.13 Assume that function a is locally Lipschitz and (2.2) holds, f ∈ C(R) satis-

fying (2.4) and (4.3), l ∈ L2(Ω). Also suppose h : R × Eγ → L2(Ω), fulfilling (H2)-(H3) with

X = Y = L2(Ω) (but slightly modifying condition (H3), i.e., replace Cρ(X) with Eγ(X)).

Let

λ := λ1m− 4α > 0, 2γ > λ >
L2
h

mλ1
. (4.16)

Then, the following estimations hold for any solution u(·) = u(·; τ, ϕ) to problem (2.1) for all

t ≥ τ ,

‖ut‖2γ ≤ 2e
−(λ− L2

h
mλ1

)(t−τ)‖ϕ‖2γ +
2β|Ω|
λ

+
2L2

hβ|Ω|
λ(λmλ1 − L2

h)
, (4.17)

and

m

2

∫ t

τ
‖u(s)‖2ds ≤ e−λ(t−τ)|u(τ)|2 + 2e

−(λ− L2
h

mλ1
)(t−τ)‖ϕ‖2γ

+
2β|Ω|
λ

eλ(t−τ) +
L2
h

λλ1m

(
2β|Ω|
λ

+
2L2

hβ|Ω|
λ(λ1mλ− L2

h)

)
eλ(t−τ).

(4.18)

Proof. Multiply (2.1) by u(t), by (2.2), (4.3), (H2)-(H3), the Young and Poincaré inequalities,

we have
d

dt
|u(t)|2 +

(
λ1m

2
− 2α

)
|u(t)|2 +

m

2
‖u(t)‖2 ≤ 2β|Ω|+

L2
h

mλ1
‖ut‖2γ ,

integrating between τ and t, by (4.16), it follows

|u(t)|2 +
m

2

∫ t

τ
e−λ(t−s)‖u(s)‖2ds ≤ |u(τ)|2e−λ(t−τ) +

2β|Ω|
λ

e−λ(t−τ)

+
L2
h

mλ1

∫ t

τ
e−λ(t−s)‖us‖2γds.

(4.19)

Further, neglecting the second term on the left hand side of (4.19),

‖ut‖2γ ≤ max

{
sup

θ∈(−∞,τ−t]
e2γθ|ϕ(θ + τ − t)|2, sup

θ∈[τ−t,0]

(
e2γθ−λ(t+θ−τ)|u(τ)|2

+
2β|Ω|
λ

e2γθ−λ(t+θ−τ) +
L2
h

mλ1

∫ t+θ

τ
e2γθ−λ(t+θ−s)‖us‖2γds

)}
.

By assumption (4.16), on the one hand,

sup
θ∈(−∞,τ−t]

e2γθ|ϕ(t+ θ − τ)|2 = sup
θ≤0

e2γ(θ−(t−τ))|ϕ(θ)|2 = e−2γ(t−τ)‖ϕ‖2γ ≤ e−λ(t−τ)‖ϕ‖2γ .
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On the other hand, by the same reasoning as above, we obtain

sup
θ∈[τ−t,0]

e2γθ−λ(t+θ−τ)|u(τ)|2 ≤ e−λ(t−τ)|u(τ)|2, sup
θ∈[τ−t,0]

e2γθ−λ(t+θ−τ) 2β|Ω|
λ
≤ 2β|Ω|

λ
,

and

sup
θ∈[τ−t,0]

L2
h

mλ1

∫ t+θ

τ
e2γθ−λ(t+θ−s)‖us‖2γds ≤

L2
h

mλ1

∫ t

τ
e−λ(t−s)‖us‖2γds.

Collecting these estimations, we deduce that

‖ut‖2γ ≤ e−λ(t−τ)‖ϕ‖2γ +
2β|Ω|
λ

+
L2
h

mλ1

∫ t

τ
e−λ(t−s)‖us‖2γds.

By the Gronwall lemma, we have

‖ut‖2γ ≤ 2e
−(λ− L2

h
mλ1

)(t−τ)‖ϕ‖2γ +
2β|Ω|
λ

+
2L2

hβ|Ω|
λ(λmλ1 − L2

h)
, (4.20)

namely, (4.17) is true. Now we will prove (4.18), in fact, in the middle of above manipulations, we

have omitted a positive term in the left-hand side of (4.19), namely m
2

∫ t
τ e

λ(t−s)‖us‖2ds. Indeed,

combining (4.19) and (4.20), we have

m

2

∫ t

τ
e−λ(t−s)‖u(s)‖2ds

≤ |u(τ)|2e−λ(t−τ) +
2β|Ω|
λ

e−λ(t−τ)

+
L2
h

mλ1

∫ t

τ

(
2β|Ω|
λ

+
2L2

hβ|Ω|
λ(λmλ1 − L2

h)
+ 2e

−(λ− L2
h

mλ1
)(s−τ)

e−λ(t−s)‖ϕ‖2γ
)
ds,

thus, (4.18) is proved. The proof of this proposition is complete. �

Corollary 4.14 Under the assumptions of Proposition 4.13, the family B̂0 = {B0(t), t ∈ R} with

B0(t) = BEγ (0, %), where

%2 = 1 +
2β|Ω|
λ

+
2L2

hβ|Ω|
λ(λmλ1 − L2

h)
,

is pullback absorbing bounded sets for the process U .

Proposition 4.15 Under assumptions of Corollary 4.14, the process U is B̂0-asymptotically com-

pact.

Proof. Our proof relies on the energy method. Let t0 ∈ R, un(·) be a sequence of solutions

in their respective intervals [τn, t0], with initial data ϕn ∈ B0 = BEγ (0, %), where τn → −∞ as

n → +∞. Consider the sequence ξn = unt0 . Then we will prove that this sequence is relatively

compact in Eγ .
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Step 1: Consider two arbitrary values 0 < T < T̄ , we will prove that ξn|[−T̄ ,0] is relatively

compact in C([−T̄ , 0];L2(Ω)). It follows from (4.17), that there exists n0 ∈ (t0, T ] such that for

all n ≥ n0(t0, T ), τn ≤ t0 − T and

‖unt ‖2γ ≤ R, ∀t ∈ [t0 − T, t0], ∀n ≥ n0(t0, T ),

where

R := 1 +
2β|Ω|
λ

+
2L2

hβ|Ω|
λ(λmλ1 − L2

h)
,

therefore

|un(t)|2 ≤ R, ∀t ∈ [t0 − T, t0], ∀n ≥ n0(t0, T ),

‖unt0−T ‖
2
γ ≤ R, ∀n ≥ n0(t0, T ).

(4.21)

Let yn(·) = un(·+ t0 − T ). Then, for each n ≥ 1 such that τn < t0 − T , the function yn(·) is

a solution on [0, T ] of a similar problem to (2.1), namely, h replaced by h̃(s, ·) = h(s+ t0 − T, ·)
and with yn0 = unt0−T , ynT = unt0 = ξn. Then ‖yn‖γ satisfies the estimations in (4.21), for all

n ≥ n0(t0, T ). From (4.18) we have

‖yn‖2L2([0,T ];H1
0 (Ω)) ≤ K(t0, T ).

Hence, {yn} is bounded in L∞((0, T ];L2(Ω)) and L2((0, T ];H1
0 (Ω)), and {(yn)′} is bounded in

L2((0, T ];H−1(Ω)). Thus, up to a subsequence (relabelled the same), there exists a function y(·)
such that 

yn → y weakly star in L∞((0, T ];L2(Ω)),

yn → y weakly in L2((0, T ];H1
0 (Ω)),

(yn)′ → y′ weakly in L2((0, T ];H−1(Ω)),

yn → y strongly in L2((0, T ];L2(Ω)),

yn(t)→ y(t) strongly in L2(Ω), a.e. t ∈ [0, T ].

Moreover, reasoning as in the proof of Lemma 4.8, we claim for any sequence {tn}, t0 ∈ [0, T ]

with tn → t0,

yn(tn)→ y(t0) weakly in L2(Ω).

Besides, by (H3) and (4.21), we obtain∫ t

0
|h̃(s, yns )|2ds ≤ L2

h

∫ t

0
‖yns ‖2γds ≤ Ct,

where C does not depend on n or t, therefore,

h̃(t, ynt )→ υh(t) weakly in L2((0, T ];L2(Ω)),
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also ∫ t

s
|h̃(r, ynr )|2dr ≤ C(t− s),∫ t

s
|υh(r)|2dr ≤ lim inf

n→∞

∫ t

s
|h̃(r, ynr )|2dr ≤ C(t− s), ∀0 ≤ s ≤ t ≤ T.

Then, in a standard way, one can prove y(·) is the unique weak solution to the problem
∂y
∂t − a(l(y))∆y = f(y) + υh(t),

y(x, t) = 0,

y(x, 0) = y0(x),

in Ω× [0, T ],

on ∂Ω× [0, T ],

in Ω.

(4.22)

Multiplying (2.1) by un, (4.22) by y, and integrating between s to t, we obtain the energy

inequality,

1

2
|z(t)|2 +m

∫ t

s
‖z(r)‖2dr ≤ 1

2
|z(s)|2 +

∫ t

s
(f(z(r), z(r))dr + C(t− s), 0 ≤ s ≤ t ≤ T,

where z = yn or z = y. Then, the mappings Jn, J : [0, T ]→ R defined as

J(t) =
1

2
|y(t)|2 +

∫ t

0
(f(y(r), y(r))dr − Ct,

Jn(t) =
1

2
|yn(t)|2 +

∫ t

0
(f(yn(r), yn(r))dr − Ct,

are non-increasing and continuous.

Analogously to the proof of Lemma 4.8, for a fixed t0 > 0, using a sequence {tn} with

tn ↗ t0, we are able to establish the convergence of the norms, and therefore, jointly with the

weak convergence, deduce that yn → y in C([δ, T ];L2(Ω)), for any δ > 0.

Now, since T > T̄ , we obtain that ξn → ϕ in C([−T̄ , 0];L2(Ω)), where ϕ(s) = y(s + T ),

for s ∈ [−T̄ , 0]. Repeating the same procedure for 2T̄ , 3T̄ , · · · , and using a diagonal argument,

we obtain a continuous function ϕ : (−∞, 0] → L2(Ω) and a subsequence such that ξn → ϕ in

C([−T̄ , 0];L2(Ω)) on every interval [−T̄ , 0].

Moreover, since, for a fixed T > 0, un(s+ t0), with s ∈ [−T, 0], satisfies the estimation (4.21)

for any n ≥ n0(t0, T ), it is clear that

|ϕ(t)|2 ≤ 1 +
2β|Ω|
λ

+
2L2

hβ|Ω|
λ(λmλ1 − L2

h)
. (4.23)

Step 2: We claim that ξn converges to ϕ in Eγ . Indeed, we have to see that for every ε > 0,

there exists nε such that

sup
s∈(−∞,0]

|ξn(s)− ϕ(s)|2e2γs ≤ ε, ∀n ≥ nε. (4.24)
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Fix Tε > 0 such that e−2γTε ≤ ε
4 , and take nε ≥ n0(t0, Tε) such that

|ξn(s)− ϕ(s)|2e2γs ≤ ε

2
, ∀s ∈ [−Tε, 0] and τn ≤ t0 − Tε, ∀n ≥ nε.

(This is possible since the convergence of ξn to ϕ holds in compact intervals of time.) Thus, to

prove (4.24), we only need to check

sup
s∈(−∞,−Tε]

|ξn(s)− ϕ(s)|2e2γs ≤ ε

2
, ∀n ≥ nε.

By (4.23) and the choice of Tε, it is not difficult to check that, for all k ∈ N ∪ {0}, and for all

s ∈ [−(Tε + k + 1),−(Tε + k)], it holds that

e2γs|ϕ(s)|2 ≤ e−2γ(Tε+k)|ϕ(s)|2 ≤ ε

4
.

Hence, it suffices to prove the following

sup
s∈(−∞,−Tε]

e2γs|ξn(s)|2 ≤ ε

4
, ∀n ≥ nε.

Recall that ξn has two parts

ξn(s) =

ϕn(s+ t0 − τn), s ∈ (−∞, τn − t0],

un(s+ t0), s ∈ [τn − t0, 0].

Thus, the proof is finished if we prove that

max

{
sup

s∈(−∞,τn−t0]
e2γs|ϕn(s+ t0 − τn)|2, sup

s∈[τn−t0,−Tε]
e2γs|un(s+ t0)|2

}
≤ ε

4
.

The first term above can be estimated as follows,

sup
s∈(−∞,τn−t0]

e2γs|ϕn(s+ t0 − τn)|2

= sup
s≤τn−t0

e2γ(s+t0−τn)e−2γ(t0−τn)|ϕn(s+ t0 − τn)|2

= e−2γ(t0−τn)‖ϕ‖2γ

≤ ε

4
,

thanks to the chose of nε. Finally, for the second term, we have

sup
s∈[τn−t0,−Tε]

e2γs|un(s+ t0)|2

= sup
θ∈[τn−t0+Tε,0]

e2γ(θ−Tε)|un(t0 + θ − Tε)|2

≤ e−2γTε‖unt0−Tε‖
2
γ

≤ ε

4
,

where we have used (4.21) with T = Tε. The proof is complete. �
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Theorem 4.16 Assume that function a is locally Lipschitz and (2.2) holds, f ∈ C(R) satisfying

(2.4) and (4.3), l ∈ L2(Ω). Also suppose h : R×Eγ → L2(Ω), fulfilling (H2)-(H3) with X = Y =

L2(Ω) (but slightly modifying condition (H3), i.e., replacing Cρ(X) by Eγ(X)).

Let

λ := λ1m− 4α > 0, 2γ > λ >
L2
h

mλ1
.

Then the process U defined in Eγ associated to (2.1) has a pullback attractor Â = {A(t)}.

Remark 4.17 We end up this section with a comment on possible extension of our results.

Instead of imposing condition (H3) on the delay term, if h(·, ·) satisfies:

(H ′3) There exists a function Lh(·) ∈ L1
loc(R), such that for all t ∈ (τ, T ], α, β ∈ Cρ(X),

‖h(t, α)− h(t, β)‖Y ≤ Lh(t)‖α− β‖Cρ(X).

Then, all results in Section 4 still hold true but replacing the universe of bounded sets (to be

attracted) by another appropriate universe of time-dependent families (e.g., see [25] for more

details concerning this possibility).
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