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Abstract.

In recent years, incremental sampling-based motion planning algorithms have been widely used to solve robot motion planning problems
in high-dimensional configuration spaces. In particular, the Rapidly-exploring Random Tree (RRT) algorithm and its asymptotically-optimal
counterpart called RRT* are popular algorithms used in real-life applications due to its desirable properties. Such algorithms are inherently
iterative, but certain modules such as the collision-checking procedure can be parallelized providing significant speedup with respect to sequential
implementations. In this paper, the RRT and RRT* algorithms have been adapted to a bioinspired computational framework called Membrane
Computing whose models of computation, a.k.a. P systems, run in a non-deterministic and massively parallel way. A large number of robotic
applications are currently using a variant of P systems called Enzymatic Numerical P systems (ENPS) for reactive controlling, but there is a lack
of solutions for motion planning in the framework. The novel models in this work have been designed using the ENPS framework. In order to test
and validate the ENPS models for RRT and RRT*, we present two ad-hoc implementations able to emulate the computation of the models using
OpenMP and CUDA. Finally, we show the speedup of our solutions with respect to sequential baseline implementations. The results show a
speedup up to 6x using OpenMP with 8 cores against the sequential implementation and up to 24x using CUDA against the best multi-threading
configuration.
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1. Introduction that is motion tracking, is fundamental for the correct

functioning of a robot, [8,76].

The development of modern autonomous robots poses
difficult tasks associated with the interaction between
the robot and the external world, see [25,64]. For ex-
ample, a shape reconstruction system of 3D objects is
proposed in [68] and a vision based navigation sys-
tem for drones is proposed in [5]. Several studies on
the modelling of the artificial visual system have been
performed, e.g. a neural model [40] and methods on
the functioning of artificial compound eye in [74,73].
The task of detecting and interpreting a moving object,
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This article studies a crucially important problem
related to motion tracking, i.e. motion planning. The
motion planning problem consists of finding a trajec-
tory to move an agent trough a complex environment
from a starting point to a desired area avoiding any
obstacle while considering constraints related to the
agent such as shape, kinematics and others. This prob-
lem is critical in almost all robot applications since,
by definition, a robot is a machine developing tasks
in the real world. Furthermore, this problem is also
relevant in many other research areas such as verifi-
cation, computational biology, and computer anima-
tion [34]. The first computational complexity results



for robot motion planning were due to J. Reif [63].
Specifically, he established that the cited problem is
PSPACE-hard when the final positions of the obsta-
cles are specified. Moreover, this problem belongs to
the class PSPACE when it is expressed using polyno-
mials with rational coefficient [12], that is, this vari-
ant is a PSPACE-complete problem. Nevertheless, the
robot motion planning problem where the final posi-
tions of the obstacles are unspecified, is shown to be
NP-hard [22].

Several approximated solutions have been pro-
posed to the motion planning problem. For example,
an incremental search algorithm called D* [70] has
been used for path planning in real-time environments.
In [15], an extension of the classical A* algorithm
is given for grids with blocked and unblocked cells.
In [48], the authors studies the motion planning prob-
lem in the challenging context of navigation through
real-weld, where traditional on-site sign posts could be
limited or not available.

An special mention should be given to a category
of algorithms to build Rapidly-exploring Random
Trees (RRTs) [35]. They are based on the randomized
exploration of the configuration space by building a
tree where nodes represent reachable states and edges
represent transitions. In particular, the RRT* algo-
rithm [29] is able to build an RRT whose paths asymp-
totically converge in time of computation to optimal
motion planning solutions considering a cost function.
Several variants of the RRT and RRT* algorithms have
been designed. For example, RRT*-Smart [44] is a
method for accelerating the convergence rate of RRT*.
A*-RRT and A*-RRT* [10] are two-phase motion
planning methods that use a graph search algorithm
to search an initial feasible path in a low-dimensional
space in a first phase and then focus the RRT* in the
second phase. RRT*-FN [4] is a RRT* with a fixed
number of nodes, which randomly removes a leaf node
in every iteration. Informed RRT* [21] improves the
convergence speed of RRT* by introducing a heuristic.
While the base RRT algorithms are inherently sequen-
tial, there are modules that can be parallelized such as
the obstacle collision detection [9,20]. An experimen-
tal comparison is proposed in [46]

Membrane Computing [58,24,61,62] is a com-
puting paradigm inspired from the living cells and it
provides distributed, massively parallel devices, see

[1,66,67]. Models in Membrane Computing are gener-
ically called P systems and they have been used in dif-
ferent contexts. Among others, we stress the follow-
ing: (a) showing the ability of some models to give
polynomial time solutions to computationally hard
problems, by trading space for time; (b) providing a
new methodology to tackle the P versus NP prob-
lem [57,50,37,69]; (c) being a framework for mod-
elling biomolecular processes as well as real ecosys-
tems [60,23,7,14]; (d) incorporating fuzzy reasoning
in models that mimic the way that neurons communi-
cate with each other by means of short electrical im-
pulses, and applying them to many different industrial
applications related to fault diagnosis [72].

In this paper, Membrane Computing is used to
design bio-inspired parallel RRT models that can be
efficiently simulated by means of parallel software/
hardware architectures such as OpenMP [49] and
CUDA [47]. A variant of P systems called Enzimatic
Numerical P systems (ENPS, for short) has been used
to model and simulate robot controllers [54,55,77,19].
An extension of ENPS, called RENPSM, was used for
the first time in [56] to simulate basic RRT algorithms.

The main contribution of this work is to use the
framework of ENPS for modelling the RRT and the
RRT* algorithms. It is worth pointing out that the ma-
jor advantage of using P systems is the inherent par-
allelism associated with the theoretical computing de-
vices that they provide. Moreover, no additional in-
gredients to the ENPS framework has been included,
as in [56], where features such as proteins and shared
memory were used. In consequence, the presented
models are compatible with existing ENPS robot con-
trollers given that they belong exactly to the same
framework. In order to validate and test these mod-
els, two ad-hoc simulators have been implemented in
OpenMP and CUDA, showing experimental results in
four scenarios. Henceforth, the parallel implementa-
tions show that the introduced ENPS-based models
can be easily parallelized for multicores and many-
cores at high-end servers as well as on-board plat-
forms.

The rest of this paper is structured as follows.
Next section summarizes some preliminary concepts.
Section 3 is devoted to present two specific ENPS
models for RRT and RRT*. The simulators imple-
mented in OpenMP and CUDA are described in Sec-



tion 4. The experimental results for validation and test-
ing are presented in Section 5. The paper ends with the
main conclusions of the work.

2. Preliminaries

This Section provides the reader with the basic con-
cepts and notation used throughout this paper.

2.1. Motion planning

In general terms, the problem of motion planning can
be defined in the configuration space of a mobile agent
as follows. Given:

- An initial configuration state.

- A set of valid final configuration states.
- A map of obstacles in the environment.
- A description of the agent shape.

- A description of the agent kinematics.

Find a sequence of configuration states through
the configuration space, a.k.a. trajectory or plan, from
the initial state to one of the final states, which does
not touch any obstacle in the environment considering
the agent shape and kinematics.

There are two variants of the problem:

- The feasibility problem is to find a feasible
trajectory, if one exists, and report failure oth-
erwise.

- The optimality problem is to find a feasible
trajectory with minimal cost where the cost of
a trajectory is given by a computable function.

In a robot navigation software architecture, the
module in charge of solving the motion planning prob-
lem is called Global Planner. It computes trajectories
by means of an anytime algorithm, i.e, an algorithm
that can return a valid solution to the problem even if it
is interrupted before it ends. After that, the Local Plan-
ner module generates motion commands to follow the
trajectory in a safe manner considering the informa-
tion given by the sensors in real-time. Finally, the Con-
troller module manages the power of the actuators to
fit each motion command and maintain a constant ve-
locity until the next command, see [11].

2.2. Rapidly-exploring random trees

An RRT [35] is a randomized tree structure for rapidly
exploring the obstacle-free configuration space. It has
successfully been used to solve nonholonomic and
kinodynamic motion planning problems [36]. Nodes
in an RRT represent possible reachable states, edges
represent transitions between states. The root of an
RRT is the initial state. Each state in an RRT can be
reached by following the trajectory from the root to the
corresponding node, as can be seen in Figure 1. Algo-
rithms used in robotics to generate RRTs are known to
be anytime and any-angle, i.e, the produced trajecto-
ries could contain turns in any valid angle considering
the robot constraints and kinodynamics.

Figure 1. A trajectory conducted by an RRT

2.2.1. The RRT algorithm

The first algorithm to generate RRTs, called the RRT
algorithm [35], was able to solve the feasibility prob-
lem for motion planning in robotics.

2.2.2. The RRT* algorithm

The RRT* algorithm [29] is a variant of the previ-
ous algorithm which is able to build an RRT whose
branches asymptotically converge in time of computa-
tion to optimal motion planning solutions with respect
to a cost function, i.e, it is able to solve the optimality
problem using an infinite time of computation. Nev-
ertheless, the algorithm solves the feasibility problem
and provides good solutions with respect to the cost
function in an anytime and any-angle fashion [29].



2.3. Membrane Computing

P systems are theoretical computing devices biologi-
cally inspired from the structure and processes taking
place in living cells [58]. As mentioned above, Mem-
brane Computing is the field that studies these de-
vices. The syntactic ingredients of P systems are an ab-
straction of chemical components and compartments
of cells: a set of membranes delimiting regions where
multisets of objects reside and evolve according to a
set of rewriting rules. The type of membrane struc-
ture and rules depends on the class of P system, which
can be cell (rooted tree), tissue (undirected graph) or
neural-like (directed graph). So far, a wide variety of
variants have been define within each class that an-
swers to different semantics. In general, a computa-
tion of a P system is a sequence of configurations pro-
vided by transitions steps where the rules are executed
and modify the state of the system. P systems are in-
herently non-deterministic and massively parallel de-
vices, given that different sets of rules might be appli-
cable at the same time, and each of such sets includes
a high amount of rules that are executed in parallel. A
global clock takes the control of each transition step.

Rules can modify only the objects in the region
where they are defined, or exchange objects with a
neighbor region, or modify the membrane structure by
dividing or dissolving compartments, etc. Membranes
can also be enriched by associating electrical charges
to them. The objects that can appear in the membranes
are defined in an alphabet. Several different semantics
have been defined for P systems. Usually, the rules of
a P system are executed in a maximally parallel way;
that is, any rule that can be executed in a transition step
must be executed and cannot remain unselected. On
the other hand, it is possible to use a minimal paral-
lel policy of execution; that is, at least one rule within
each region must be executed. Some types of rules
might be incompatible with the execution of other (e.g.
division and send-out rules in active membranes), and
this is given by a derivation mode.

Main research concerning P systems focuses on
their computational power and efficiency, see [27,6,
39]. In this sense, they have been used as a tool to
attack the P vs NP problem by sharpening the fron-
tiers [57,50,37]. However, their flexibility and mas-
sively parallelism has been employed to define mod-

elling frameworks for real-life phenomena, such as bi-
ological systems at both micro (e.g. signally pathways,
bacteria colony) [60,23] and macro (e.g. ecosystems,
population dynamics) levels [7,14], physical systems,
image processing, robot control, economic systems,
etc. In general, solutions based on P systems must im-
plement parallelism, given that this component is natu-
ral and inherent. These applications have been accom-
panied normally with software simulators in order to
ease validation and virtual experimentation processes
[16,71]. A recent trend is to accelerate these simula-
tions by using parallel devices like GPUs [41,42,13].

2.4. Numerical P systems

Numerical P systems (NPS) are P systems, see [52,
75], introduced in [59] to model economical and busi-
ness processes. In NPS, the concept of multisets of
objects is replaced by numerical variables that evolve
from initial values by means of production functions
and repartition protocols. A numerical P system is for-
mally expressed by:

= (m,H,u,(Vary,Pry,Var(0)),
...,(Varmaprmvvarm(o)))

where

- m is the number of membranes; m > 1;

- H is an alphabet of labels, containing m sym-
bols;

- M is the membrane structure;

- Var; is a set of variables for compartment i, be-
ing Var;(0) their initial values;

- Pr; is a set of programs for compartment i. A
program has the following syntax:

F(xi,...,x) = ci|vi+...4+cnlvn

where

* The left-hand-side of the program is called
production function and the right-hand-side
is called repartition protocol.

% F(x1,...,x;) is a function R* — R using
variables xp,...,x.



* Vq,...,v, are output variables. The output
value of F will be distributed among the
output variables according to the repartition
protocol given by cy,...,cp.

* c1,...,cp are numeric values representing
the portion of the output which is going to be
assigned to the corresponding variable.

For the sake of simplicity, in the rest of this pa-
per, we will use the next syntax:

F(x1,...,x) =V

when there is one and only one output variable
in the repartition protocol.

2.5. Enzymatic numerical P systems

Enzimatic numerical P systems (ENPS) are an exten-
sion of NPS introduced in [54] for modeling and sim-
ulation of membrane controllers for autonomous mo-
bile robots. The main difference of ENPS with respect
to NPS is the concept of enzyme which is used to write
conditions related to programs. The formal definition
of the ENPS is the following:

= (m,H,u,(Var,E,Pr,Var(0)),
«ooy(Vary, Ep, Pry,Vary(0)))

where

- m, H, U, Var; and Var;(0) have the same mean-
ing than explained in Subsection 2.4.

- E; is a set of variables E; C Var; called en-
Zymes.

- Pr;is a set of programs for compartment i. The
syntax of a program is the following:

F(x1,- %) condey...ey) = C1IVI+ .+ cnlvn

where

- F(xi1,...,x) and ¢1|vi + ...+ cy|v, have the
same meaning than explained in Subsec-
tion 2.4.

fibonacci

sthis box defines a membrane with label fibonacci

snext lines define variables with initial values for this com-
partment

x1[1],22[1]
%[0]:3 <i< 100
index|3]

;next lines define programs for this compartment

Xlindex—1] +x[index72] ‘halt:O — Xindex]
index+ 1|pq1—0 — index

halting
sthis box defines an inner membrane

halt[0]

Uindex=100 — halt

Figure 2. ENPS generating the Fibonacci sequence

- Cond(ey,...,e,)is acondition function R" —
{true, false} using enzymes ej,...,e,. The
program is disabled when the output of such
a function is false.

For the sake of simplicity, it is not necessary
to write the condition function when it is the
constant function Cond() = true.

Figure 2 shows an ENPS model to generate the
100 first terms of the fibonacci succession as a toy ex-
ample to illustrate how ENPS models are going to be
written in this paper.

The membrane structure is designed to organize
programs and variables in modules. All the variables
are considered global, i.e, any program can read or
write a variable regardless of the compartment where
the variable is defined. The definition of variables as
well as their initial values is given by the syntax x[v]
where x is a variable and v is a numeric value. The re-
served word input can be written instead of a numeric
value for v when the initial value should be read from
external inputs, e.g, robot sensors. In this paper, we
will use the syntax ap) in order to refer to variable g;
where i is the value stored in variable b.



2.6. Parallel Computing: OpenMP and CUDA

Since the advent of the transistor, computer processors
have been increasing the amount of resources in order
to achieve higher efficiency, and so, power [2,65,32].
Recent trend is to incorporate more computing cores
within the same chip, so today we can easily find mul-
ticore (up to dozens of cores) and manycore (up to
thousands of cores) processors in the market [3,53].
The former concerns current CPUs, and the latter in-
volves mainly GPUs. The main standard to harness the
parallelism in multicore processors is OpenMP [49],
which is managed by the OpenMP ARB consortium.
First introduced in the late 90’s, it provides an API for
common languages such as Fortran, C and C++, and
that is supported in the majority of systems. The main
advantage of OpenMP is its ease of use, given that the
programming is made through directives on top of the
code. The execution model is fork-join, where a mas-
ter takes control of the children and synchronizes the
threads created. This model is also based on shared
memory (all threads have access to the same mem-
ory system), although there are variants for distributed
memory as well. OpenMP has worked also effectively
with other standards for distributed computing such as
MPI [28], and in fact, this combination is widely used
in today clusters and supercomputers [30].
Nowadays, GPUs can be used as manycore pro-
cessors to accelerate scientific computation [31,18].
CUDA [47] is the most widely used programming
model, given that it was first introduced in 2007 by
NVIDIA, and it has been strongly supported by this
company. Although OpenCL is the standard intro-
duced by Kronos for GPU computing, CUDA is still
better supported by NVIDIA GPUs. In any case, sim-
ilar concepts can be found in OpenCL and in CUDA.
It is a heterogeneous programming model where CPU
(host) and GPU (device) are separated, and so, has dif-
ferent memory spaces. GPUs contain several multi-
processors including computing units and fast shared
memory system, and all multiprocessors are intercon-
nected with a global memory that can be also ac-
cessed by the CPU, specially to copy and retrieve
data. CUDA provides an abstraction of the GPU in
form of threads that execute the same code which is
a function called kernel [45]. Threads are grouped
in blocks, so each block is assigned to a multipro-

cessor, being able to efficiently cooperate locally in-
side the blocks. CUDA programmers have to manage
these aspects manually: thread grid and memory lay-
out. Moreover, threads are executed completely in par-
allel when they are fully synchronized in the code;
that is, they follow a SIMD fashion (single instruc-
tion multiple data). Moreover, accesses to memory get
optimized when threads query contiguous positions of
data [45,51]. Therefore, parallel algorithms have to be
carefully adapted to this model bearing in mind sev-
eral efficiency aspects. Some algorithms fit very well
to the GPU architecture and so they are employed as
primitives and building blocks, such as map (applica-
tion of a function to all elements of a vector), reduc-
tion [33] (calculation of a function over all elements of
a vector), scan (accumulative application of a function
to elements of a vector), etc. [31,51].

3. ENPS models for RRT algorithms

In this section, four ENPS models are presented in or-
der to simulate the behavior of the RRT and RRT* al-
gorithms taking advantage of the inherent parallelism
level existing in the membrane computing framework.
We have divided the whole problem in the next sub-
problems:

e Find the nearest point to a given point accord-
ing to the Euclidean distance.

e Determine if a given trajectory is obstacle free.

e Simulate the RRT algorithm.

e Simulate the RRT* algorithm.

The main ideas of the P system design are the fol-
lowing:

e To use enzymes in order to synchronize the
processes.

e To compute Euclidean distances in parallel.

e To use a parallel reduction process in order to
compute minimum distances.

e To add a node to the RRT in each iteration.

3.1. Finding the nearest point
Given a set of points X = {(x;,y;)} : 1 <i<2"and a

target point (x;,y, ), find the nearest point (x,y) in X to
the target point according to the Euclidean distance.



3.1.1. Solution for n=3

The solution of the nearest point for n = 2 is shown in
Figure 3 Where

b
min(a,b) = @ as
b a>b
d
min*(a,b,c,d) = @ o<
b c>d
Nearest(3)

xilinput], yi[input],d;[0],x;[0],¥/[0] : 1 <i<8

X¢ [input],y; [input], Xpearest [0], Ynearest [0], &[1], halt[0]
(i —x)* + (i =) lamt = di: 1 <i<8
Xila=1 = x}:1<i<8

Vila=1 =y 1<i<8

min(d,-,di+4)\a:2 —di:1<i<4

min* (x, X} 4, diy diga)|a=2 = x;: 1< i< 4
min* (Y}, Yi 4> dirdiya)|a=a = y;: 1 < i< 4
min(d;,diso)|a=3 = di:1<i<2

min® (%, i o, diy diga)|a=3 — %7 : 1 < i <2
min®* (v, ¥iy 0, diydia)|a=3 — y; 1 1 <i <2
min(dy,ds)|q=4 — di

min* (%}, x5,d1,d2)| a=a — Xnearest

min* (¥}, ¥5,d1,d2)|a=4 — Ynearest

&+ patr=0 — @

1 g=4 — halt

Figure 3. Nearest(3) procedure

The P system computes in one step of computa-
tion the squared Euclidean distance for all the points
in X to the target point. After that, a reduction opera-
tion is conducted in 3 steps to compute the minimum
distance as well as the nearest point in X. The compu-
tation stops after 4 steps, then halt is set to 1 and the
nearest point is stored in (Xeqrest s Vnearest)- Variable o
is used as an step counter.

3.1.2. General solution

The general solution, for n points is given in Figure 4
After n+ 1 steps, the nearest point is stored in

(xnearest s Ynearest ) .

Nearest(n)

xilinput), yilinput],d;[0],x;[0],;[0] : 1 <i<2"

X¢ [input],y; [input], Xnearest [0], Ynearest [0], @[1], halt[0]
(i = %)%+ (i —ye)la=1 = di: 1 <P <20
Xila=1 %X: 1<i<2t
Vila=1 = y;:1<i<2"
min(di,d; o j)|a=js1 > di: 1 <i<2"I 1< j<n
min® (x}, %, j,di, dyn-)a—jr1 —xj 11 <i <27, 1<
j<n
'.ni”*(y,'-len—/vdivdznf/)\a=j+1 —yi1<i<2"1<
J<n
min® (x}, x5, d1,d2)|a=n+1 = Xnearest
min* (y/l 7y/27d1 7d2)‘a:n+l — Ynearest
o+ pat=o — @
1|g=n+1 — halt

Figure 4. General Nearest(n) procedure

ObstacleFree(m,&)
ai[input],bilinput],d;[0] : 1 <i< 2™
xolinput], yo[input],xi [input], y1 [input]
collision|0], o[1], halt[0)
pDist (@i, bi,X0,50,%1, 1) la=1 — dj : 1 <i < 2"
min(d},d} )a=jr1 = dj:1<i<2" 1< j<m
min(& —dj, & — d})|g=m+1 — collision
&+ 1pair=0 — @
l‘a:erl — halt

Figure 5. Procedure for the detection of an obstacle free trajectory
3.2. Obstacle free trajectories

Given a set of obstacle points O = {(a;,b;)} : 1 <
i < 2™, a starting point (xo,yo) and an ending point
(x1,y1), determine if the trajectory following a straight
line from (xg,yo) to (x1,y;) is obstacle free. A trajec-
tory is obstacle free if the distance from the nearest ob-
stacle to the trajectory is greater or equal than a given
parameter &, see Figure 5.
With reference to Figure 5:



- pDist(cy,cy,ax,ay,by,by) returns the squared
Euclidean distance from the point (cy, c,) to the
segment [(ay,ay), (by,by)].

- After m+ 1 steps, the variable collision con-
tains a value equal or less than zero if the tra-
jectory is obstacle free.

Algorithm 1 shows the pseudocode of the pDist
function.

Algorithm 1 pDist(cy, ¢y, ay,ay,by,by)
U (cx—ay)- (by—ax)+ (cy—ay) - (by —ay);

u—u/[(by —ay)® + (by — ay)z];
if u < 0 then

return (a, —c;)? + (ay —¢y)?
end if
if u > 1 then

return (by —c;)? + (by —¢y)?
end if

Pxax+tu- (bx_ax);
py < aytu-(by—ay);
return (p, — Cx)2 +(py— cy)2

The P system computes in one step of computa-
tion the squared Euclidean distance for all the obsta-
cles to the segment given by [(xo,Y0), (x1,y1)]. After
that, a reduction operation is conducted in m steps of
computation, obtaining the minimum distance. In the
last step, variables collision and halt are set.

3.3. The RRT algorithm

For the following set of parameters

- An initial robot position (x,y;).

- A set of obstacle points {(a;,b;)} : 1 <i<2™.

- The size (p,q) of the scenario.

- Parameter n, where the number of points in the
RRT will be 2".

- Parameter & as explained in subsection 3.2.

- Parameter O giving the length of the edges in
the RRT.

the RRT algorithm is illustrated in Figure 6.
The inner modules are defined as shown in Fig-
ures 7, 8, and 9 where

- random() returns a random number indepen-
dent identically distributed (i.i.d.) in [0, 1]NR

RRT(namypy(LSsé )

x1[input], y1 [input]

a;linput), bilinput] : 1 <i<2™
xi[3-plyil3-q):2<i<2"

pxif0], pyil0] : 2 <i<2"

Xrand[0]; Yrana [0], Xnew [0], Ynew[0],

Xnearest|0], Ynearest [0], collision[0], a[1], index|2], halt[0]
0|g=1 — collision

p-random()|q=1 = Xrand

q- random() |06:1 — Yrand

(Xrand =% st)
Xnearest I 8 o S22 \/%mrev ‘a:n+3 — Xnew

Ynearest + g % ‘lx:n+3 — Ynew
rm(a1 m+n+ 6) +1 ‘callisionSO —
]‘colli,\'ion>0 —

index + 1| g—min+6 — index

Uindex=2ny1 — halt

Nearestggr(n)

ObstacleFreeggr (m,&)

Extendggr (n,m)

Figure 6. Rapidly-exploring Random Tree

- rm(x,y) returns the remainder of the integer di-
vision between x and y.

- The coordinates of the RRT nodes will be
{(ri,yi)} 1 1<i<2"

- The coordinates of the RRT parent nodes will
be {(pxi,pyi)}:2<i<2"

- The RRT is completely generated and the com-
putation stops when halt = 1.

The P system generates the point (Xyund,Yrand)
in one step of computation, after that, the module
Nearestgrr (n) computes the point (Xeqarest s Vnearest) i
n+ 1 steps of computation as explained in subsec-
tion 3.1. Then, the (Xpew, Ynew) point is computed ac-



Nearestggr (n)

di[0],x;[0], yi[0] : 1 < i < 2"

(i — Xrana)* + (i — Yrand)*la=z = di : 1 < i< 2"
Xila= = X1 <i<2"

Vila= = yi:1<i<2"

min(d,-,denfj)\a:jJrz —di:1<i<2"/1<j<n
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Figure 7. Nearestggr Procedure
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Figure 9. Extendgrr Procedure

cording to the § parameter. The next module to be
executed is the ObstacleFreeggr(n,&) module, see
subsection 3.2, computing the squared Euclidean dis-
tance of the nearest obstacle point to the segment
[(Xnearests Ynearest ) s (Xnew, Ynew )], if this value is less than
& parameter, then the variable collision will contain

RRT*(nme”qsa’g)

xi [input],y1 [input],c1 [0]
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Nearestggr(n)

ObstacleFreeggr (m,&)

Extendggr+(n,m,p,q,€)

Figure 10. Asymptotically optimal Rapidly-exploring Random
Tree (RRT*)

a value greater than 0 after m + 1 steps of computa-
tion. Finally, if the segment is obstacle free, the mod-
ule Extend(n,m) updates the RRT. In this way, each
node is added to the RRT in m + n 4+ 6 computation
steps if the corresponding edge is obstacle free.

3.4. The RRT* algorithm

The asymptotically-optimal version of the RRT algo-
rithm, i.e. the RRT* algorithm is outlined in Figure 10.

The first m+n+ 5 steps of computation for the
ENPS RRT* algorithm are the same to those given in
the ENPS RRT algorithm, see subsection 3.3. In the



m+n+ 6 step, the module Extendggr.(n,m,p,q,&)
generates in one step of computation the squared Eu-
clidean distances from all the obstacles to all the pos-
sible segments [(x,¥;), (Xnew,Ynew)] being (x;,y;) all
the nodes in the RRT, i.e, parent candidates for the
new edge. After that, a reduction process computes
the minimum distance for each parent candidate in m
steps of computation. Then, the costs for all the possi-
ble trajectories to (Xyey, Vnew) are computed where tra-
jectories passing through obstacles will have a larger
cost value than obstacle-free trajectories. After that,
the minimum cost as well as the best parent candidate
are computed in n steps of computation by applying a
reduction process. The RRT will be updated with the
new node as well as a new edge from the best parent
candidate to the new node. The cost of the new node
will be also stored. Finally, each node (x;,y;) in the
RRT computes in one step of computation an alterna-
tive cost considering (Xpew, Ynew) as its parent node. If
the alternative cost is less than the current cost and the
segment [(X;, V), (Xuew, Ynew)] i obstacle-free, then the
parent of (x;,y;) is updated to (Xpeyw, Ynew)- In this way,
each node is added to the RRT in 2-m+2-n+ 10 steps
of computation if the corresponding edge is obstacle
free. The Extendggr. is shown ins Figure 11.

where

- max(a,b) = a a>b

b a<b

- ¢ is the cost associated to node (x;,y;).

4. Developed software

We have implemented two specific (ad-hoc) simu-
lators using OpenMP and CUDA, each one is able
to simulate the ENPS-RRT and ENPS-RRT* models
described in 3. Let us recall that a specific simula-
tor aims at simulating a certain P system model (as
in this case), instead of simulating a whole P sys-
tem variant (i.e. a generic simulator) [42]. In a spe-
cific simulator, the developer encode the P system
directly in the source code, and can implement as-
sumptions for simplicity and efficiency. In any case,
the simulator must simulate the model; that is, there
should be a way to know the state of the P sys-
tem at any time. The software can be downloaded at

Extendggr+ (n,m,p,q,é)
di;l0]:1<i<2m 1< j<2"
x/[0],y]0],ci[0] : 1 <i<2n
xi‘a:m+n+6 - )C;' i<y
yi‘a:7n+n+6 *)yﬁ/ (1<i< 2"

pDiSt(aiabivxjsyjsxnewaynew)‘Ot:nH»rH»ﬁ — dl/,/J 1<i<

2mM1<j<2"

min(d;,,jad,{:rzm—k~j)‘a:k+m+rl+6 - dl{,,_/ sl <i <
k1< j<2"1<k<m

max(ovmin(‘: - d{/,_jvé - déi_/))|a:2~ttz+n+6 - d;l‘j <

j<2
ci + (xnew - Xi)z + (yn(»w = yl_)Z +9. di’l . ([12 +
Pla—2minsr — cj: 1 <i <2

N /. g =
min(ci, ¢ onja=j+2miny7 = ¢; 1 1 <i<2"701 <
j<n

.k v " / J /N 7
min (xi 7x2n—j7Ci762n—j)‘0¢=j+2‘m+n+7 — X 1 <i<
2"/ 1<j<n

w (M g "o, g
min’* (y; VyznfjVLi7C2n—j)‘a:j+2-m+n+7 =y 1 <i<

27 1< j<n

Xnew ‘ a=2-m+2:n+8 ~ X[index]|

)’new‘a:2-m+2-n+8 = Ylindex)

x,ll‘a:2-m+24n+8 = PX[index]

W la=2mi2n+8 = PYjindey]

C/l |a:2«m+2»n+8 — c[index]

Ci = Clindex] — (xnew 7xi)2 - (ynew 7yi)2‘l1:2‘m+2-n+9 -
c:2<i<2”

Xnew| (@=2-m+2:n+10)and(c] >0)and(d}l =0) = PXi 32 <P <
on

Ynew| (@=2.m+2n+10)and(¢j>O)and(d!l =0) = PYi + 2 < i <
2’1

Figure 11. Extendggr+ procedure

https://github.com/Ignacio-Perez/enps_rrt,
where the master is the OpenMP simulator and the
CUDA branch is the GPU version.

The conventional RRT and RRT* algorithms have
also been implemented as baseline software for testing
and validation using C++ and OpenMP. It is available

athttps://github.com/Ignacio-Perez/openmprrt.

4.1. An OpenMP simulator

The OpenMP simulator is able to manage image files
in PGM format defining the obstacle maps, four pre-



defined scenarios have been included with the soft-
ware as it will be explained in Section 5. For each
one, a PGM file is included along with a fixed initial
position for the robot. The resolution for all maps is
Scm? / pixel, which is the resolution of the LIDAR sen-
sor used to generate the mapl and ccia_h maps.

The software provides a command-line interface
in order to specify the scenario to be used, as well
as the model (ENPS-RRT or ENPS-RRT*) and the
random seed. The output is a new PGM file where
an RRT has been drawn over the original map. The
number of CPU threads to be used by the OpenMP
simulator is configured by the environment variable
OMP_NUM_THREADS.

The software allows to set all the parameter val-
ues. For the experiments in this paper, the next set of
values has been used:

- n=12,i.e, 22 RRT nodes will be generated. It
produces a large enough tree to stress the par-
allel simulators.

- 0 = 15c¢m, i.e, the RRT edges will have 15¢m
length.

- & = 20cm, the robot radius.

- m, p,q depend on the specific PGM file.

The selected values for 6 and € are common val-
ues for indoor platforms such as the Pioneer DX-2
robot.

The simulator uses data structures to store the
value of the ENPS variables in run-time and program-
ming sentences in C with OpenMP in order to simu-
late the behaviour of the ENPS programs. That is, the
simulator allocates arrays storing the objects for:

e obstacle positions (a and b).

e RRT points and their parents, (x, y, px and py).

e auxiliary objects for reduction at nearest (xp,
yp and d) and at obstacleFree modules (d').

Moreover, the simulator is written in a modular
way, where it is easy to identify the different modules
of the model:

o Computing (X,qnds Yrang) on the CPU.
® nearest, in order to compute (Xpeqrests Ynearest)-
This is done by:

1. computing squared distances from all points
in RRT t0 (Xyand> Yrand)

2. computing minimum distance and nearest
point in RRT

® obstacleFree, in order to compute obstacle col-
lision. This is done by:

1. compute distances from all obstacles to seg-
ment [(Xnearest» Ynearest)>(Xnew» Ynew)]

2. Compute minimun distance to check if there
is collision, by comparing with the epsilon
variable

e Extend RRT, if using RRT algorithm.
e Extend RRT¥, if using RRT* algorithm. This is
implemented by:

1. computing squared distances from all ob-
stacles to all segments [(x,y),(Xnew> Ynew)]
where (x,y) are points in RRT

2. for each point (x,y) in RRT, compute the

minimum distance to all obstacles

. compute new cost for all points in RRT

4. compute the minimum cost and the variable
with that value (that is, argmin operation)

5. fix the edges in RRT

(O8]

As an example, the next C/OpenMP code com-
putes the squared distances from all the points in the
RRT to the (xneareshynearest) point.

#pragma omp parallel for
for (int i=0;i<vars->index;i++) {

vars->d[i] = (vars->x[i] - vars->x_rand) *
(vars->x[i] - vars->x_rand) +
(vars->y[i] - vars->y_rand) *

(vars->y[i] - vars->y_rand);

In order to compute minimums in a whole array,
we can use reduction pattern. That is, calculate a value
from a whole collection, in this case, a minimum. Re-
duction is implemented in OpenMP by a special direc-
tive extension [17]. For instance, the next code shows
the computation of the minimum distance and nearest
point:

XYD value = {0,0,INF};
#pragma omp parallel for reduction(xyd_min:value)
for (int i=0;i<vars->index;i++) {
XYD new_value = {vars->x[i],vars->y[i],vars->d[il};
value = xyd_min2(value,new_value);

}



4.2. A CUDA simulator

Additionally, we have outsourced the ad-hoc simula-
tor to the GPU. This enables its parallelization for
both high-end and low-end GPUs by using CUDA.
Let us recall that this technology provides automatic
scalability and portability of the code. Thus, the most
computing-intensive part of the simulation is executed
on device, what will allow to accelerate its execution
significantly, as we will discuss in the results. First of
all, we have replicated the data structures employed on
the OpenMP simulator on the GPU.

Simple map functions applied to objects in paral-
lel are implemented by CUDA kernels, optimized by
launching 256 threads per block (we have tuned this
number experimentally), a number of thread blocks
multiple of the amount of streaming multiprocessors
on the specific device, and looping by tiles over the
objects (contiguous threads work with contiguous po-
sitions of arrays, and iterate in this manner until cov-
ering all positions). The following parts are imple-
mented in this way:

e At nearest module, computing squared dis-
tances from all points in RRT to (x,4nds Yrand)-
e At obstacleFree module, computing the dis-
tances from all obstacles to segment [(Xnearests

yneurext)7 (xneWa ynew)], by using pDist.
e At RRT* extend module:

* computing squared distances, using pDist,
from all obstacles to all segments [(x,y),
(Xnew, Ynew)], where (x,y) are points in RRT.

This kernel specifically employs a 2-dimensional

grid of thread blocks to cover the two nested
loops in parallel.

* computing new cost for all points in RRT,
while checking the minimun distance is
greater than epsilon.

* Fixing edges.

As made for the OpenMP implementations, global
minimum calculations can be efficiently implemented
by the reduction operation. In CUDA, reduction is
a parallel primitive, and there is a plethora of opti-
mized implementations. We have focused only on re-
duction with minimum operation for floating num-
bers. We have tested three different libraries in order
to select the fastest one: (1) reduction example from

CUDA Toolkit SDK 10.1 [47], (2) Thrust (as redis-
tributed in CUDA 10.1) [26], and (3) CUB 1.8 [43].
Implementation (1) is based on the optimization ideas
using per-warp shuffle operations [38], available first
in Kepler architecture. We have modified the imple-
mentation in the SDK by replacing the sum (+) opera-
tion by the built-in fminf function in CUDA. Concern-
ing implementation (2), we have used the STL-like li-
brary Thrust, which offers an optimized minimum re-
duction function. We have ensured that the function is
launched on the device. Finally, we have also tested
CUB primitives library by NVIDIA labs in implemen-
tation (3). This is a set of header files that do not re-
quire to compile, but just including them in our code.
Both Thrust and CUB also have a variant for argmin
operation, required in order to calculate in which posi-
tion of the array the minimum takes place. Finally, as
for reduction with minimum operation, CUB outper-
formed the other two, (3) against (1) by three times,
and (3) against (2) slightly better.

We have therefore used CUB to compute the fol-
lowing reduction operations:

e Atnearest module: compute minimum distance
and nearest point by using argmin reduction.

e At obstacleFree module: compute minimum
distance by using min reduction.

e At RRT* extend module:

* Compute the minimum distance for each
point (x,y) in RRT to all obstacles. This re-
quires to construct a matrix with a row per
RRT point and columns the number of obsta-
cles. We have used the segmented reduction
minimum variant to calculate all the mini-
mums per row in parallel. This variant per-
forms reduction globally but it only takes ef-
fect inside local segments that are previously
defined.

+ Compute minimum cost by argmin.

Finally, in order to keep all the computation on
the GPU and hence, avoiding transferring data from
the GPU to the CPU at every iteration, store also the
scalar values of Xpearests Ynearests Xnews Ynew ON device.
These are updated by kernels with single thread. The
objective is the reduce the amount of memory transfer
as much as possible, even if just one thread is in charge
of updating single objects.



5. Experimental results

In this section, we will show the experiments con-
ducted to test the performance of the ad-hoc simula-
tors for both OpenMP and CUDA. We first start ana-
lyzing the results for the multicore version, selecting
the best configuration. After that, we show the run-
times obtained with GPU version, and conclude with
a comparison of configurations.

The source code of the simulators is written in
C/C++ programming language, and binaries are com-
piled with GCC 7.4 and NVCC 10.1 using the flag -
03. The random numbers are always generated on the
CPU by using the seed 1. Execution times are mea-
sures with time bash instruction, so that we consider
the whole time to read and write the maps and the sim-
ulation itself with all the overheads. We have used the
hardware setup shown below, where we looked for a
low-end and a high-end GPU, and employed two ver-
sions of Intel CPUs corresponding to the processors
where the GPUs are plugged. In this way, we validate
our simulators and its acceleration by emulating two
different situations: (a) when the RRT is pre-computed
on a server with a high-end GPU and transmitted to the
robot before starting to move, and (b) when the RRT
is pre-computed using the low-end GPU on-board the
robot like a NVIDIA Jetson.

e i7-8700: Intel Core i7-8700 CPU with 12 cores
(6x2 hyperthreading) at 3.2Ghz 12MB of cache

e i7-9700: Intel Core i7-9700K CPU with 8 cores
(4x2 hyperthreading) at 3.6Ghz and 12MB of
cache

e GTX1050: NVIDIA GeForce GTX 1050Ti
GPU with 768 cores at 1.42Ghz and 1MB of
cache, plugged to i7-8700.

e RTX2080: NVIDIA GeForce RTX2080 GPU
with 2944 cores at 1.85Ghz and 4MB of cache,
plugged to 17-9700.

We have used four different maps for the experi-
ments. These are shown in Figure 12. We have sorted
them by increasing complexity, so that we expect that
RRT and RRT* will require more iterations for maze
than for mapl for example. For all experiments, we
provide two fixed distant points in the map. The base-
line software has been executed using the 17-9700

Table 1. Speedup using OpenMP for different multithreading con-
figurations with respect to the sequential implementation for each
baseline algorithm and for each map.

Map ‘ CPUs ‘ Speedup RRT | Speedup RRT*

mapl 4 1.2678 1.8715
mapl 8 1.4634 3.1708
cciah | 4 1.1585 1.6139
cciah | 8 1.2664 2.2785
office | 4 1.2977 1.6894
office | 8 1.4159 2.4494
maze 4 1.2757 1.6696
maze 8 1.4338 2.4055
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Figure 12. Maps employed in the experiments. Maps are sorted by
complexity: (a) is mapl (a simple room), (b) is ccia_h (scanned
map of the computer science department’s wing H at University of
Seville), (¢) is office (a set of rooms in an office), and (d) is maze (a
labyrinth composed of concentric circles).

hardware with configurations of 4 and 8 cores. The
speedup for each map, each algorithm and each CPU
configuration is shown in Table 1. An average speedup
of 1.39x was obtained using the baseline RRT algo-
rithm with 8 cores with respect to the sequential im-
plementation. The speedup was 2.57x in the case of
the RRT* algorithm.

In Figure 13, the runtimes of the multicore simu-



lator for RRT are displayed. We increase the number
of threads by 2, starting in 1 and until the total amount
of cores in the corresponding CPU. We can see how
it scales well and the runtime drops proportionally to
the number of threads executed, specially when going
from just 1 thread to the half amount of cores in each
CPU. Runtimes from half to all cores remain almost
constant. Only in maze we can experiment some im-
provement. Low-complexity mapl is handled fast in
all CPUgs, so running several threads is not worthy. Fi-
nally, runtimes are similar in both CPUs, and is always
below 2 seconds when using all cores. For i7-8700, a
speedup from 1.8x (mapl) to 4.5x (maze) is obtained
when using all cores against just one core (sequential
version). For 17-9700, a speedup from 2.2x (map]1) to
4.9x (maze) is achieved.

We can see some differences when running the
multicore simulator with RRT*, given its higher com-
plexity. The runtimes are plotted in Figure 14. For i7-
8700, half of the cores (6) are enough to saturate the
processor. For i7-9700, the best runtime is achieved
with full occupancy of the cores (8). We can see how
the runtime decrease is proportional to the amount of
cores again. Runtime for 17-9700 is slightly lower than
for 17-8700, being below 200 seconds against 300 sec-
onds in the latter. The map maze requires the higher
computation time. For i7-8700, a speedup from 4x
(maze) to 5.2x (mapl) can be obtained when using
all cores against the sequential version. For i7-9700, a
speedup of around 6.7x for all maps is reported.

In Figure 15, we compare the runtimes obtained
with the GPU against the CPU. We consider for this
experiment the best configuration for both CPUs, that
is using all the cores in each processor. For RRT*, the
GPU outperforms the CPU in all maps, with alwarys
very low runtimes. The example of maze stands out,
because the RTX2080 scales very well and requires
just 13.21 seconds to construct the RRT* tree, whereas
the CPUs requires 2 to 4 minutes to complete. In this
specific map, the GTX1050 still behaves better than
the CPU. Note that we do not report the results for
RRT, for which the GPU is always slower than the
CPU mainly because the overhead to perform reduc-
tion on device is not worthy for such small amount of
item. For RRT*, we need to execute a reduction much
larger, so we can see the good effect of using the GPU.

1xi7-8700  2xi7-8700  4xi7-8700  6xi7-8700  8xi7-8700  10xi7-8700  12xi7-8700

(@)

1xi7-9700k 2xi7-9700k 4xi7-9700k 6xi7-9700k 8xi7-9700k

Figure 13. Runtimes of the OpenMP simulator for RRT on the
i7-8700 (a) and 17-9700 (b) CPU. X-axis shows the number of cores
used during execution (1 to 12 for i7-8700, and 1 to 8 for 17-9700,
both by step of 2). Y-axis shows the time in seconds.

Finally, let us assume the best and worst device:
fastest CPU is 17-9700 with 8 cores, slowest CPU is
17-8700 with 12 cores, fastest GPU is RTX2080 and
slowest GPU is GTX1050. In Figure 16, we show the
speedups obtained by comparing one by one the de-
vices tested for RRT*. We can see that the slowest
GPU still outperforms the fastest GPU by 1.5x to 2.3x.
On the contrary, the fastest GPU against the slowest
CPUs leads to very high speedups, of around 20x.
Finally, the fastest CPU and GPU comparison gives
speedups of around 14x for the GPU. It is interesting
to see that the GPU always get higher speedups for the
office-type maps (ccia_h and office).
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Figure 14. Runtimes of the OpenMP simulator for RRT* on the
17-8700 (a) and i7-9700 (b) CPU. X-axis shows the number of cores
used during execution (1 to 12 for i7-8700, and 1 to 8 for 17-9700,
both by step of 2). Y-axis shows the time in seconds.

In light of the results, we can draw the following
conclusions: CPU is the best candidate if we want to
run the adhoc simulator for RRT, and the GPU is al-
ways the best candidate to run the ad-hoc simulator for
RRT*; and for the CPU, it is always worthy using at
least half of the cores in the processor.

6. Conclusions

In this work we present two ENPS models emulat-
ing the computation of the RRT and RRT* algorithms
in order to solve the motion planning problem in
robotics. The ENPS framework was successfully used
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Figure 15. Runtime of the CUDA simulator for RRT* on GTX1050
and RTX2080 compared to the best multi-threading configuration
for the OpenMP simulator with the two CPUs.
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in previous works to design and simulate robot con-
trollers, but there is a lack of solutions for global path
planning using the framework. The RRT and RRT* al-
gorithms are inherently iterative, but they have mod-
ules that can run in parallel, such as the obstacle colli-
sion detection and others. By using a massively paral-
lel model of computation, we provide a solution able
to add nodes to an RRT in constant time. Two sim-
ulators have been implemented using OpenMP and
CUDA, i.e., two parallel computing frameworks in sil-
ico. Several processes in the models, such as the com-
putation of the nearest point to a given point by us-
ing reduction, have been translated to the simulators
in a natural way. Finally, we have validated and tested
the models and simulators by using four scenarios.
The experimental results show a speedup up to 6x us-



ing OpenMP with 8 cores against the sequential im-
plementation and up to 24x using CUDA against the
best multi-threading configuration. The best speedup
using a baseline OpenMP implementation with 8 cores
against the corresponding baseline sequential imple-
mentation was 2.57x. Such results show a better par-
allel scalability when using the membrane computing
paradigm which is a maximal parallel model of com-
putation.
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