
 MCFS: Min-cut-based feature-selection

Carlos G. Vallejo, José A. Troyano, Fernando Enríquez, F. Javier Ortega, Fermín L. Cruz
Department of Computer Languages and Systems, University of Seville, Avda. Reina Mercedes s/n. 41012 Seville, Spain

Keywords:
Machine-learning
Feature-selection
Nearest-neighbour
Correlations
Max-flow min-cut
Classification

a b s t r a c t

In this paper, MCFS (Min-Cut-based feature-selection) is presented, which is a feature-selection
algorithm based on the representation of the features in a dataset by means of a directed graph.
The main contribution of our work is to show the usefulness of a general graph-processing technique
in the feature-selection problem for classification datasets. The vertices of the graphs used herein are
the features together with two special-purpose vertices (one of which denotes high correlation to the
feature class of the dataset, and the other denotes a low correlation to the feature class). The edges are
functions of the correlations among the features and also between the features and the classes. A classic
max-flow min-cut algorithm is applied to this graph. The cut returned by this algorithm provides the
selected features. We have compared the results of our proposal with well-known feature-selection
techniques. Our algorithm obtains results statistically similar to those achieved by the other techniques
in terms of number of features selected, while additionally significantly improving the accuracy.

 1. Introduction

In supervised learning, a dataset can be described as a set
of instances, each composed of a tuple of features (f1, f2, . . . , fn)
and a target variable. If the target variable is discrete (called
herein class c), then we have an automatic classification problem,
which consists of predicting the class of a new instance, given
only its feature values. Classification techniques are based on the
various combinations of the information supplied by the features
and the classes in order to obtain the predictions. Even though
it seems that having more features provides better accuracy in
the classification phase, this is not always true. Firstly, a number
of the features may be irrelevant, redundant, or sparse [1], and
may even add noise. Moreover, the classifier may overfit the
features, and a larger number of features always negatively affects
the execution time, either in the calculus of the classifier in the
case of eager classifiers, or in the generalization phase in the
case of lazy classifiers. On the other hand, future data collection
can benefit from the selection of the most relevant features.
Finally, the presence of a lower number of features can make the
proposed problem easier to understand.

For all these reasons, the selection of the most appropriate
subset of features to be used in the generation and application of

the classifier (feature subset selection) constitutes a crucial issue
in machine-learning.

The feature-selection techniques can be divided into several
types, whereby the two main groups are those of filter methods
and wrapper methods [2]. The former takes into account only
the information contained in the dataset in order to determine
the features to be selected, while the latter uses an external
classifier to evaluate the goodness of the set of selected fea-
tures, and this goodness is that which guides the selection. This
is the reason why wrapper techniques are, in general, slower
under high dimensionality. There are studies that combine both
approaches, and perform a filtering step before the application
of the wrapper [3]. There is a third type of feature-selection
technique (namely, embedded) which includes those machine-
learning algorithms, such as decision trees, that, during the learn-
ing process, build models that only depend on a certain number
of the features.

feature-selection techniques can be also classified as either
forward techniques (beginning with an initially empty set of
features, these proceed by adding features one by one accord-
ing to certain criteria) or backward techniques (beginning with
the set of all features, these proceed by eliminating features
progressively).

In general, feature-selection techniques attempt to:

• Maintain the most relevant features: those that best predict
the class, either individually or by interacting with other
features.

• Eliminate the redundant features: those whose predictive
power is already provided by other features.

https://doi.org/10.1016/j.knosys.2020.105604
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.105604&domain=pdf
https://doi.org/10.1016/j.knosys.2020.105604
https://doi.org/10.1016/j.knosys.2020.105604
mailto:javierortega@us.es
https://doi.org/10.1016/j.knosys.2020.105604

All researchers agree that the feature-selection algorithms
should choose the most relevant features. Although many studies
emphasize the elimination of redundant features, others warn
about the possible damage that this deletion may cause due to
the exclusion of potentially relevant features [4,5].

The applications of feature-selection are numerous, and in-
clude, among many others [6,7], those related with genomic anal-
ysis [8], text mining [9], spam detection [10], image retrieval [11],
image classification [12,13], and clustering [14].

Two highly regarded feature-selection techniques [15] are CFS
(Correlation-based feature-selection) [16], due to the quality of
the subset of selected features, and FCBF (Fast Correlation-Based
Filter Solution) [17] thanks to its ability to work with datasets
with many features and the small size of the subset of selected
features. Both the FCBF and CFS methods remain referents of the
state of the art for feature-selection, and they are still widely used
in feature-selection comparatives [18–20].

The main idea that guides our work involves the application of
a classic graph-based algorithm to the apparently distant field of
feature-selection. This application has already been successfully
performed with other machine-learning tasks such as instance
selection [21] and clustering [22]. A conclusion can be drawn
for other fields: if a way to express a problem can be found in
terms of graphs, then min-cut can provide a good option towards
solving the problem.

The general idea of our algorithm, which is explained in detail
in Section 3, can be summarized as follows: given a dataset, a
directed graph is generated with a set of vertices corresponding
to the features in the dataset, and with two additional vertices,
s and t , which represent a high and a low correlation with the
target class, respectively. The edges in the graph link node s to
the feature nodes, which in turn are linked to node t . This graph
can now be considered as a flow, where s acts as the source node
and t as the sink node. The weights of the edges that connect
vertices representing features are the correlations between these
features. The edges that connect s and t with the former vertices
become transformations of the correlations between features and
the class. In order to compute these correlations, the definitions
are used as given by [16] for the aforementioned CFS algorithm.
Once the graph is built, the feature-selection problem is con-
verted into a graph optimization problem, which is solved by
using the max-flow min-cut algorithm [23]. As shown below, the
vertices included in the resulting min-cut part related to node s
constitutes a good subset of the original features.

To the best of our knowledge, there has been no research
that performs feature-selection using ‘cuts’ in the feature set.
The only application of the min-cut algorithm related to the task
of feature-selection task is discussed in [24], where the authors
construct a graph of instances (not features) in order to obtain
normalized cuts. These same authors then use the cuts to rank
the features according to their capacity to obtain clusters of
labelled and unlabelled instances. In contrast, we propose the
construction of a graph of features for which the output of the
max-flow min-cut algorithm yields the set of selected features.
Neither method is comparable since [24] focuses on the selection
of features by mixing labelled and unlabelled datasets with a
semi-supervised approach.

The rest of the paper is organized as follows. In Section 2 the
CFS algorithm is given, which allows us to find the necessary
correlations for our technique and the max-flow min-cut algo-
rithm is described with its diverse implementations. In Section 3
our algorithm is given in detail, while in Section 4 an explana-
tion is given regarding the experimental work carried out, the
parameter tuning, the comparisons between our technique and
the aforementioned CFS and FCBF techniques, and also with the
Nearest-Neighbour algorithm, and the statistical analysis of the
results. Finally, in Section 5 the results obtained are recapitulated
and future lines of research arising from this study are drawn up.

2. CFS and min-cut

2.1. CFS: Correlation feature-selection

The CFS algorithm [16] (Correlation feature-selection) is a
forward-type algorithm as classified by [2], which is based on the
correlations between the feature values themselves and between
these values and the classes. This algorithm is based on the
following hypothesis: good feature subsets contain features highly
correlated with the class, yet uncorrelated with each other.

First of all, this algorithm discretizes the numeric features and
then uses symmetrical uncertainty (a modification of a measure of
information gain) to estimate the degree of association between
discrete features.

2.2. Min-cut

2.2.1. Max-flow min-cut problem
Max-flow problem. The problem of finding the ‘‘maximum flow’’
(max-flow) in a network combined with seeking the ‘‘minimum
cut’’ (min-cut) [25], can be formulated as follows: Let G = (V , E)
be a directed graph, and let s and t be two vertices of G with
a special meaning, called source and target, respectively. Let us
denote by u → v the directed edge from vertex u to vertex v.

We define an (s, t) − flow as the function f : E → R+
∪ {0}

that satisfies the following restriction for every vertex v, except
s and t:∑
u

f (u → v) =

∑
w

f (v → w).

This means that the total flow reaching a vertex coincides with
its total output flow (assuming, for the sake of simplicity, that
f (u → v) = 0 if there is no u → v edge).

The f flow value is defined as the amount of fluid entering the
network from the source node, and it is easily demonstrated that
|f | coincides with the flow that reaches t:

|f | =

∑
w

f (s → w) =

∑
u

f (u → t)

Suppose each edge e has a capacity c(e) which is a non-
negative value. We impose the condition that ∀e ∈ E, f (e) ≤ c(e).
The problem of finding the maximum flow in the network involves
the calculation of an (s, t) − flow with the above restrictions
whose value is the largest possible.

The max-flow problem has many interesting applications, such
as network connectivity [26], distributed programming [27], im-
age processing [28] and opinion mining [29].

Min-cut. An (s, t)−cut is a partition of V into two disjoint subsets
S and T (S ∪ T = V and S ∩ T = ∅), where s ∈ S and t ∈ T .

The cost of the cut is the sum of the capacities of the vertices
that cross from S to T :

∥S, T∥ =

∑
v∈S

∑
w∈T

c(v → w).

The problem of finding the minimum cut consists of finding an
(s, t) − cut, whose cost is the lowest possible.

Note that the minimum cut is the most economical way of
cutting off all the flow that comes from s and reaches t . It should
be borne in mind, for further sections, that from this perspective
the min-cut represents the solution of an optimization problem.

With the above premises, the Max-FlowMin-Cut Theorem [23]
states that the value of the maximum-flow is equal to the cost of
the minimum-cut.

2.2.2. Algorithms that calculate the min-cut
There are two main families of algorithms for the calculation

of the max-flow/min-cut: the augmenting path methods, based
on the Ford–Fulkerson style [23]; and the push-relabel Goldberg–
Tarjan style methods [30]. There is also a third type of algorithm,
which includes the calculation of the min-cut by approximation
methods, such as the Monte-Carlo method [31].

For an exhaustive survey of the existing methods, together
with their respective complexity analysis, the survey presented
in [32] provides a good starting point, and in [33], a comprehen-
sive comparison of many existing algorithms can be found, all of
which are of polynomial order.

3. Our proposal: the MCFS algorithm

Choosing the best subset of features requires the exploration
of all possible subsets, which is a task of cost 2n, where n is the
number of features in the dataset. Therefore, this becomes an
NP problem. If a way can be found to transform this problem
into an optimization problem that min-cut can handle, it will
have become a polynomial order problem although, of course, the
solution encountered may not be optimal since this can be only
found by exhaustive search.

Our proposed algorithm, MCFS, is based on the ideas outlined
in previous sections: creating a graph with nodes representing
the features and arcs representing the correlations between them,
and reducing the problem of finding the best subset of features
to a network maximum flow calculation problem.

Now let us look at our algorithm in more detail:

1. We start from a labelled dataset composed of instances
with n features (f1, f2, . . . , fn) and a class c.

2. From the above dataset, a directed graph is built that
consists of:

(a) n vertices that correspond to the features in the
dataset (we call these v1, v2, . . . , vn);

(b) two more vertices, s and t , that correspond to the
sink and target, respectively;

(c) A directed arc eij between every pair of ‘feature’
vertices vi → vj;

(d) A directed arc between s and each of the vi, denoted
esi and a directed arc between each of the vi and t ,
denoted eit .

3. The following correlations are calculated:

(a) correlations between the class and each feature fi: ci;
(b) correlations between each pair of features fi and fj:

cij (obviously, cij = cji).

4. Based on the correlations previously calculated, the follow-
ing values to the edges can be assigned:

(a) Since those feature pairs that strongly correlate with
each other should be penalized (the information pro-
vided by one is already provided by the other), the
inverse values of the correlations between each pair
of features (1 − cij) are assigned to their connecting
edges eij ∀i, j = 1 . . . n, i ̸= j.

(b) For the edges that connect the s and t nodes with
the remaining nodes, the correlation value between
each feature and the class is considered. The weight
of an edge connecting nodes s and vi (esi) is directly
proportional to ci, which is the correlation value
between that feature fi and the class. In the case
of an edge connecting vi and t (eit), the weight is

proportional to 1 − ci. In this way, the features
with a high correlation with the class are favoured,
since the selected features are those that remain in
the subset where the node s is included. As can be
observed in Section 4.2, during experimentation it
was convenient to apply transformation functions to
the values of the edges from s to the intermediate
vertices (esi) and from these nodes to t (eit). The
transformation function that is applied to the initial
arcs (those coming out of s) is called fs. The trans-
formation function applied to the final arcs (those
pointing to t) is called ft. Fig. 1 shows this structure.

5. Once the graph has been generated, its (s, t)− cut is calcu-
lated (to this end, we have used the hi_pr algorithm [34]
implementation, which is a push-relabel type algorithm).

6. Finally, the interpretation of the obtained result is: If a
vertex vi is in S, then that means feature fi is selected.

These steps are shown in Algorithm 1. Let us define e(u, v, w)
as the weighted edge pointing from node u to node v with
weight w. G = (V , E) is the weighted, directed graph formed
by a set of nodes, V , and a set of edges, E. Let us define corr
as the matrix of correlations between attributes: it is an m × m
matrix whose elements, corrij, represent the correlation between
attributes fi and fj or vice versa (it is a symmetrical matrix).
Finally, let us define the vector corrC , where corrCi represents the
correlation between the class and the attribute fi. Both the matrix
and the vector are obtained by CFS; let us name the function that
performs such computation as matCFS.

In Fig. 2, an example of this method applied to a small graph is
given with only four features for the sake of simplicity. On the left,
there is a graph in which the weights of the edges represent the
corresponding capacities. On the right, the graph is represented
with the same vertices but, in this case, the weights of the edges
are now the maximum flow that can pass through each arc. The
sinuous line represents the min-cut.

As discussed above, the min-cut represents the most econom-
ical way to cut the flow from s to t , so the edges with the lowest
weights are more susceptible to being cut, in contrast to those
with a high weight. In order to reach our goal of separating the
best features (those that will stay ‘closer’ to node s) from the
worst (‘closer’ to node t), we assign the weights in our graph to
favour three types of edges by granting them higher weights:

• Those indicating the selection of features that strongly cor-
relate with the class: high-weight edges connected to s (the
weight assigned between s and vi is directly ci and this
favours the selection of those vi ∈ S with high ci, i.e., with
low 1 − ci).

• Those indicating not to select features that do not strongly
correlate to the class: high-weight edges connected to t (the
weight assigned between t and vi is 1 − ci and this favours
the discarding of those vi ∈ T with low ci, i.e., with high
1 − ci).

• Those indicating the selection of feature pairs that do not
strongly correlate with each other (the information that they
provide is complementary and not already provided by the
other): low values of cij (the weight assigned between vi and
vj is 1− cij and this favours keeping together those vi and vj
with low cij, i.e., with high 1 − cij).

Therefore, we are tackling an optimization problem. Let us de-
fine cvt as the weights of the edges that go from the intermediate
nodes to t , csv as the weights that go from s to the intermediate
nodes, and cuv as one minus the weights of the edges that go from
one intermediate vertex to another. Since S and T are the two

Fig. 1. Generated graph structure. For simplicity, the edges between each pair of intermediate vertices are represented by a two-way edge. In fact, there are two
edges: one in each direction with the same weight.

Fig. 2. On the left, the initial graph for an example of a dataset with four features. The edges between features are actually two edges, one in each direction. The
graph on the right is the result of applying the max-flow min-cut algorithm. The min-cut is shown by the sinuous line. Features f3 and f4 are on the side of the
source node and are therefore the features selected.

feature subsets sought with the selected and discarded features
respectively, Eq. (1) has to be minimized, which coincides with
the minimization of the min-cut calculation.∑
v∈S

cvt +

∑
u∈T

csu +

∑
u∈S,v∈T

cuv (1)

As mentioned above, certain functions are incorporated to
transform the weights of the edges that go from node s to the
intermediate nodes, and from these nodes to node t . These func-
tions are intended to modulate the influence of csv and cvt with
cuv . The values of these weights were determined in the experi-
mental phase and will be discussed later.

Following the classification outlined in [2] our technique is of
the filter type. As for the forward/backward classification, it is
not one type or the other: the features that are included in the
selection are chosen in one step.

In the Three-Dimensional Framework that appears in the com-
plete study [35], our algorithm would be located among the
Filter-type algorithms, since it uses Dependency Measures, al-
though it could not be integrated into any of the three search
strategies proposed therein.

Algorithm complexity. The most complex part of the complete
algorithm and, hence, that which defines its total complexity, is
the min-cut calculation. As noted, we have used the implemen-
tation of [34], whose complexity is O(n2√m) where n = |V |

and m = |E|. In our case, m = n(n + 1): n edges from s to vi,
another n edges from vi to t and n(n − 1) edges between vi and
vj, one in each direction. Thus the complexity of our algorithm is
O(n2√m) = O(n2√n(n + 1)) = O(n3), which corresponds to the
values observed experimentally.

4. Experimentation

4.1. Databases and comparison criteria

In order to achieve a statistical result that could corroborate
the validity of our algorithm, we experimented with 38 datasets:
35 were taken from the UCI repository [36], all of which had 10
or more features; those with fewer features were discarded since
they are considered irrelevant for a study of feature reduction.
We also used 3 datasets (Arcene, Gisette, and Madelon) that com-
peted in NIPS 2003 [37]. Table 1 shows the number of instances
and the number of features of the datasets used, together with

Algorithm 1: MCFS.

Input: D: Dataset, it: input threshold, ot: output
threshold

Output: S: Subset with the chosen attributes
1 ⟨corr, corrC⟩ = matCFS(D)
/* corr is the matrix of correlations

between attributes. corrC is a vector
containing the correlations between
classes and attributes. */

// Now the graph G = (V , E) is created.
2 V = {v1, v2, . . . , vm, s, t}
/* Vertex vi corresponds to attribute fi,

i = 1 . . .m; s and t are the source and
sink nodes, respectively. */

3 for i = 1 to m do
4 if (corrCi ≥ it) then
5 E = E ∪ {e(s, vi, (m − 1) · corrCi)}
6 end if
7 if ((1 − corrCi) ≥ ot) then
8 E = E ∪ {e(vi, t, (m − 1) · (1 − corrCi))}
9 end if

10 for j = i + 1 to m do
11 if (i ̸= j) then
12 E = E ∪ {e(vi, vj, corrij)}
13 E = E ∪ {e(vj, vi, corrij)}
14 end if
15 end for
16 end for
17 Cs = minCut(G)

/*minCut is the algorithm that computes
the min-cut; Cs is the cut containing
s. */

18 S = ∅

19 for i = 1 to m do
/* The attributes are added to the

output subset. */
20 if (vi ∈ Cs) then
21 S = S ∪ {fi}
22 end if
23 end for

the number of classes of each dataset. This work is focused on
supervised classification, working with labelled data, but there
are also ways to face the feature-selection problem using a semi-
supervised approach, which uses both labelled and unlabelled
data [38].

The results of MCFS are compared with those of CFS [16],
which is considered one of the methods that achieves the high-
est accuracy, and also with FCBF [17], which is among those
methods that obtain a better reduction, in addition to being very
fast especially with datasets with a large number of features. A
description of CFS is given in Section 2.1. The FCBF method is
based on the calculation of the symmetrical uncertainty with the
class and the concepts of Predominant correlation and Predominant
feature, which prevent the correlations between all pairs of fea-
tures (O(n2) for n features) from being calculated. In the end, three
successive heuristics are employed to select the final features.

Two metrics are defined for our experiments: accuracy and
size. The accuracy is measured as the percentage of the num-
ber of instances correctly classified out of the total number of
instances for every dataset. Accuracy results are given by the 1NN
classifier, without any feature-selection, as the accuracy baseline.
The accuracy results of each selection method (MCFS, CFS and
FCBF) are calculated by the application of 1NN, using the reduced
datasets given by each method. All experiments are performed
using stratified 10-fold cross validation.

The size is measured as the ratio (shown as a percentage)
between the number of selected features by using the technique
and the total number of features of the dataset. This means that
a lower numerical value indicates that the set of features is
also smaller, and consequently that the algorithm has a greater
reduction capacity. For baseline experiments, when no selection
is applied, the size is always 100.

4.2. Parameter adjustment

During implementation, the values of the correlations with
the class, that is, the weights of the edges that link the source
node with the intermediate vertices were normalized, such that
the average was 0.5. As mentioned above, transformations were
applied to the weights of the edges that go from the source
node to intermediate nodes and from said intermediate nodes to
the target. On the other hand, it was observed experimentally
that better results were obtained when the capacities of the
edges going from the source to the intermediate vertices (once
normalized they add up to the same amount as those that link the
intermediate nodes with the target) were balanced with respect
to the capacities of the edges that link intermediate nodes: in a
graph representing a dataset with n features, there are n edges
from the source to intermediate nodes (and from these to the
target) and n(n−1) edges between the intermediate nodes. Hence,
the weights of the non-intermediate edges are multiplied by n−1.

It was also observed experimentally that better results were
obtained if the edges from the source to the intermediate nodes
that showed low correlations with the class were directly re-
moved, and also their equivalent edges between the intermediate
nodes and the target. To this end, two thresholds called input
threshold (it) and output threshold (ot) were set.

• At the source node, if the correlation of a feature (bear in
mind that these were normalized) exceeded it , then the
edge was incorporated multiplied by n − 1, otherwise, the
edge was not included.

• At the target node, if one minus the normalized correlation
exceeded ot , then the edge was incorporated multiplied by
n − 1, otherwise, the edge was not included.

Let us consider this decision. In simple cases, such as Iris,
which has only four features, this means something very obvious:
the arcs that connect s with the features that correlate with the
class (in Iris, f3 and f4) are arcs with non-zero capacity, as are
the arcs linking f1 and f2 with t . Clearly, the min-cut consists
of f3 and f4. At this point, the result may seem trivial, but what
happens when there are many features? Our algorithm discards a
priori those features that do not correlate with the class, although
the correlations between features may cause the final min-cut
to obtain a set of features where some of the initially discarded
features are included or possibly a number of those considered as
candidates are discarded.

In order to adjust the threshold values, we carried out thou-
sands of executions on all experimental datasets with various
values of it and ot , the same for all sets, so that the values
obtained would not be specific to a particular set, but would
remain as generic as possible. Finally, the values it = 0.52 and
ot = 0.49 were reached.

Table 1
Number of instances, features, and classes of the datasets used in the experimentation.
Dataset #instances #features #classes Dataset #instances #features #classes

Ads 3 279 1 558 2 Madelon 2000 500 2
Anneal.ORIG 898 38 6 Multifeatures 2000 649 10
Arcene 100 10 000 2 Mushroom 8124 22 2
Autos 205 25 7 Musk2 6598 166 2
Colic 368 22 2 Optdigits 5620 64 7
Colic.ORIG 368 27 2 Page blocks 5473 10 5
Credit-g 1 000 20 2 Promoters 106 57 2
Cylinder-band 540 39 2 Schizo 340 14 2
Flags 194 29 8 Sick 3772 29 2
Gisette 6 000 5 000 2 Solar flare 1 323 12 2
Heart (Cleveland) 303 13 2 Solar flare 2 1066 12 3
Heart (Hungarian) 294 13 2 Sonar 208 60 2
Heart (Long Beach VA) 200 13 2 Spambase 4601 57 2
Heart (Statlog) 270 13 2 Splice 3190 60 3
Heart (Swiss) 123 13 2 Sponge 76 45 3
Hepatitis 155 19 2 Vehicle 846 18 4
Image segmentations 2 310 19 7 Vote 435 16 2
Ionosphere 351 34 2 Waveform 5000 40 3
Led creator + 17 10 000 24 10 Wine 178 13 3

4.3. Experimental results and statistical analysis

It is hard to balance the size reduction of the set of features
and, while simultaneously achieving the best accuracy possible.
Figs. 3, 4, and 5 graphically express this trade-off. A comparison
of the accuracy and the size of the feature set selected by our
algorithm against the rest of algorithms analysed is presented.
Each point represents the result obtained for a given dataset.

The horizontal axis represents the difference, as a percentage,
between the number of features selected by MCFS and those
selected by the corresponding technique. As can be observed,
MCFS is fairly balanced with CFS but obtains worse results than
FCBF, which is an algorithm well-known for achieving large re-
duction rates. In Fig. 5 where MCFS is compared to BASELINE, all
the points are naturally on the left of 0, since BASELINE has no
reduction.

The vertical axis represents the difference, as a percentage,
between the accuracy obtained by MCFS and that obtained by the
corresponding technique. This means that if the point is above the
horizontal axis, then MCFS obtains better accuracy than the other
technique. As can be observed, our technique greatly surpasses
FCBF and CFS, and remains more balanced with BASELINE in the
number of points, although the positive points lie further from
the axis than those in the negative part. The appearance of a point
in the lower right-hand quadrant means that the other technique
surpasses ours in accuracy and reduction rate; this only occurs,
however, with 5 of the 38 datasets in the comparison with CFS
(including those that fall on either of the two axes), which is the
same as when our technique is compared with FCBF.

In the case of the BASELINE, obviously there is no appearance
of any points in the right-hand quadrants. The remaining cases
are in the other quadrants, where the points mean that our
technique is better in accuracy, reduction, or in both measures.
However, this simply gives a visual idea of the performance of
our technique. A closer examination of the results of MCFS and
the other algorithms is given in the following sections, resulting
in a rigorous statistical analysis.

4.3.1. Accuracy
Table 2 shows the accuracy values of the techniques tested

herein.
In comparison to the nearest-neighbour technique, which has

no reductions, MCFS obtains better accuracy results in 25 of the
databases; the results are levelled in the other 3. This shows that
MCFS has major editing capabilities.

Table 2
Accuracy of all techniques and MCFS. This table shows the accuracy achieved
with each technique, expressed as the percentage of hits using the test set.
Stratified 10-fold cross validation has been used.
Database 1NN FCBF CFS MCFS

Ads 95.91 96.07 96.74 96.80
Anneal.ORIG 95.43 92.09 93.10 93.43
Arcene 81.00 76.00 88.00 85.00
Autos 74.63 79.02 79.02 84.39
Colic 80.16 76.09 76.09 82.61
Colic.ORIG 82.61 83.15 83.15 85.33
Credit-g 72.40 66.40 66.40 69.00
Cylinder-band 76.85 60.93 72.22 79.81
Flags 57.73 21.65 21.65 60.31
Gisette 95.75 89.95 94.75 96.37
Heart (Cleveland) 75.25 76.57 76.57 78.55
Heart (Hungarian) 78.23 81.29 79.93 76.87
Heart (Long Beach VA) 71.00 63.00 63.00 63.00
Heart (Statlog) 74.44 78.15 76.67 76.67
Heart (Swiss) 91.87 89.43 89.43 89.43
Hepatitis 81.94 84.52 81.94 80.65
Image segmentations 97.01 96.49 97.32 97.36
Ionosphere 86.61 88.03 89.46 91.74
Led creator + 17 51.29 56.88 63.55 64.77
Madelon 56.50 56.00 77.85 83.90
Multifeatures 98.00 97.95 98.50 97.25
Mushroom 100.00 99.02 99.02 100.00
Musk2 95.85 86.54 94.04 96.10
Optdigits 98.72 97.26 98.72 98.45
Page blocks 95.91 93.86 95.52 94.77
Promoters 79.25 88.68 88.68 89.62
Schizo 60.59 73.82 73.82 100.00
Sick 96.29 96.13 96.13 96.37
Solar flare 1 95.67 97.52 95.36 97.52
Solar flare 2 99.04 99.44 99.44 99.44
Sonar 85.58 77.88 86.06 86.54
Spambase 90.83 91.44 91.28 90.11
Splice 75.05 81.72 81.72 87.05
Sponge 94.74 93.42 93.42 94.74
Vehicle 70.09 48.82 60.52 64.30
Vote 91.72 94.02 94.02 94.94
Waveform 73.82 71.76 79.20 79.20
Wine 96.07 96.07 96.63 96.07

Average 83.52 81.50 83.92 86.66

A statistical analysis has been performed of the results in
order to objectively assess the MCFS algorithm. The results of
all techniques have been compared using the Friedman test,
which is the method required to compare the performance of
one new technique versus others on different databases [39,40].
The Friedman test (χ2

F = 19.583, df = 3, p < 0.001) shows

Fig. 3. Accuracy-Size Balance: Comparison between MCFS and CFS. The vertical axis represents the difference, as a percentage, between the accuracy obtained by
MCFS and that obtained by CFS. If a point is over the horizontal axis it is interpreted as MCFS being more accurate. The horizontal axis represents the difference,
as a percentage, between the number of features selected by MCFS and the number of features selected by CFS. A point far to the left of the vertical axis means a
large reduction of MCFS for the corresponding dataset.

Fig. 4. Accuracy-Size Balance: Comparison between MCFS and FCBF. The vertical axis represents the difference, as a percentage, between the accuracy obtained by
MCFS and that obtained by FCBF. If a point is over the horizontal axis it is interpreted as MCFS being more accurate. The horizontal axis represents the difference,
as a percentage, between the number of features selected by MCFS and the number of features selected by FCBF. A point far to the left of the vertical axis means a
large reduction of MCFS for the corresponding dataset.

significant differences between the accuracies of the techniques
analysed (with α = 0.05). The average ranks of the Friedman test
are shown in Table 3.

Following Demšar [39] and García and Herrera [40], we per-
formed a post-hoc analysis (Table 3). The meaning of the columns
is as follows: ‘‘Avg. Rank’’ is the Friedman rank; ‘‘Ri − RMCFS ’’ is
the difference between the Friedman rank of the technique and
the Friedman rank of MCFS; ‘‘z’’= (Ri − RMCFS)/

√
k(k+1)
6N (where

k = 4 is the number of techniques and N = 36 the number of
databases); and ‘‘p(uni)’’ is the unilateral p-value for z.

According to the Bonferroni–Dunn correction, differences are
significant if p is lower than α/(k − 1), that is, 0.0166667 for
α = 0.05. It can be observed that p(uni) is below that value (p =

0.00184 for BASELINE, p = 0.00002 for FCBF, and p = 0.01409 for
CFS), which means that the differences are statistically significant.

Table 3
Ranks of the Friedman test for accuracy values.

Avg. rank Ri − RMCFS z p (uni)

BASELINE 2.32 −0.86 −2.90369 0.00184
FCBF 1.97 −1.21 −4.08543 0.00002
CFS 2.53 −0.65 −2.19465 0.01409
MCFS 3.18 0.00 0.00000

The ranges of the Friedman test are greater than those of the

other three techniques (remember that, in accuracy, the higher,

the better), and hence it can be stated that the accuracy obtained

by MCFS is significantly better than those obtained by the other

three techniques.

Fig. 5. Accuracy-Size Balance: Comparison between MCFS and BASELINE. The vertical axis represents the difference, as a percentage, between the accuracy obtained
by MCFS and that obtained by BASELINE. If a point lies above the horizontal axis it is interpreted as MCFS being more accurate. The horizontal axis represents the
difference, as a percentage, between the number of features selected by MCFS and the number of features selected by BASELINE. A point far to the left of the vertical
axis means a large reduction of MCFS for the corresponding dataset. All points are to the left of the vertical axis since BASELINE applies no reduction and, therefore,
the size of the datasets for this system is always 100%.

4.3.2. Reduction
Table 4 shows the size of the sets of instances selected by each

technique in the datasets.
The Friedman test applied to the size values (χ2

F = 81.780,
df = 3, p < 0.001) shows significant differences between the
algorithms. The average ranks of the Friedman test are shown in
Table 5.

Following [39,40], a post-hoc analysis was again performed
(Table 5). The meanings of the columns are the same as those
in the previous table.

Recall that according to the Bonferroni–Dunn correction, dif-
ferences are significant if p is lower than α/(k − 1), that is,
0.0166667 for α = 0.05. The MCFS technique is significantly
better than BASELINE (p < 0.001, and the Friedman range
for BASELINE is greater than that for MCFS; in reduction, lower
values indicate better results). The differences with the other
two techniques are not significant (p = 0.01670 for FCBF, and
p = 0.50000 for CFS).

4.3.3. Summary of results and additional remarks
It has been shown in previous sections that the Friedman

test followed by post-hoc analysis establishes MCFS as being
significantly better in accuracy than all the other algorithms
analysed.

The accuracy of our algorithm is significantly greater than that
obtained by the nearest-neighbour method (86.66 versus 83.52
on average, whereby the differences are statistically significant).
This means that MCFS has strong editing capabilities: it removes
features that worsen the classification, due to their provision of
noise, mislabelling, etc.

5. Conclusions and future work

In this paper, we have presented a feature-selection algorithm
based on a graph of features. We apply a maximum-flow algo-
rithm to this graph in order to find the most relevant features of
a dataset. Experiments and their statistical analysis have shown
that this technique achieves significantly better accuracy than
that of other, commonly used algorithms.

Table 4
Size of the set of features selected by each technique and MCFS; the values
are the ratio between the number of selected features and the total number of
features, expressed as a percentage. This means that a lower value represents a
higher reduction capacity. Recall that stratified 10-fold cross-validation has been
used.
Database BASELINE FCBF CFS MCFS

Ads 100.00 4.81 4.62 19.83
Anneal.ORIG 100.00 15.79 15.79 18.42
Arcene 100.00 0.39 0.53 12.25
Autos 100.00 12.00 20.00 36.00
Colic 100.00 22.73 22.73 22.73
Colic.ORIG 100.00 14.81 14.81 18.52
Credit-g 100.00 15.00 15.00 5.00
Cylinder-band 100.00 10.26 15.38 15.38
Flags 100.00 3.45 3.45 27.59
Gisette 100.00 0.56 1.54 8.84
Heart (Cleveland) 100.00 53.85 53.85 46.15
Heart (Hungarian) 100.00 38.46 46.15 23.08
Heart (Long Beach VA) 100.00 15.38 15.38 15.38
Heart (Statlog) 100.00 46.15 53.85 46.15
Heart (Swiss) 100.00 23.08 23.08 7.69
Hepatitis 100.00 36.84 52.63 36.84
Image segmentations 100.00 31.58 36.84 57.89
Ionosphere 100.00 11.76 41.18 35.29
Led creator + 17 100.00 75.00 45.83 29.17
Madelon 100.00 0.80 1.80 1.80
Multifeatures 100.00 20.03 22.65 42.84
Mushroom 100.00 18.18 18.18 40.91
Musk2 100.00 1.20 6.02 18.07
Optdigits 100.00 32.81 59.38 48.44
Page blocks 100.00 40.00 60.00 30.00
Promoters 100.00 10.53 10.53 17.54
Schizo 100.00 14.29 14.29 7.14
Sick 100.00 20.69 20.69 6.90
Solar flare 1 100.00 8.33 25.00 8.33
Solar flare 2 100.00 16.67 16.67 16.67
Sonar 100.00 16.67 31.67 35.00
Spambase 100.00 24.56 26.32 26.32
Splice 100.00 36.67 36.67 15.00
Sponge 100.00 6.67 6.67 22.22
Vehicle 100.00 22.22 61.11 38.89
Vote 100.00 25.00 25.00 43.75
Waveform 100.00 15.00 37.50 37.50
Wine 100.00 76.92 84.62 53.85

Average 100.00 22.08 27.56 26.26

Table 5
Ranks of the Friedman test and post-hoc analysis for feature set size values.

Avg. rank Ri − RMCFS z p (uni)

BASELINE 4.00 1.79 6.04374 <0.00001
FCBF 1.58 −0.63 −2.12712 0.01670
CFS 2.21 0.00 0.50000 0.50000
MCFS 2.21 0.00 0.00000

The main conclusion drawn is that, if we find a way to express
a problem in terms of graphs, then min-cut (and, in general, other
graph algorithms) can provide a good option to help solve the
problem. In the case of a machine-learning task, such as feature-
selection, a transformation is required that enables a graph to
be obtained from the training data. This way of interpreting
a database through a graph is, in fact, the key aspect of our
proposal. In this respect, there are several attractive lines of
research for future exploration, such as the implementation of
other transformation functions for edge weights, and the contin-
ued exploration of the potential of the graph representation of
problems in other machine-learning tasks.

CRediT authorship contribution statement

Carlos G. Vallejo: Conceptualization, Methodology, Investiga-
tion, Formal analysis, Data curation, Software, Writing - original
draft, Resources, Validation. José A. Troyano: Project administra-
tion, Investigation, Supervision, Data curation, Writing - original
draft, Writing - review & editing. Fernando Enríquez: Writing
- review & editing, Resources, Visualization, Funding acquisi-
tion. F. Javier Ortega: Writing - review & editing, Resources,
Funding acquisition. Fermín L. Cruz: Writing - review & editing,
Validation.

Acknowledgements

This work has been funded by the Spanish Ministry of Econ-
omy and Business, Innovation, and Universities through the proj-
ects ‘Energy Efficiency and Performance of Data Centers by Smart
Virtualization and Deep Learning Event Detection’ (RTI2018-098
062-A-I00) and ‘Vision and Crowdsensing Technology for an Op-
timal Response in Physical-Security’ (TIN2017-82113-C2-1-R).

References

[1] C. Shi, Q. Ruan, G. An, Sparse feature selection based on graph laplacian
for web image annotation, Image Vis. Comput. 32 (3) (2014) 189–201.

[2] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artificial
Intelligence 97 (1) (1997) 273–324.

[3] O. Abedinia, N. Amjady, H. Zareipour, A new feature selection technique
for load and price forecast of electrical power systems, IEEE Trans. Power
Syst. 32 (1) (2017) 62–74.

[4] H. Liu, H. Motoda, R. Setiono, Z. Zhao, Feature selection: An ever evolving
frontier in data mining, J. Mach. Learn. Res. - Proc. Track 10 (2010) 4–13.

[5] Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, H. Liu, Advancing
Feature Selection Research - ASU Feature Selection Repository, Technical
Report, Arizona State University, 2010.

[6] A. Jović, K. Brkić, N. Bogunović, A review of feature selection methods
with applications, in: 2015 38th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO),
IEEE, 2015, pp. 1200–1205.

[7] M. Taradeh, M. Mafarja, A.A. Heidari, H. Faris, I. Aljarah, S. Mirjalili, H.
Fujita, An evolutionary gravitational search-based feature selection, Inform.
Sci. 497 (2019) 219–239.

[8] Z.M. Hira, D.F. Gillies, A review of feature selection and feature extraction
methods applied on microarray data, Adv. Bioinf. 2015 (2015).

[9] S. Van Landeghem, T. Abeel, Y. Saeys, Y. Van de Peer, Discriminative and
informative features for biomolecular text mining with ensemble feature
selection, Bioinformatics 26 (18) (2010) i554–i560.

[10] H. Faris, A.-Z. Ala’M, A.A. Heidari, I. Aljarah, M. Mafarja, M.A. Hassonah, H.
Fujita, An intelligent system for spam detection and identification of the
most relevant features based on evolutionary random weight networks,
Inf. Fusion 48 (2019) 67–83.

[11] K. Belattar, S. Mostefai, A. Draa, A hybrid ga-lda scheme for feature
selection in content-based image retrieval, Int. J. Appl. Metaheuristic
Comput. (IJAMC) 9 (2) (2018) 48–71.

[12] W. He, X. Zhu, D. Cheng, R. Hu, S. Zhang, Unsupervised feature selection for
visual classification via feature-representation property, Neurocomputing
236 (2017) 5–13, Good Practices in Multimedia Modeling.

[13] X. Zhu, H.-I. Suk, L. Wang, S.-W. Lee, D. Shen, A novel relational regular-
ization feature selection method for joint regression and classification in
ad diagnosis, Med. Image Anal. 38 (2017) 205–214.

[14] S. Alelyani, J. Tang, H. Liu, Feature selection for clustering: A review, in:
Data Clustering, Chapman and Hall/CRC, 2018, pp. 29–60.

[15] Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques in
bioinformatics, Bioinformatics 23 (19) (2007) 2507–2517.

[16] M.A. Hall, Correlation-based Feature Subset Selection for Machine Learn-
ing (Ph.D. thesis), University of Waikato, Hamilton, New Zealand,
1998.

[17] L. Yu, H. Liu, Feature selection for high-dimensional data: A fast
correlation-based filter solution, in: 20th International Conference on
Machine Learning, 2003, pp. 856–863.

[18] H. Kuswanto, R.Y. Nurhidayah, H. Ohwada, Comparison of feature selection
methods to classify inhibitors in dud-e database, Procedia Comput. Sci. 144
(2018) 194–202.

[19] R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, F. Zhou, Mctwo:
a two-step feature selection algorithm based on maximal information
coefficient, BMC Bioinformatics 17 (1) (2016) 142.

[20] S.S. Gandhi, S. Prabhune, Overview of feature subset selection algorithm
for high dimensional data, in: 2017 International Conference on Inventive
Systems and Control (ICISC), IEEE, 2017, pp. 1–6.

[21] C.G. Vallejo, J.A. Troyano, F.J. Ortega, InstanceRank: Bringing order to
datasets, Pattern Recognit. Lett. 31 (2) (2010) 133–142.

[22] X. Chang, F. Nie, Z. Ma, Y. Yang, Balanced k-means and min-cut clustering,
2014, arXiv preprint arXiv:1411.6235.

[23] L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton University Press,
1962.

[24] Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis, in:
Proceedings of the Seventh SIAM International Conference on Data Mining,
2007, pp. 641–646.

[25] G. Dantzig, D. Fulkerson, On the Max-Flow Min-Cut Theorem of Networks,
RAND Corporation, 1964.

[26] M. Mansour, F. Jarray, An iterative solution for the coverage and connec-
tivity problem in wireless sensor network, Procedia Comput. Sci. 63 (2015)
494–498.

[27] T.A. Johnson, R. Eigenmann, T.N. Vijaykumar, Min-cut program decompo-
sition for thread-level speculation, in: PLDI’04, ACM, Washington, DC, USA,
2004, pp. 59–70.

[28] D. Greig, B. Porteous, A. Seheult, Exact maximum a posteriori estimation for
binary images, J. R. Stat. Soc. Ser. B Stat. Methodol. 51 (2) (1989) 271–279.

[29] B. Pang, L. Lee, A sentimental education: Sentiment analysis using subjec-
tivity summarization bases on minimum cuts, in: Proceeding of the ACL,
2004, pp. 271–278.

[30] A.V. Goldberg, R.E. Tarjan, A new approach to the maximum-flow problem,
J. ACM 35 (4) (1988) 921–940.

[31] D.R. Karger, Minimum cuts in near-linear time, in: 28th Annual ACM
Symposium on Theory of Computing, 1996, pp. 56–63.

[32] Y. Boykov, V. Kolmogorov, An experimental comparison of Min-Cut/Max-
Flow algorithms for energy minimization in vision, IEEE Trans. PAMI 26
(9) (2004) 1124–1137.

[33] C.S. Chekuri, A.V. Goldberg, D.R. Karger, M.S. Levine, C. Stein, Experimental
Study of Minimum Cut Algorithms, Technical Report 96–132, NECI TR
96–132, 1996.

[34] B.V. Cherkassky, A.V. Goldberg, On implementing push-relabel method for
the maximum flow problem, Algorithmica 19 (1994) 390–410.

[35] H. Liu, L. Yu, Towards integrating feature selection algorithms for clas-
sification and clustering, IEEE Trans. Knowl. Data Eng. 17 (4) (2005)
491–502.

[36] A. Asuncion, D. Newman, UCI machine learning repository, 2007.
[37] S. Thrun, L.K. Saul, B. Schölkopf (Eds.), Advances in Neural Information

Processing Systems 16 [Neural Information Processing Systems, NIPS 2003,
December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada],
MIT Press, 2004.

[38] X. Song, J. Zhang, Y. Han, J. Jiang, Semi-supervised feature selection via
hierarchical regression for web image classification, Multimedia Syst. 22
(1) (2016) 41–49.

[39] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1–30.

[40] S. García, F. Herrera, An extension on ‘‘statistical comparisons of classifiers
over multiple data sets’’ for all pairwise comparisons, J. Mach. Learn. Res.
9 (2008) 2677–2694.

http://refhub.elsevier.com/S0950-7051(20)30075-7/sb1
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb1
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb1
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb2
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb2
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb2
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb3
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb3
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb3
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb3
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb3
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb4
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb4
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb4
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb5
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb5
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb5
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb5
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb5
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb6
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb6
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb6
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb6
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb6
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb6
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb6
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb7
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb7
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb7
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb7
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb7
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb8
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb8
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb8
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb9
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb9
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb9
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb9
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb9
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb10
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb10
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb10
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb10
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb10
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb10
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb10
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb11
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb11
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb11
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb11
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb11
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb12
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb12
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb12
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb12
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb12
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb13
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb13
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb13
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb13
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb13
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb14
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb14
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb14
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb15
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb15
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb15
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb16
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb16
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb16
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb16
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb16
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb17
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb17
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb17
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb17
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb17
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb18
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb18
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb18
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb18
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb18
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb19
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb19
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb19
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb19
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb19
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb20
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb20
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb20
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb20
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb20
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb21
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb21
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb21
http://arxiv.org/abs/1411.6235
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb23
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb23
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb23
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb25
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb25
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb25
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb26
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb26
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb26
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb26
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb26
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb27
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb27
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb27
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb27
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb27
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb28
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb28
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb28
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb30
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb30
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb30
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb31
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb31
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb31
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb32
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb32
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb32
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb32
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb32
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb33
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb33
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb33
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb33
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb33
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb34
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb34
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb34
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb35
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb35
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb35
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb35
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb35
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb36
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb37
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb37
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb37
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb37
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb37
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb37
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb37
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb38
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb38
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb38
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb38
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb38
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb39
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb39
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb39
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb40
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb40
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb40
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb40
http://refhub.elsevier.com/S0950-7051(20)30075-7/sb40

	MCFS: Min-cut-based feature-selection
	Introduction
	CFS and min-cut
	CFS: Correlation feature-selection
	Min-cut
	Max-flow min-cut problem
	Algorithms that calculate the min-cut

	Our proposal: the MCFS algorithm
	Experimentation
	Databases and comparison criteria
	Parameter adjustment
	Experimental results and statistical analysis
	Accuracy
	Reduction
	Summary of results and additional remarks

	Conclusions and future work
	CRediT authorship contribution statement
	Acknowledgements
	References

