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ABSTRACT Carbon emissions, greenhouse gases and pollution in general are usually related to traditional
factories, so the most modern computing factories have gone unnoticed for the general-public opinion.
We empirically show through extensive and realistic simulation that: 1) energy consumption, and conse-
quently CO; emissions, could be reduced from ~15% to ~60% if the correct energy-efficiency policies are
applied; and 2) such energy-consumption reduction can be achieved without negatively impacting the correct
operation of these infrastructures. To this end, this work is focused on the proposal and analysis of a set of
energy-efficiency policies which are applied to traditional and hyper-scale data centres, as well as numerous
operation environments, including: 1) the top resource managers used in industry; 2) eight energy-efficiency
policies, including aggressive, fine-tuned and adaptive models; and 3) three types of workload-arrival
patterns. Finally, we present a realistic analysis of the environmental impact of the application of such
energy-efficiency policies on USA data centres. The presented results estimate that 11.5 million of tons of
CO» could be saved, which is equivalent to the removal of 4.79 million of combustion cars, that is, the total
car fleet of countries such as Portugal, Austria and Sweden.

INDEX TERMS Energy efficiency, data centres, scheduling.

I. INTRODUCTION

One degree Celsius. It is the estimated global temperature
change induced by human activities. 2006 - 2015 is assessed
to be 0.87°C increased global temperature [2]. Every bit of
help reducing carbon footprint and greenhouse gases emis-
sions is needed. Every effort must be done.

And it is urgent.

Currently, data centres represent some of the greediest
industries worldwide in terms of energy consumption. The
ever-increasing utilisation of cloud services is increasing the
demand of these facilities. According to the latest studies,
up to 2% [3] of global energy is consumed by data cen-
tres. Some of them have adopted green energy-generation
and consumption strategies, however, the majority of their
energy consumption is provided by the traditional power grid,
which leads to non-green energy generation. According to [4]
around 60% of the energy generation comes from coal and

The associate editor coordinating the review of this manuscript and

approving it for publication was Yinliang Xu

44048

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

natural gas sources, thus CO? is still wildly emitted to the
atmosphere.

Data-centre energy consumption may be categorised by
its consumer, from computational resources to storage and
networking. In addition, the more computational work the
servers have to perform, the more heat is generated, and the
more energy is consumed by the cooling systems.

Various strategies may be adopted to save energy in data
centres, from industrial-oriented models to software-man-
agement solutions. Industrial-oriented approaches include
improvements on data-centre cooling and temperature of
operation [5], [6], hardware energy proportionality [7], [8],
replacement of hardware components to incorporate
more-efficient and less-consuming components [9], and the
improvement of power-distribution systems [10].

The main software systems in charge of the deployment
and execution of the incoming workload are known as
resource managers. Thus, resource managers have to deal
with the arrival of jobs, the status of the resources and
the allocation of resources to such jobs. In order to reduce
energy consumption, we analyse a wide range of power-off
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policies that dynamically and virtually change the number
of data-centre resources, therefore adjusting the available
resources for the current and near-future workload. These
energy policies have been incorporated to the most popu-
lar resource-management software solutions, and simulation
tools have been used in order to obtain results and to analyse
them in consequence. Economic and environmental results,
including CO? savings, are also detailed.

This work focuses on the reduction of the energy consumed
by the workloads that are executed on data-centre computa-
tional resources from a software-governance point of view.
The following novelties are therefore presented in this paper:

« Two new self-adaptive energy-efficiency policies based
on the shut-down of underutilised servers: BF-size and
BF-time.

o Performance and energy-efficiency analysis of the
developed energy-efficiency policies in various kind
of realistic data centres and workloads: traditional and
hyper-scale data centres.

o Measurement, analysis and presentation of the results
of the developed energy-efficiency policies in two-level
and shared-state resource managers.

o Measurement of the environmental impact of such
energy-efficiency policies at USA level.

Practically, this paper enables data-centre administrators
to make decisions related to the application of energy-
efficiency-related policies based on empirical information
obtained through extensive and realistic simulation.

The paper is organised as follows: the related work is
described in Section III. In Section II we introduce the foun-
dations of the data-centre operation process, including an
overview of the software that governs these infrastructures,
and the workload to be executed. Section IV presents the
experimentation design and the simulation tool employed.
Finally, empirical results are presented and analysed in
Section V, where we compare 18 different scenarios, consid-
ering two data-centre infrastructures (traditional and hyper-
scale), three resource managers and three workload patterns.
Various energy policies are applied to each scenario, and
numerous results related to energy efficiency and Key Perfor-
mance Indicators (KPIs) are presented. Moreover, we provide
some results related to the environmental impact of these
solutions if applied to USA data centres. Conclusions and
future work are stated in Section VI.

Il. DATA-CENTRE ARCHITECTURE

Data centres are very complex infrastructures that usually
provide storage and computational resources to services and
applications deployed by final users and operators. Therefore,
software solutions have to manage large amounts of digital
storage, servers (aka nodes) to perform computational tasks,
both the external and internal networks for successful and
low-latency communication, and environmental control for
cooling and dehumidification.
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Data centres may be categorised by its size and resource
utilisation. As stated by Shehabi [3] we differentiate between
1) hyper-scale; and 2) traditional data centres. Hyper-scale
data centres are usually composed of a large number of
resources which operate at high utilisation rates to service
cloud and big-data operations. Such data centres are usually
operated by large companies such as Google, Microsoft, and
Amazon. Traditional data centres are usually composed of a
lower number of resources, whose utilisation rate are usually
lower due to software and business limitations. Traditional
data centres are usually related to private-cloud solutions
owned by smaller organisations to support their internal
business services.

Each data centre is managed and operated by a complex
stack of software solutions. The particular software stack
deployed on production depends on the data-centre adminis-
trator. This decision is usually related, in turn, to the purpose
of the services provided by the data centre. In consequence,
the software stacks deployed in data centres worldwide are
numerous and very heterogeneous.

This being said, data centres usually equip a set of soft-
ware solutions which provide common functionality for their
correct operation and management. Among them: 1) resource
managers; 2) distributed file systems; 3) network load balanc-
ing systems; and 4) monitoring and management systems.

A. RESOURCE MANAGERS

Resource managers are the main software tool that governs
data-centre operations. It is in charge of the management,
monitoring and deployment of jobs and their tasks by pro-
viding the following features: 1) management of the arrival
and queuing of task; 2) selection of resources that meet the
requirements; 3) perform the operations needed to actually
deploy such tasks; and 4) monitoring the state of the resources
and the life cycle of the deployed jobs and tasks.

One of the main characteristics of resource managers is
their scheduling algorithms that carry out the selection of
resources. These schedulers are a critic part of the overall
resource governance. In this context, several alternatives have
been proposed for the architecture of the cloud-computing
resource managers. At the highest level we can classify them
as: a) Centralised; b) Distributed; and ¢) Hybrid.

On the one hand, centralised resource managers present a
unique authority with full knowledge of all the operational
status. Nowadays these are the most popular alternatives for
data centres in production. They offer fairly good perfor-
mance and are the most tested alternatives. In this work,
we will propose energy-efficiency solutions applied to this
group of resource managers.

On the other hand, we can find distributed resource man-
agers, where no central authority is in charge of all the
tasks, but some local instances work independently to man-
age and operate the resources and queuing/deployment of
jobs. Scheduling decisions are usually sub-optimal, as each
instance has little knowledge of the status the rest of the
resources.
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FIGURE 1. Monolithic centralised scheduling workflow.

Finally, hybrid approaches join both alternatives in a hier-
archical model. At the top, a central meta-manager interacts
with the local job dispatchers. Such meta-manager organises
the sets of jobs and resources whilst second-level managers
control medium-sized cloud clusters. These local managers
are not aware of the rest of the data centre. This approach
results in a more scalable and fault-tolerant architecture while
it keeps the advantages of centralised schemes.

The presented categorisation works at a very high level.
These categories can be scattered in several subcategories.
Thus, in this work, we analyse the following three most
utilised centralised resource managers: a) monolithic sched-
ulers; b) two-level schedulers; and c¢) shared-state schedulers.

The following figures illustrate each of these resource
managers and use some abbreviations as follows: B - Short-
running Batch task, S - Long-running Service task,
M - Machine, O - Resource offer, SA - Scheduling Agent,
R - Request of computational resources, C - Commit of
scheduling operation, U - Cluster state Update.

1) MONOLITHIC CENTRALISED RESOURCE MANAGERS
Monolithic centralised manager is the prevalent model of
data-centre resource managers. This approach [11] works
fine when the arrival of jobs presents high frequency of
long-lasting tasks jobs where the latency of the response is
not critical [12]. It usually features high-quality and near to
optimal scheduling decisions [13], [14]. Moreover, the Mono-
lithic model tends to utilise data-center resources at higher
rates [15], which is related to a more homogeneous perfor-
mance, reliable behaviour, fair load balance [16], [17], and
shortening of makespan [18]. The workflow of the aforemen-
tioned schedulers is depicted in Fig.~1

Notwithstanding, some data centres need the partition of
jobs in order to perform fast-response operations. It implies
that jobs are divided into a high number of smaller and shorter
tasks. When this situation is present, monolithic resource
managers may impose a bottleneck in this data-centre
operation.
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FIGURE 2. Two-level centralised workflow.

2) TWO-LEVEL CENTRALISED RESOURCE MANAGERS

New centralised scheduling approaches have been proposed
and developed in order to avoid or reduce the aforementioned
bottleneck. These alternatives aim their efforts in the paral-
lelisation of the scheduling decisions. Two-level centralised
resource managers, including Mesos [19], and YARN [20],
employ a central coordination agent that prevents the par-
allel modification of the cluster resources when scheduling
operations are to be made. These decisions are performed
by several schedulers, usually packed with user application
frameworks, such as MapReduce. Each framework incorpo-
rates scheduling algorithms responsible for the selection of
resources on which jobs are deployed, as show in Figure 2.
Therefore, each scheduler lacks the global cluster state and
tasks requirements which may lead to sub-optimal scheduling
decisions.

3) SHARED-STATE CENTRALISED RESOURCE MANAGERS

In contrast with the aforementioned approach, Shared-state
centralised resource managers, such as Omega [18], follow
a different approach. The centralised coordinator offers the
whole cluster state to all schedulers and does not block the
cluster on each scheduling decision. Consequently, sched-
ulers can work concurrently, employing a not-updated copy
of the data-centre state. When a scheduler makes a decision,
commits the scheduling transaction to the centralised sched-
uler. A conflict may occur as the result of the transaction,
as the stale copy could be outdated. In this case, the coordi-
nator updates the not-updated copies of the data-centre state
which are used by the schedulers. Finally, the scheduling
operation is retried, as shown in Figure 3.

B. DATA-CENTRE WORKLOADS

In current cloud-computing environments, the processed
workload presents a high degree of heterogeneity [21], [22].
Workloads are usually divided depending on the duration and
goal of their jobs into batch or service workloads:
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FIGURE 3. Shared-state centralised scheduling workflow.

« Batch jobs are the ones that perform a clearly defined
computation task, which leads to a fixed end time when
the computation finishes (e.g. Map-reduce jobs).

o Service jobs usually represent infrastructure services
and processes which have no determined end, such as
distributed file system instances, mail and web servers.

Batch jobs usually comprise 90% of total jobs sched-
uled in the data centre, and service jobs are usually 10%
of total jobs scheduled. In contrast, both batch and service
jobs consume approximately the same amount of data-centre
resources, 45% and 55%, respectively [23]-[25]. It must
be kept in mind that the sub-optimal scheduling operations
of distributed schedulers may cause a severe performance
degradation on complex and long-running jobs, whose key
performance indicators may reflect a worse performance than
in overwhelmed centralised managers.

Ill. ENERGY EFFICIENCY IN DATA CENTRES

Besides the efforts made in the various hardware, electric and
industrial areas, numerous software-based energy-efficiency
models have been also proposed. Such models may be
classified in: 1) virtual machines consolidation, migration
and scaling; 2) energy-aware scheduling algorithms; and
3) power-off policies which shut down idle nodes according
to the workload patterns.

In addition, different techniques of energy conservation
such as VM consolidation and migration have been devel-
oped in literature. In [26]—[28], the authors propose several
resource-management models for virtualised data centres in
order to lower energy consumption: 1) allocation and migra-
tion of VMs depending on CPU usage; 2) taking into account
SLAs restrictions; and 3) adaptive heuristics.

A Bayesian Belief Network-based algorithm whose objec-
tive is the allocation and migration of VMs is presented
in [29], which takes into account the data gathered during the
execution of the tasks.

In [30] multi-level Join VM Placement and Migra-
tion (MJPM) algorithms based on the relaxed convex

VOLUME 8, 2020

optimization framework (taking into account energy cost
of VMs migration) to approximate the optimal solution are
proposed. Finally, a Multi-objective Genetic Algorithm is
proposed by [31] for the dynamic prediction and allocation
of resources.

The authors propose an energy-aware scheduling pol-
icy based on Dynamic Voltage and Frequency Scaling
(DVES) in [32]. Moreover, various approaches look for the
reduction of the energy consumption by applying energy-
proportionality models based on power-proportional dis-
tributed file systems in [33]-[35] which generally aim to
switch storage-servers off when the replicated data is not
needed.

In [36], the authors propose a green-scheduling algorithm
based on neural networks, whose objective is the forecast of
workload demand to switch off idle resources. Several exper-
iments are performed by simulating a 512-nodes data centre
with homogeneous workload which follows a day/night pat-
tern. In [37], the authors describe two energy-aware heuristics
that aim to maximize resource utilization. Moreover, heuris-
tic rules and resource allocation techniques are proposed to
minimise a multi-objective function, taking into account the
energy-consumption and execution time in [38]. The authors
in [39] describe an energy manager that relies on day/night
workload patterns to aggregate jobs and therefore switch
idle nodes off, while keeping a security margin to minimise
unexpected workload peaks.

This work can be classified within the power-off policies
that shut-down servers. To this end we describe 8 differ-
ent power-off policies and compare them with the current
situation, represented by a non-switching-off policy. The
comparison includes performance and energy-consumption
metrics. These energy-saving policies are applied at the
resource-manager layer, making it possible to be put in pro-
duction on the vast majority of data-centre models.

Moreover, we compare the behaviour of the data cen-
tre when these policies are applied to various scenarios,
specifically:

1) Two data-centre workload utilisation levels which rep-
resent the usage of hyper-scale data centres and the big
and medium traditional data centres;

2) Three data-centre workload patterns that correspond
to the most popular day/night patterns that follow real
cluster traces; and

3) The three centralised resource managers that match the
most popular resources managers found in real data
centres in production.

This paper extends our previous work [40]-[45] and the
related work found in the literature presented in this section
by:
y1) Presenting two new self-adaptive energy-efficiency

policies based on the shut-down of underutilised

servers: BF-size and BF-time.

2) Applying the developed energy-efficiency policies to
various kind of realistic data centres and workloads:
traditional and hyper-scale data centres.
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FIGURE 4. Power-off module architecture.

3) Applying, measuring and analysing the results of the
developed energy-efficiency policies in two-level and
shared-state resource managers.

4) Measuring the environmental impact of such energy-
efficiency policies at USA level.

A. POWER-OFF POLICIES
In this work, we propose the shut-down of machines to
dynamically change the available capacity of the data centre
to better fit the resources needed for the execution of the
workload at a particular time. The shut-down of machines
is led by the power-off policies. These policies determine
whether or not a machine should be shut down and are
responsible for the activation of the shut-down process. The
workflow of this process is illustrated in Figure 4. The devel-
oped energy-efficiency policies inspect various data-centre
and resources data to make the shut-down decisions. Such
decisions are made after task completion, when computa-
tional resources are released. In our work,

The following shut-down energy-efficiency policies have
been developed:

« Keep on: This shut-down policy prevents any resource
from being shut-down. Therefore, this policy reflects the
current behaviour of data centres.

o Aggressive: This shut-down policy will try to power
off all the free resources after tasks are completed and
resources released.

o Minimum free-capacity margin: This shut-down deci-
sion policy ensures that a given percentage of resources
1 is available, at least, ready to accept incoming work-
load to avoid performance degradation.

« Random: This policy shuts down or leaves resources
idle by following a Bernoulli distribution of 0.5. Results
could be useful in order to make comparisons and
check the accuracy made by the probabilistic policies
presented below.

« Exponential: Exponential distribution, Exp(A), has been
widely used to describe the time between events of a
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Poisson process. In the context of data centres, the arrival
the new jobs are usually modelled following the Queue
Theory models. Therefore, this policy offers a prediction
of the arrival of new jobs. In order to compute the
A parameter, only the most recent jobs are taken into
account, based on a parameter denoted as Window size.
Every time we need to make a switch-off decision,
the mean inter-arrival time between those last jobs is
computed, denoted by 4, and A = 1/§ based on the
method of maximum likelihood. Then, we compute
the probability of the arrival of a new job in a given
time by means of the cumulative density function (cdf),
as cdf (TH)'=1— e 5/3 If the probability is greater or
lesser than a given decision threshold u, the resources
are left idle or switched-off, respectively.

« Gamma: We use Gamma distributions, usually denoted
as I'(a, B), as a probability model for the occur-
rence of multiple events in a specific time interval.
In this energy-efficiency policy, we follow the hypoth-
esis that the arrival of new jobs follows a Gamma
distribution. Thus, this policy provides with the prob-
ability of the arrival of enough new jobs to oversub-
scribe the current available resources in a given period,
so a smart shut-down decision can be made. To this
end, every time a shut-down operation is commanded,
the energy-efficiency policy computes the availability of
memory and cpu of the current idle resources, the mem-
ory and cpu needed to serve the last jobs, the mean
inter-arrival time among these last jobs and the ration
between cpu, &y, and Memory e, available versus
the cpu and memory needed by such last jobs. Finally,
it computes a new Gamma distribution as the cumulative
density function (cdf) with:

y (@, Bx)
['(a)
Hence, if the resulting probability is greater or lesser
than a given a threshold p, the resources are left idle or
switched-off respectively.

o BF-size: This policy tries to overcome the difficulties
that the aforementioned developed policies present, i.e.
the need of a fine-tuned parameterisation. To this end,
we consider a window size of a given number of last
jobs. Then we compute n predictions and if the average
of these predictions is greater or lesser than a given
threshold, then we leave resources idle or shut them
down respectively. Each of the aforementioned predic-
tions is obtained by generating a new virtual future
workload that follows an exponential distribution mod-
elled after the behaviour of the last window of jobs
(interarrival, cpu and memory consumption).

o BF-time This policy follows the same pattern, but the
window size is not computed from a given number of
last jobs, but from the past jobs from a given time frame.

cdf (Ty) =

1TS is defined as the minimum time that ensures energy saving if a
resource is switched off between two jobs [46]
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From that, it also computes n predictions as previously
stated.

IV. EXPERIMENTATION

In this work, we analyse the impact of the previously
explained energy-efficiency policies in the two main fami-
lies of data centres, that are, ordinary and hyper-scale data
centres.

Ordinary data centres, which represent traditional and
less-efficient data centres, utilise 20% of resources in aver-
age, while flagship hyper-scale data centres are considered to
achieve a utilisation rate of 50% [3].

Moreover, we analyse the impact of the centralised
resource managers explained in Section II-A on the behaviour
of both types of data centres.

In addition, we consider three kinds of workloads:

1) Ordinary workload, which utilises an Exponential dis-
tribution for the generation of the job arrival times;

2) Extreme workload, whose job inter-arrival time is gen-
erated by the means of a Weibull «0.5 distribution; and

3) Very extreme workload, which generates the job
inter-arrival time by using a Weibull «0.3 distribution.

The Exponential distribution, as a particular case of the
Gamma distribution, is commonly employed in queue-theory
environments to model the arrival of tasks in a given
period. The Weibull distribution is used as one of the main
extreme-value distributions, which increase the probability
of extreme arrival of tasks. The Exponential distribution is
a particular case of Weibull distribution when o = 1.

We have performed numerous simulations of 7 days of
operating time, and similar synthetic workloads for every
experiment, running 10 iterations for each parameterisation.
The average of the provided results is shown. We evaluated
the homogeneity of the results within populations by means
of the t-student test. Moreover, these workloads follow the
trends present in large companies such as Google [47], and
Alibaba [48] data centres. To this end, two kind of workloads
sharing the same data-centre resources are generated based
on statistical distributions, as explained in subsection II-B:

« Batch workloads, (jobs which compute a task and
then finish; e.g. MapReduce jobs). In these experi-
ments, Batch workloads account for ~90% of deployed
jobs (~26,000), consuming ~60% of the data-centre
resources. Each Batch job is composed of an average
of 180 tasks, which consume 0.3 CPU cores and 200 Mb
of RAM for 180 seconds.

o Service workloads, (applications, services and frame-
works with no fixed end; e.g. virtual machines). Service
workloads account for ~10% of deployed jobs (approx-
imately 2,500), which consume ~40% of the resources
of the data centre. Each Service job is composed of an
average 30 tasks, which consume 0.5 CPU cores and
700 Mb of RAM for 1000 seconds.

These workloads are executed in data centres of 2,000
machines. In our simulation experiments, ordinary data
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FIGURE 5. Example CPU consumption pattern of ordinary workloads.

centres utilise 20% of the resources in average, whilst
hyper-scale data centres occupy, in average, approximately
50% of the resources. Data-centre machines are considered
to be homogeneous in terms of performance and energy
consumption and are equipped with 8 cores and 16GB of
RAM.

A. WORKLOAD MODEL

A workload is a set of jobs that has to be deployed and
executed by the data-centre resources (see Section II-B).
Therefore, workloads are composed of jobs W = {Jj}}?:l,
and jobs are composed of tasks 7; = {tj,-}lri |- Thus, jobs are
modelled by the following attributes:

« Inter-arrival time X; represents the time between two
consecutive jobs J; and J;_1. Therefore, it also influences
the amount of jobs executed in a specific time window.
The inter-arrival time between two Batch jobs is usually
shorter than that of two Service jobs. According to the
queue theory, the inter-arrival time usually follows an
exponential distribution. Notwithstanding, other distri-
butions, such as the extreme-value Weibull distribution
may be employed.

o Number of tasks n; ~ Exp(A;) represents the number of
tasks that comprise a job. The number of tasks of a par-
ticular job J; is generated by following an Exponential
distribution with a given mean value of 1/A;.

« Job duration d; ~ Exp(iy) represents the period of
time a given job J; consumes resources in the data centre.
The duration of all tasks of a particular job J; is generated
by the means of the Exponential distribution with the
given expected value 1/A4.

« Resource usage is the amount of CPU K¢cpy and RAM
Kranm that all task of each particular job in a workload
consumes.

B. WORKLOAD GENERATION MODELS

All the workloads used for these simulations present a
day/night pattern. The following Figures 5, 6, 7 represent
such day/night patterns in terms of resource consumption
for ordinary, extreme and very extreme workloads generation
models respectively.

C. PERFORMANCE MODEL
In order to evaluate and analyse the performance of the
data centres, the behaviour of executed jobs is studied,
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FIGURE 8. Makespan measuring workflow.

especially Batch jobs, since their determined end is a direct
reflect of the achieved performance. Therefore, the perfor-
mance is represented by the following key performance indi-
cators (KPIs):

o Queue times: How long jobs J;, composed of n; tasks,
are waiting in the queue until their first task g(1); and
their last task g(»,); are deployed.

« Makespan: How long does it take from the submission
of the job until its completion, as shown in Figure 8.
Thus, the makespan of the job J; may be described as
follows: C; = q(n); + d;.

D. ENERGY MODEL
In this work, the energy consumption is measured as follows:

EC(T)=)_ ) Plemn)s

teA meM
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Lett € A = {§,28,...,7)}, where T is the total sim-
ulation time. For each period of time &, the state of each
machine e,,; is measured, and the energy consumption is
computed depending of the power consumption P(e) of that
particular state. The power states considered in this work
e € {On, Idle, Switching}, where On denotes the power
consumption of a machine when executing a task, Idle when
the machine is waiting for an incoming job to be executed,
and Switching if the machine is shutting-down or switching-
on, as shown in Figure 9.

E. SIMULATION TOOL
To execute all simulations, a simulation tool able to simulate
large-scale infrastructures, usually composed of thousands of
nodes is required. Moreover, this tool must provide results in
terms of performance and energy consumption. Several sim-
ulations tools have been analysed, including CloudSim [49],
CloudSched [50], GreenCloud [50]. Some of them present
serious limitations in terms of performance when large-scale
infrastructures are considered, while others only focus on
networking subsystems.

Authors presented and validated their own simulation tool,
called SCORE [41], [45], that has been widely used in several
works since then [41]-[44].

V. RESULTS

This section shows results for monolithic, two-level and
shared-states resource managers. To this end we show tables
where most relevant KPIs are presented for each scenario.
Tables headings use the following abbreviations:

« Monolithic resource manager results: g1 represents the
average job queue time until the first task is scheduled
(the lower, the better the user experience). g,, denotes the
average job queue time until the last task is scheduled
(the lower, the better the user experience). E and S;
denote the average of job and tasks scheduling opera-
tions required by jobs to be fully scheduled, respectively
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TABLE 1. Traditional data centres and monolithic resource manager: performance and energy-efficiency results of the batch workload.

Power-off q1 qn S St C Eg SD Essd  tmin,sd
policy (s) (s) (s) (%) (kWh) (s)
Ordinary workload
Keep on 0.23 0.23 1.00  413.70 39.98 0.00 0 0.00 0.00
Aggressive 1.20 8.83 590  713.80 52.81 59.15 7199 14.16 6.24
Random 0.95 6.15 460  624.90 48.88 58.21 5627 17.84 7.58
Margin 0.23 0.23 1.00  413.70 39.98 50.84 1692 50.26 6.80
Exp 0.23 0.23 1.00  414.10 39.99 54.55 1798 50.76 6.80
Gamma 0.23 0.23 1.00  414.10 39.99 54.45 1789 50.89 6.80
BF-size 0.59 3.15 1.60  499.60 44.45 57.62 3294 29.65 330.83
BF-time 0.56 3.00 1.90  505.10 44.41 57.67 3379 28.97 141.84
Extreme workload
Keep on 1.29 1.29 1.00  416.40 39.98 0.00 0 0.00 0.00
Aggressive | 4.55 24.17 7.80 1070.50  79.06 58.94 16618 6.03 6.54
Random 3.46 15.60 6.10 833.90 81.81 57.96 12536 7.82 6.19
Margin 1.29 1.30 1.00  416.90 39.99 50.74 1702 49.81 6.81
Exp 1.36 1.67 1.00  427.30 40.44 | 54.37 2089 43.75 5.89
Gamma 1.37 1.68 1.00  427.70 40.46 54.32 2086 43.76 6.49
BF-size 2.01 5.86 1.90  513.80 47.63 56.24 5237 18.35 39.84
BF-time 2.20 6.87 2.60 541.10 46.29 56.63 6264 15.45 24.75
Very extreme workload
Keep on 4.76 4.76 1.00  415.30 40.12 0.00 0 0.00 0.00
Aggressive | 1626  72.87 9.10 1307.90 119.75 | 59.08 20093 4.94 491
Random 12.54 4892 7.40 1052.40 89.09 57.94 14335 6.83 5.87
Margin 4.82 5.06 1.00  420.30 40.36 50.85 1705 49.83 8.22
Exp 5.57 8.44 1.00  460.20 4291 54.48 2483 37.13 8.22
Gamma 5.51 8.11 1.00  455.60 42.67 54.36 2432 37.77 8.22
BF-size 7.39 18.61 370  591.50 5591 55.34 6094 15.34 20.60
BF-time 884 27.08 470  705.70 65.12 56.31 8418 11.40 24.76

(the lower, the better to avoid scheduling bottlenecks).
C is the average job makespan (the lower, the better
the user experience). Eg represents the percentage of
energy saved (the higher, the better). SD is the total
number of shut-down operations (the lower, the better,
as it causes hardware stress). E ¢¢ denotes the energy
saved per shut-down operation (the higher, the better),
whilst #,i,,sq represents the minimum time a machine
has spent powered-off as cause of a shut-down operation
(the higher, the better).

« Two-level resource manager results, the previous abbre-
viations plus: Rjcx represents the percentage of
resources that are blocked due to the pessimistic-
blocking strategy of Two-level resource managers. Sy
denotes the number of scheduling operations retried due
to lack of resources in the copy of the cluster state (the
lower, the better to avoid scheduling bottlenecks). Jy,
represents the total number of timed-out jobs.

o Shared-state resource manager results, the previous
abbreviations plus: Jeons Teons Tepresent the total num-
ber of jobs and tasks conflicts, respectively (the lower,
the better for the overall performance).

A. MONOLITHIC RESOURCE MANAGER RESULTS
Tables 1 and 2 present the results both in terms of perfor-
mance and energy consumption for ordinary and hyper-scale
data centres, respectively, when typical, extreme and very
extreme workloads are executed.

For ordinary data centres and workloads, in terms of per-
formance, the Aggressive policy presents a serious impact
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in terms of queue times, forcing the jobs to spend approx-
imately 6x (0.23s vs 1.20s) and 40x (0.23s vs 8.83s) more
time in queue until their first and last tasks are scheduled,
respectively. The cause of such delay is the need to retry the
scheduling decisions due to the lack of available resources.
The increment of approximately 500% (1 vs 5.9) in the
number of scheduling operations performed for each job
clearly confirms this behaviour. Notwithstanding, the number
of scheduling operations of tasks increments only by 70%
(413 vs 713), presenting a tail behaviour, which means that
a relatively low number of tasks need to be rescheduled
multiple times. All this poor scheduling performance leads
to an increment of approximately 30% in terms of makespan
(39.98s vs 52.81s). In contrary, fine-tuned strategies, such
as Margin, Exponential (Exp) and Gamma, do not lead to
performance penalisation.

Adaptive policies without fine-tuning, such as BullFighter,
achieve relatively acceptable results in terms of performance,
but the negative performance impact is not negligible, mul-
tiplying by ~3x (0.23s vs 0.56s) and ~13x (0.23s vs 3s) the
time that jobs spend in queue until their first and last tasks are
scheduled, respectively.

Still for ordinary data centres, in terms of energy efficiency,
the trend is clear: the more aggressive the energy policy is,
the lower the energy consumption. Nonetheless, fine-tuned
policies, such as Gamma and Exponential, consume only
4.6% more energy than the Aggressive policy, while keeping
the performance levels of the data centre. The quality of
the shut-down operations is well reflected by the energy
saved in each shut-down operation, which also reflects the
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TABLE 2. Traditional data centres and monolithic resource manager: performance and energy-efficiency results of the batch workload.

Power-off q1 Tn S; St c Es SD Essq  tmin,sd
policy ) (©) ©) (%) 10%  (kWh) (s)
Ordinary workload
Keep on 0.23 0.23 1 414 39.97 0.00 0 0.00 0.00
Aggressive 125.80 1789.45 25 2709 1639.66 | 25.69 254  21.93 5.01
Random 13223 1873.22 26 2746 184528 | 25.53 199  27.87 3.19
Margin 0.23 0.23 1 414 39.97 5.68 1.26 9.67 9.28
Exponential 0.23 0.23 1 414 39.97 13.88 1.53 19.50 8.60
Gamma 0.23 0.23 1 414 39.97 13.80 1.52 19.43 9.28
BF-size 120.31 173355 24 2463 1885.78 | 25.09 1.79  31.19 533.46
BF-time 120.80 172736 24 2546 1627.23 | 2535 1.88 29.80 426.69
Extreme workload
Keep on 1.28 1.28 1 413 3991 0.00 0 0.00 0.00
Aggressive 136.17 192384 24 2755 1744.86 | 2578 2.51 22.17 5.25
Random 123.78 170853 23 2627 151449 | 2554 194  28.36 5.66
Margin 1.28 1.28 1 413 3991 5.68 1.26 9.67 8.47
Exponential 1.28 1.28 1 413 39.91 13.99 1.53 19.62 8.47
Gamma 1.28 1.28 1 413 39.91 1396 1.53 19.58 8.47
BF-size 151.26 228132 24 2640 2012.71 | 2531 147 37.61 498.41
BF-time 141.09 206220 24 2672 1815.58 | 2538 1.67  34.39 1131.50
Very extreme workload
Keep on 4.76 4.76 1 415 40.02 0.00 0 0.00 0.00
Aggressive 171.14  2193.08 24 2772 2354.66 | 25.79 2.62  21.27 4.75
Random 177.50  2253.10 23 2702 2251.54 | 2560 2.09 26.79 4.86
Margin 4.76 4.76 1 415 40.02 5.68 1.26 9.64 9.57
Exponential 4.77 4.77 1 415 40.02 1447 157 19.79 9.57
Gamma 4.76 4.77 1 415 40.02 14.10 1.54 19.58 9.57
BF-size 17341 2201.06 22 2589 200192 | 25.08 1.78 31.12 2814.01
BF-time 165.58 2084.83 23 2666 2181.53 | 2526 192  29.24 969.96

stress imposed on the hardware. The best results in terms
of this metric are achieved by the fine-tuned policies, which
perform less than 25% of shut-down operations compared
to those performed by the Aggressive policy (~7,200 vs
~1800), followed by the adaptive policies, whose number of
shut-down operations is less than half that of the Aggressive
policy (~7,200 vs ~3,300). It must be noticed that adaptive
policies present a good foreseeing behaviour, represented by
the minimum time a machine spend shut-down for a single
shut-down cycle (330s vs 6.80s of fine-tuned policies) which
invites us to develop new policies of this family.

Regarding extreme scenarios, the less predictable work-
load peaks intensify the negative performance impact of the
energy-efficiency policies. This trend can be stated in the
number of re-scheduling operations needed to fully schedule
a job. When the Aggressive policy is applied, jobs need,
in average, 7.8 and 9.1 scheduling operations in extreme
and very extreme workloads, compared to the 5.9 scheduling
operations of ordinary workloads.

Fine-tuned policies, such as Margin, Exponential and
Gamma cause minor performance deterioration in extreme
workloads. The Margin policy presents the most conserva-
tive behaviour, causing virtually no performance degrada-
tion, while consuming ~3.5% more energy than Exponential
and Gamma. Exponential and Gamma achieves to reduce
such amount of energy consumption by incrementing the
time jobs spend in queue until their last task is deployed in
approximately 20% (1.29s vs 1.67s), while having a minor
impact (less than 10%) in the time jobs spend in queue until
their first task is deployed (1.29s vs 1.36s). The less stable
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pattern of extreme workloads leads to a higher number of
shut-down operations: the Aggressive policy performs more
than double of shut-down operations than for ordinary work-
loads (~16,600 vs ~7,200), whilst the adaptive policies, rep-
resented by the Bullfighter policy, perform slightly less than
double (~3,300 vs 6,200). The Margin policy provides the
same numbers than for ordinary workloads, whilst Exponen-
tial and Gamma perform approximately 15% more shut-down
operations (1,800 vs. 2,100). The quality of shut-down opera-
tions, represented by the kW saved per shut-down operation,
follows the same trend. Very extreme workloads increment
the presented trends of performance penalisation.

For hyper-scale data centres, the penalisation in terms of
performance is much more extreme, which makes adaptive
energy-efficiency behave like the Aggressive policy, and inef-
fective for real application.

On the one hand, both the Aggressive and adaptive policies
achieve the highest energy savings (~25%) at the cost of
unacceptable job queue times of more than two minutes until
the first task is scheduled, and more than 30 minutes until the
last task is scheduled, compared to the 0.23 seconds of the
current trend of not application of any efficiency policy.

On the other hand, the Margin policy becomes too conser-
vative for these data centres, achieving a low level of energy
reduction (5.68%), whilst Exponential and Gamma policies
neither cause negative performance impact, and consume
approximately 10% less energy.

From these results we can conclude that, for data cen-
tres which employ Monolithic resource managers, only
fine-tuned energy-efficiency policies based on statistical
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TABLE 3. Traditional data centres and two-level resource manager: performance and energy-efficiency results of the batch workload.

Power-off q1 an Riock Sret Jto C E; SD Es,sda  tmin,sd
policy (s) (s) (%) (s) (%) 103 (kWh) (s)
Ordinary workload
Keep on 0.26 0.26 6.71 19 0 41.99 0.00 0 0.00 0.00
Aggressive 0.96 3.15 0.61 4471 0 51.46 | 5839 18.78 5.25 8.31
Random 0.73 2.08 0.64 3248 0 46.88 | 57.48 13.66 7.10 8.76
Margin 0.26 0.26 1.22 8 0 42.01 | 50.12 1.85 46.34 532.20
Exponential 0.27 0.29 0.85 58 0 42.09 | 53.70 2.23 40.86 147.94
Gamma 0.27 0.29 0.85 59 0 42.10 | 53.75 2.29 39.93 64.20
BF-size 041 0.93 0.83 1231 0 43.67 | 55.05 5.32 17.74 73.75
BF-time 0.41 0.89 0.77 1268 0 43.82 | 55.65 5.78 16.31 37.34
Extreme workload
Keep on 1.18 1.21 6.43 97 0 41.76 0.00 0 0.00 0.00
Aggressive 3.06 9.07 0.66 7427 0 5546 | 5843  28.08 3.55 8.84
Random 2.21 5.00 0.65 4498 0 49.35 | 5723 1942 5.01 8.44
Margin 1.16 1.17 1.15 44 0 41.84 | 50.08 2.84 30.01 18.45
Exponential 1.18 1.24 0.80 171 0 42.05 | 53.71 3.68 24.71 10.67
Gamma 1.18 1.23 0.83 148 0 42.01 53.57 3.51 25.84 18.09
BF-size 1.46 2.47 0.88 1447 0 4422 | 54.11 6.97 13.26 3743
BF-time 1.49 2.52 0.84 1613 0 44.49 | 5474 842 11.07 34.95
Very extreme workload
Keep on 3.68 3.96 6.34 566 0 43.12 0.00 0 0.00 0.00
Aggressive 7847  1760.83 10.67 193848 718 58990 | 49.10 40.37 2.12 10.72
Random 5.93 15.61 0.88 9769 0 61.31 | 56.11 29.83 3.20 10.10
Margin 3.53 3.77 1.13 592 0 43.86 | 49.86 6.83 12.39 10.00
Exponential | 3.71 4.77 0.85 1960 0 46.05 | 5332 10.61 8.65 9.77
Gamma 3.65 4.29 0.88 1445 0 45.07 | 5298 947 9.55 9.77
BF-size 3.94 6.36 1.42 2231 0 47.37 | 4831 9.91 8.28 20.69
BF-time 4.20 7.23 1.21 3011 0 48.68 | 50.88 12.85 6.71 14.98

distributions can reduce the energy consumption without a
negative impact in performance in hyper-scale data centres.
This is due to these data centres utilising more intensively
the resources. In such scenarios, workload peaks induce
a high number of power-on operations, since not enough
resources are available. In traditional data centres, which
employ less intensively the resources, even simple adaptive
policies, which try to foresee the incoming workload without
fine tuning, provide interesting results.

B. TWO-LEVEL RESOURCE MANAGER RESULTS

In this section, we evaluate the result of the application of
the energy-efficiency policies in data centres which equip a
Two-level resource manager, which blocks the cluster when
one of the parallel scheduling agents is making scheduling
decisions. 4 scheduling agents are working in parallel to
service Batch jobs, and 1 scheduling agent is responsible for
the scheduling of Service jobs.

The first difference with the Monolithic resource man-
agers becomes evident for traditional data centres, as shown
in Table 3: Two-level resource managers tend to decrease the
difference in terms of the time jobs spend in queue between
very aggressive and conservative energy-efficiency policies
in low and medium-stressed scenarios, at the cost of approx-
imately two percent more energy consumed.

The application of conservative energy-efficiency policies
in traditional data centres, such as Margin, Exponential or
Gamma, leads to longer queue times for jobs of ordinary
workloads, which wait in queue approximately 10% longer
until their first task is scheduled, compared to Monolithic
schedulers (0.23s vs. 0.27s). This impact raise to 20% for the
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queue time until all their tasks are scheduled (0.23s vs 0.29s).
These longer queue times have a direct impact on the
makespan (~40s vs. 42s).

On the other hand, the negative performance impact of
the Aggressive policy decreases. The time jobs spend in
queue until their last task is scheduled is approximately
3 times lower (8.83s vs 3.15s), which leads to the reduc-
tion of 2% of the makespan (52.81s vs 51.46s). This trend
fades for extreme and even reverts for very extreme work-
loads, where the Aggressive policy is unable to service all
the incoming workload, as can be seen in the makespan
results (almost 17 hours compared to the ~2 minutes of
the Monolithic resource manager). This comes to the cost
of less than 1% more energy consumed for ordinary work-
loads, and ~10% more energy consumed in very extreme
scenarios.

In terms of energy, the pessimistic blocking strategy imple-
mented by Two-level resource managers leads to a slightly
higher energy consumption (+2%) and a higher number of
shut-down operations, linked to the number of scheduling
operations that were not able to find available resources.
This means that, the more stressful the scenario (less avail-
able resources or more extreme arrival patterns), the higher
the number of shut-down operations, and, in consequence,
the lesser the quality of each shut-down operation. A good
example of this trend can be found for Hyper-scale data
centres when the Random energy-efficiency policy is applied:
while the number of shut-down operations is approximately
30% lesser than that of the Aggressive energy-efficiency
policy for ordinary workloads, both number almost equal for
very extreme workloads.
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TABLE 4. Hyper-scale data centres and Two-level resource manager: Performance and energy-efficiency results of the batch workload.

Power-off q1 qn Riock Sret Jto C Es SD Es,sd  tmin,sd
policy (s) () (%) ) (%) 10%  (kWh) (s)
Ordinary workload
Keep on 0.26 0.26 3.98 19 0 41.98 0.00 0 0.00 0.00
Aggressive 1.58 6.44 1.16 5984 0 52.97 2486 16.23 3.32 6.59
Random 1.19 475 1.07 4211 0 49.84 2441  11.60 4.56 6.59
Margin 0.26 0.26 3.24 7 0 42.00 5.47 1.49 8.05 6.59
Exponential 0.26 0.26 2.14 8 0 42.00 13.44 176 16.67 6.59
Gamma 0.26 0.26 2.14 6 0 42.00 13.49 1.75 16.78 6.59
BF-size 0.57 2.07 1.13 1660 0 44.94 2253  4.62 10.63 48.30
BF-time 0.62 2.14 1.13 1808 0 4523 22.68  5.33 9.32 6.59
Extreme workload
Keep on 1.21 1.23 4.09 95 0 42.07 0.00 0 0.00 0.00
Aggressive 234.68 4.85 % 103 4.54 14.12 8 34.98 %103 | 23.04 23.16 2.19 10.60
Random 136.28 1.57 % 103 2.98 7.35 1 20.38 % 103 | 2323 16.13 3.16 9.60
Margin 1.20 1.20 3.32 33 0 42.14 5.38 2.08 6.07 56.21
Exponential 1.20 1.20 2.21 32 0 42.14 1330 235 12.98 46.73
Gamma 1.20 1.20 2.22 33 0 42.14 1326 235 13.06 40.32
BF-size 1.60 3.61 1.28 1769 0 45.58 2133 571 8.16 4191
BF-time 1.73 4.17 1.26 2526 0 46.93 22.15  7.15 6.79 22.64
Very extreme workload
Keep on 3.64 391 3.72 536 0 43.17 0.00 0 0.00 0.00
Aggressive | 2.97 %103  24.34 %103  23.12 422613 1900 243.53% 103 | 12.64 2126  1.38 13.78
Random 1.63 %103 19.08 x 103 13.98 227344 1092  140.65% 103 | 17.16  20.94 1.89 11.83
Margin 3.47 3.56 3.04 219 0 43.37 5.35 5.08 2.35 13.79
Exponential 3.48 3.56 1.99 229 0 43.38 1326  5.44 5.37 10.34
Gamma 3.47 3.56 2.05 224 0 43.38 13.06 538 5.35 11.84
BF-size 4.06 6.81 1.63 2481 0 48.19 1831  9.01 4.46 17.89
BF-time 542.31 6.01 % 103 6.10 89544 544 53.64 x 103 17.66  11.17 3.33 492.24

The higher number of scheduling agents of the Two-Level
resource manager achieves a slightly better behaviour than
that of the Monolithic schedulers for stressed scenarios.

In traditional data centres, whose resource utilisation is
inferior than that of hyper-scale data centres, this resource
manager could mitigate the negative effects of extreme work-
loads, especially when aggressive policies are applied. It also
reduces the negative effects of very extreme workloads under
conservative energy policies.

In hyper-scale data centres, the resource-offering and
pessimistic-blocking strategy of these resource managers
make these improvements minor, or even disadvantages when
aggressive policies are combined with very extreme work-
loads, as shown in Table 4.

These results show a clear trend: whilst Two-level resource
managers can improve the data-centre performance for
more extreme workload arrival patterns and utilisation
rates than Monolithic schedulers, Two-level resource man-
agers are unable to handle successfully very extreme sce-
narios: very extreme arrival patterns combined with high
resource-utilisation rates and aggressive energy-efficiency
policies.

C. SHARED-STATE RESOURCE MANAGER RESULTS

Finally, we analyse the behaviour of efficiently data centres
which equip a Shared-state resource manager, which tries to
commit the decisions made by parallel scheduling agents to
the central cluster without pessimistic blocking. If a conflict
is found, the transaction is retried. For comparison purposes,
the same configuration of 4 scheduling agents working in
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parallel to service Batch jobs, and 1 scheduling agent Service
jobs is applied.

The results in terms of performance and energy efficiency
are presented in Tables 5 and 6 for traditional and hyper-scale
data centres, respectively. The number of timed-out jobs is not
presented as it is 0.

In traditional data centres, the utilisation of a Shared-state
model improves the performance results, especially when
aggressive energy-efficiency policies are applied (see queue
time results for Ordinary workloads and the Aggressive
policy in Tables 1 and 5, ~34ms vs ~1.2s), while the
energy reduction rates are maintained. This improvement
becomes more acute when very extreme workloads are
under consideration (see queue time results for Very extreme
workloads and the Aggressive policy in Tables 1 and 5,
~543ms vs ~16s). Notwithstanding, even though the appli-
cation of a Shared-state resource manager reduces queue
times significantly, the makespan time results are not notably
reduced when compared to those achieved by Monolithic
schedulers for traditional data centres (see makespan time
results for Extreme workloads and the Exp policy in Tables 1
and 5, 40.40s vs 41.78s). The application of the Shared-state
model also leads to a higher number of shut-down operations,
which directly affect the kWh saved per shut-down operation.
Both are the consequences of the higher number of schedul-
ing decisions made and the related conflicts, which may stress
the hardware, especially when aggressive policies are applied
(see #shut-down operations results for Ordinary workloads
and the Aggressive policy in Tables 1 and 5, ~16k vs ~7k
shut-down operations, respectively).
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TABLE 5. Traditional data centres and shared-state resource manager: performance and energy-efficiency results of the batch workload.

Power-off q1 qn Jconf Tconf c Es SD Es,sd tmin,sd
policy (ms) (ms) 103 (s) (%) 103 (kWh) (s)
Ordinary workload
Keep on 0.51 0.96 375 10.18 40.14 | 0.00 0 0.00 0.00
Aggressive 34.11 317.55 1193 54.81 51.74 | 58.85 16.09 6.18 8.25
Random 24.6 219.64 967 42.24 49.87 | 5795 11.89 8.19 7.64
Margin 0.53 1.65 383 10.26 40.53 | 50.69 1.69 50.17 7.92
Exponential 1.11 4.7 397 11.00 40.61 | 54.38 1.88 48.33 7.92
Gamma 1.14 5.02 396 11.47 40.62 | 54.31 1.89 48.17 7.50
BF-size 7.83 66.91 544 20.51 4197 | 5593 449 20.90 91.92
BF-time 8.92 78.49 590 22.39 4227 | 5644  5.09 18.82 64.56
Extreme workload
Keep on 27.69 46.67 1128 36.37 40.40 | 0.00 0 0.00 0.00
Aggressive 111.33 811.1 2416 12342  50.26 | 58.77 2324 4.27 8.35
Random 85.63 549.02 2032 97.75 47.62 | 57.75 16.86 5.81 7.39
Margin 27.4 42.17 1121 36.37 41.52 | 50.74 1.70 50.03 8.35
Exponential 30.26 62.65 1175 39.61 41.78 | 54.27 2.35 38.92 8.35
Gamma 30.24 61.98 1176 40.15 41.77 | 5419 233 39.24 8.35
BF-size 42.7 174.64 1396 55.06 4339 | 5549 584 16.18 23.82
BF-time 45.05 206.09 1464 59.85 43.86 | 56.13 6.98 13.57 21.66
Very extreme workload

Keep on 275.11 445.73 2106 1151.43 4049 | 0.00 0 0.00 0.00
Aggressive 543.34  2740.41 4131 1151.34 5792 | 58.64 32.75 3.02 5.75
Random 451.62  1853.38 3513 115136 53.72 | 57.49 2325 4.14 6.76
Margin 272.17 364.23 2083 115143  42.64 | 50.78 1.94 43.99 7.54
Exponential | 299.15 549.54 2286 115141 43.63 | 5416  4.20 22.54 7.54
Gamma 293.14  505.92 2236 115142 4344 | 54.02 3.81 24.79 7.54
BF-size 318.75 730.73 2450 115143  45.00 | 53.87 7.38 12.39 33.07
BF-time 332.7 865.84 2599 115136  45.87 | 54.82  9.73 9.45 21.63

TABLE 6. Hyperscale data centres and shared-state resource manager: performance and energy-efficiency results of the batch workload.

Power-off q1 qn Jconf Tconf c Es SD Es,sd tmin,sd
policy (ms) (ms) 103 (s) (%) 103 (kWh) (s)
Ordinary workload
Keep on 0.39 0.85 381 10 40.09 0.00 0 0.00 0.00
Aggressive 13.69 % 10> 381.67 % 103 14385 150 498.95 | 25.59 4.61 12.12 6.33
Random 13.35% 103 374.08 % 103 13681 143 486.02 | 25.31 392 14.21 7.30
Margin 0.49 1.55 380 10 40.47 5.68 1.27 9.60 10.00
Exponential 0.50 1.61 383 10 40.48 13.88 1.54 19.35 10.00
Gamma 0.48 1.58 382 10 40.48 1391 1.54 19.40 10.00
BF-size 9.54 % 103 259.91 % 103 10088 101 352.35 | 2428 278 19.20 206.67
BF-time 9.31 % 103 250.92 % 103 10689 111 346.77 | 2447 321 16.72 243.32
Extreme workload
Keep on 28.67 47.99 1151 38 40.39 0.00 0 0.00 0.00
Aggressive 13.31% 103 354.90 % 103 15863 189 486.76 | 25.73 4.49 12.66 3.12
Random 11.69 % 103 314.88 % 103 14155 175 445.17 | 2540 3.70 15.46 4.26
Margin 28.43 41.59 1133 37 41.51 5.68 1.27 9.64 8.28
Exponential 28.43 41.74 1126 37 41.51 13.99 1.54 19.51 8.28
Gamma 28.48 41.63 1128 37 41.51 1398 1.54 19.52 8.28
BF-size 8.39 % 103 226.42 % 103 10696 137 330.71 | 2444  2.69 20.68 804.17
BF-time 9.70 % 103 259.77 % 103 12141 150 372.36 | 24.66 3.13 18.20 734.20
Very extreme workload

Keep on 284.63 465.29 2144 96 40.71 0.00 0 0.00 0.00
Aggressive 16.09 x 103> 388.01 % 103 16533 240 509.22 | 25.65 4.78 11.73 6.35
Random 15.25 % 103 362.23 % 103 15651 237 478.74 | 2540 4.02 13.79 5.98
Margin 275.94 348.31 2086 93 42.74 5.69 1.28 9.50 6.86
Exponential 276.05 349.06 2088 94 42.74 1435 157 19.56 6.86
Gamma 276.07 349.27 2081 94 42.74 14.09 1.56 19.36 6.86
BF-size 9.89 x 103 223.64 % 103 11489 203 311.62 | 24.18 3.14 17.13 629.92
BF-time 13.54 % 103 337.12 % 103 13501 217 434.87 | 24.63 3.73 14.50 41.35

It is also worth mentioning that the Shared-state not
only improves all key performance indicators, but also is
the only model that provides a predictable behaviour even
for hyper-scale data centres, as reflected in the number of
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timed out jobs (see the Aggressive policy in Tables 6 and 4:
1900 vs 0, respectively). When aggressive policies are applied
to these data centres, Shared-state resource managers reduce
by ~1/3 the makespan (see makespan results for Very
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TABLE 7. Environmental results of the application of the proposed
energy-efficiency policies per year in the United States. For this table,

the following parameters have been employed: a) 700 grams of CO, are
emitted per kWh; b) the price kWh taken is 0.12$; and c) an average car is
considered to emit 2.4 tons of CO, per year.

Data-Centre Type Hyper-scale  Traditional | Total
Current Total Energy

Consumption (B kWh) 18 32 70
PUE 1.1 2.0 1.77
IT Equipment Energy

Consumption (B kWh) 16.36 26.00 4236
Infrastructure Energy

Consumption (B kWh) 1.64 26.00 27.64
Green Data centres Energy

Consumption (B kWh) 1572 37.84 53.57
IT Equipment Energy

Saved (B kWh) 2.28 14.16 16.43
CO2 Saved

(M Tons) 1.59 9.91 11.50
Costs Saved

B$) 0.27 1.70 1.97
M Cars Removed 0.66 4.1 4.79

extreme workloads and the BF-size policy in Tables 2 and 6,
~2001s vs ~311s, respectively), and by approximately 1 and
2 orders of magnitude the queue times when compared to the
Monolithic and Two-level approaches, respectively.
However, it must be highlighted that the application of
aggressive energy- efficiency policies in hyper-scale data
centres may skyrocket queue times even for Shared-state
resource managers (see makespan results in Table 6 for Mar-
gin and Aggressive policies: ~43s vs ~509s, respectively).
The very same negative impact is applied when the forecast
is not accurate enough (see makespan results in Table 6 for the
BF-time and Gamma policies: ~435s vs ~43s, respectively).

D. ENVIRONMENTAL RESULTS FOR USA DATA CENTRES
In order to illustrate the magnitude of the savings that could
be achieved by applying switch-off energy policies such as
the ones presented for hyper-scale and traditional data cen-
tres, we present a simple extrapolation of these results to USA
data centres, based on the data presented by [3].

To compute energy savings, we only consider the energy
savings of IT Equipment (infrastructure energy consumption
such as cooling could also be saved, but not included in these
calculations). Current consumption of IT Equipment of data
centres is computed from current consumption and the Power
Usage Effectiveness (PUE).

According to results presented in previous sections, we can
conclude that ordinary data centres could save ~55% and
hyper-scale data centres could save ~14% of energy con-
sumed by IT equipment. Therefore, we computed these
energy savings, and consequently the consumption of data
centres applying these policies.

To this end, we have considered that 700 grams of CO, are
emitted per kWh generated considering all generation sources
(including greener generation and others as coal-based gen-
eration), a cost of 0.12 USD per kWh consumed, and the CO,
emissions of an average car. An average car is considered to
emit 0.124 grams of CO; and to travel 20,000 kms per year.
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So, taking into account that current energy consump-
tion of USA data centres sums up to 70 billion of kWh
(70 % 10°) [3], if energy policies were applied, energy con-
sumption should reduce to 53.57 x 10° kWh, which would
mean that 11.5 million of tons of CO, would not be emitted
to the atmosphere, or an equivalent of removing 4.79 million
of cars, and saving 1.97 billion of USD only in energy bills.

It is important to notice, that power consumption changes
proposed by applying these policies could provoke changes
over power grid, so power suppliers should be aware of
the possibility of sudden consumption changes. However
the most aggressive changes that these policies could pro-
voke over the whole USA power Grid would stand around
1.2 MWh. According to the U. S. Energy Information Admin-
istration [51], these changes could be easily absorbed by the
power grid, as 1.2MWh would be around 0.0003% of the
minimum US power grid generation.

VI. CONCLUSION

Various methodologies for tackling energy saving for data
centres in hyper-scale or ordinary environments have been
presented.

This way, authors have empirically proven that the applica-
tion of such energy-policies at a software level could reduce
a very important amount of the energy consumed by these
greedy infrastructures, and consequently reduce the CO»
produced and emitted to the atmosphere. Depending on the
scenario, energy savings can vary from ~15% to as much
as ~60%.

Moreover, we have shown that all scenarios are suitable
of saving energy by applying energy policies, but certain
combinations of the data-centre resource manager plus the
energy policy are better for scenarios where the data-centre
load follows one pattern or another, and depending on the data
centre scale as well. On the one hand, for hyper-scale data
centres that deal with extreme loads, shared-state resource
managers combined with energy saving policies could keep a
high performance while saving energy. On the other hand, if a
traditional data centre deals with an extreme load, two-level
resource managers could also be a good approach, keeping
good performance and saving important amounts of energy.

Finally, it is important to notice that for very extreme
scenarios, performance could be deteriorated if some energy
policies are selected, so data-centres’ managers should make
decisions based on previous simulations. This is especially
noticeable for the bigger and the more extreme workloads.
In such cases, the negative impact over the performance is
only avoidable if energy policies are very fine-tuned and
predictions are designed for specific load patterns.

However, it must be taken into account that large Inter-
net companies depend on the extreme performance of their
data centres. Therefore, even a minimum performance impact
could impose a cost opportunity that could be used by com-
petitors to gain market share. Thus, the energy-efficiency
policy to be used, if used at all, depends on the requirements
of the data-centre operator, needing to balance the trade-off
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between the economic and environmental benefits related to
reducing energy consumption and the market opportunity.
As future work, we are working on the development of
smarter energy-efficiency models that would decrease signif-
icantly this performance impact, and to include the impact of
the renewable energy-production models to the data-centre
environment.
As a summary, the novelties presented in this paper are:

« the analysis of the application of several energy policies,
from simple to fine-tuned and adaptive, to various data
centres, from ordinary to hyper-scale, and switching
from ordinary to extreme and very extreme workloads
and top three resource managers, and

« the computation of the energy savings that these policies
could imply if applied to USA data centres, and conse-
quently the positive impact on the environment.
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