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Abstract: Diverse problems of radiative transfer remain as yet unsolved due to the difficulties of the
calculations involved, especially if the intervening shapes are geometrically complex. The main goal
of our investigation in this domain is to convert the equations that were previously derived into a
graphical interface based on the projected solid-angle principle. Such a procedure is now feasible
by virtue of several widely diffused programs for Algorithms Aided Design (AAD). Accuracy and
reliability of the process is controlled in the basic examples by means of subroutines from the analytical
software DianaX, developed at an earlier stage by the authors, though mainly oriented to closed
cuboidal or curved volumes. With this innovative approach, the often cumbersome calculation
procedure of lighting, thermal or even acoustic energy exchange can be simplified and made available
for the neophyte, with the undeniable advantage of reduced computer time.

Keywords: mathematics applied to lighting and radiative transfer; configuration factors;
computational geometry; parametric design; new solutions for equations of geometric optics;
numerical computation of quadruple integrals

1. Introduction

1.1. Form Factors

To our knowledge, one of the main problems in Science as applied to aerospace, solar and
industrial design technology has been to determine how the existing physical fields are transformed
according to the physiognomy of fixtures or products and in which direction we should orient our
developments to seek a more correct transmission of environmental and heat transfer phenomena, or,
in other words, in which way can the design of three-dimensional forms be improved to obtain an
optimal and coherent distribution of energies that effectively contributes to mitigate global warming
and thereby helps resolve climatic issues.

We must outline that radiation in a physical or spatial environment is made manifest through fields
of a fundamentally vector nature. Therefore, our first objective would lie in the assessment of these types
of fields in an unaltered state. On such issues, there exist the relevant contributions of Yamauchi [1]
and Moon [2,3] amongst others in seeking radiative potential. However, successive modifications of
the spatial features of the elements entailed possess the capacity to substantially alter the layout of the
field. Such geometric alterations contribute to changes in energy distribution that manufacturers and
users are heavily demanding, as it is already vital for them to acquire accurate and simple notions
regarding the issue.

The problem is not recent. In fact, Lambert’s statement of the famous theorem XVI in his treatise
Photometry [4] speculated about the amount of rays (flux) that issues from any two equally luminous
surfaces onto the adjacent, and established that if the two surfaces A1 and A2 were equally luminous
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and faced each other in some way, the amount of incident rays from either of the two surfaces on the
second is identical. The former is also known as reciprocity theorem and to develop it to some extent is
crucial to assess the mathematical reach of the matter that we are discussing.

The energy that leaves surface A1 and reaches surface A2 will be:

E1A1F12, (1)

and, reciprocally, the energy that passes from surface A2 to A1 is:

E2A2F21, (2)

where E1 and E2 are the equivalent amounts of energy (in W/m2) emitted by surfaces A1 and A2; and F12

or F21 are dimensionless entities called “form factors”. If we assume, in principle, that there are no
inter-reflections or re-emissions from one surface to the reciprocal, and theoretically no other significant
sources of radiation have access, by any means, to the boundaries of the problem, all incident flux will
be absorbed and the flow of energy (dΦ), according to Lambert’s theorem, should be zero, that is:

dΦ = E1A1F12 − E2A2F21 = 0⇔ A1F12 = A2F21. (3)

To this end, we would consider the surface elements dA1 and dA2. The angles θ1 and θ2 are
measured between the line from dA1 to dA2 (direction of propagation) and the normal to each surface;
r is the distance from the center of one differential area to the other (Figure 1):
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Figure 1. General three-dimensional arrangement of surface source elements through which the
radiation form factor is defined.

The cosine emission law, also attributed to J. H. Lambert, states that the flux per unit of solid
angle in a given direction θ (or radiant intensity) is equal to the flux in the normal direction to
the surface (maximum intensity) multiplied by the cosine of the angle between the normal and the
direction considered.

Luminance or radiance is the radiant flux or power emitted per unit area and solid angle (steradian)
in a given direction. To obtain the flow emitted by the surface element dA1 it is necessary to multiply
the radiance or luminance by the projected surface in the fixed direction of the angle θ1, and thus:

I =
dΦ
dΩ

= L1dA1 cos θ1, (4)

where I is the radiant intensity, dΩ is the solid angle and L1 represents the radiance of surface A1.
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It is easily deducted that L1 remains independent of the direction and therefore L1θ = L1.
Since the previously found flux refers to the solid angle unit, we must now evaluate the amount

of flux that reaches a differential surface element dAn whose distance to A1 is precisely r.

dΦ = L1dA1 cos θ1
dAn

r2 (5)

It is often useful to establish a relationship between luminance or radiance and lighting or
irradiance; with this aim, we could simply extend the flux to a hemisphere of radius r in which dA1,
is inscribed. The surface dAn in spherical co-ordinates amounts to:

dAn = r2 sin θ1dθdϕ (6)

then from (5) and (6):

Φ1 = L1A1

∫
An

cos θ1
dAn

r2 = L1A1

∫ 2π

0

∫ π/2

0
cos θ1 sin θ1dθdϕ = πL1A1 = E1A1 (7)

Thus, E1 = πL1 (E is emitted radiation per area unit, expressed in W/m2).
Returning to the problem of energy exchange, if we assimilate the differential surface element

dAn with dA2, we find that:
dAn = cos θ2dA2. (8)

In this manner, the flux or radiant power that goes from dA1 to dA2, substituting L1 in Equation (5),
will be:

dΦ1−2 = E1 cos θ1 cos θ2
dA1dA2

πr2 (9)

And respectively,

dΦ2−1 = E2 cos θ2 cos θ1
dA2dA1

πr2 . (10)

The energy exchange is eventually set at:

Φ1−2 = (E1 − E2)

∫
A2

∫
A1

cos θ1 cos θ2
dA1dA2

πr2 . (11)

The above integral equation responds to the fundamental or canonical formula of radiation which
in differential terms is:

d2Φ = Ei cos θ1 cos θ2
dA1dA2

πr2 (12)

In such a situation, the integral found by virtue of the fundamental expression adopts the value
of A1F12 or A2F21, following the above definitions. In general, these are quadruple integrals and to
solve them becomes so complex that extreme dexterity in geometry problems along with haphazard
techniques of integration is required. Therefore, we want to avoid this difficulty as much as possible
by virtue of the procedure presented in this article.

The fundamental equation of the much-sought form factors is:

F12 =
1

A1

[∫
A2

∫
A1

cos θ1 cos θ2

πr2 dA1dA2

]
(13)

and its asymmetric reciprocal in algebraic terms,

F21 =
1

A2

[∫
A2

∫
A1

cos θ1 cos θ2

πr2 dA1dA2

]
(14)
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If we assume, for easier visualization and since it is a frequent case in luminous radiative transfer
(but not so in thermal problems involving, for instance. gases), that the surface A2 does not emit energy
and only receives it from A1, the total flow received in A2 will be:

A2N2 =

[∫
A2

∫
A1

M1 cos θ1 cos θ2

πr2 dA1dA2

]
(15)

where M1 = N2/F21 and N2 is the energy received by surface 2 in W/m2.

1.2. Configuration Factors

Let us behold the meaning of the form factor, defined as an integral equation. Actually, what it
permits us to calculate is just the net radiant exchange from surface to surface. A surface that emits a
certain amount of power M1 (in W/m2) successively produces a certain power N2 ‘as an average or
percentage’ on another surface, which tells us nothing about the point-by-point distribution of that
same power.

However, in many engineering, architectural and medical problems, a precise description of
the flux function, that is, the radiant field, is often deemed necessary to establish the exact nature
of the radiation “map” and to be able to control the possible deficit or surplus which could, in turn,
become critical.

Therefore, if we look for the point distribution of power that reaches surface A2 instead of the
mere average, we could reduce the fourfold integrals in the expression of the form factor to a simpler
surface integral as follows:

n2 =

∫
A1

M1 cos θ1 cos θ2

πr2 dA1 = M1

∫
A1

cos θ1 cos θ2

πr2 dA1 (16)

This new expression is, like the previous one, strictly geometric and as such only depends on
angles and areas, given that for a certain moment of time the value of M1 can be assumed as constant.

The double integral equation,

f12 =

∫
A1

cos θ1 cos θ2

πr2 dA1 (17)

will be called the configuration factor and it presents several fundamental applications in the method
that we will develop hereby.

The first elementary consequences are:

n2 = f12M1 (18)

and

A2N2 = M1

[∫
A2

f12dA2

]
= A1F12M1 = A2F21M1 (19)

Then,

F12 =
1

A1

[∫
A2

f12dA2

]
(20)

Accordingly,

F21 =
1

A2

[∫
A2

f12dA2

]
(21)

Equation (21) can be clearly identified with the “average” of f12“over surface” A2, especially since
we had already obtained that N2 = F21M1. In quantum dynamics terms, the form factor expresses the
probability of a surface being stricken with photonic energy emitted by an adjacent source.
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Similarly, we would define N2 as the average of n2 on the surface A2;

N2 =
1

A2

[∫
A2

n2dA2

]
(22)

This important finding represents the ignored relationship between form factors and configuration
factors that will allow us to easily simplify and visualize many complex calculations in the following
chapters by restricting them only to second order primitives, and the ensuing “average” is ready
accessible by numerical procedures. To our knowledge, it has only been defined by Cabeza-Lainez [5,6].

2. Symbolic Calculus of Basic Elements

2.1. Triangle

A set of basic forms can be derived from the triangle, but only if the calculation axis lies
perpendicular to the center of the figure or the vertex of the triangle or rectangle considered.
The principle equation is,

n = L
∫ b

0

∫ z

0

y2

(x2 + y2 + z2)2 dzdx (23)

for an instant of time t in which the luminance or radiance L can be considered constant and keeping
in mind that Lπ = M.

The solution for triangle A1 in Figure 2, integrated by parts is:

n =
L
2

 b√
y2 + b2

tan−1 a√
y2 + b2

 (24)
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2.2. Rectangle

The full rectangle is just the sum of solutions for surfaces A1 (24) and A2 (see Appendix A):

n =
L
2

 a√
y2 + a2

tan−1 b√
y2 + a2

+
b√

y2 + b2
tan−1 a√

y2 + b2

 (25)
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However, we need to be reminded that we have just obtained the value of radiative exchange
at a single point located precisely under the vertex of the rectangle and in a particular direction
(perpendicular) to the surface source.

Deft combinations of triangles would give us the equilateral triangle, hexagon and, as a limit
case that we will discuss in Appendix A, the circle, which has been only obtained in such “polygonal”
fashion by Cabeza-Lainez.

2.3. Calculations in a Plane Perpendicular to the Figure

In the above discussion, we have solely found the component of radiation that was perpendicular
to the emitting surface at an isolated point.

It is easy to imagine the severe complexity that arises when trying to find the solution for points
moving freely in a plane, let alone space.

Even so, radiance being a vector, to complete the problem means finding values of other
auxiliary components.

In this situation, the principle integral turns out to be (if we multiply by the corresponding cosine):

n = L
∫ ∫

zy
(x2 + y2 + z2)

dxdz (26)

Applying this proposition to the case considered (Figure 3), we find that if Y (the distance) is a
constant, the integral equation yields:

n =
L
2

tan−1 b
y
−

y√
a2 + y2

tan−1 b√
a2 + y2

 (27)
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By virtue of the former, we have exposed how complex it becomes to find an analytical expression
to solve the problem if only we alter the coordinate plane of calculation, not to mention figures of
geometry other than those limited by straight lines. That is why we concluded that there was a
significant need for a graphical solution based on parametric design as this would imply a universal
solution and an extraordinary simplification of the issue.

2.4. Calculation of Integral Equation for a ‘Rectangle’ Over a Horizontal Square

Previously (Equation (27)) we had found the solution in terms of arctangent for the entire rectangle.
The adaptation of this formula to an arbitrary movement of points on a horizontal surface (Figure 4),
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requires taking into account various singularities depending on the position of the rectangle’s base,
the situations of symmetries and what a unique “form factor algebra” permits.Mathematics 2020, 8, x FOR PEER REVIEW 7 of 29 
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For example, in the Y axis and at level –H1, the adapted solution would give:

n = L

 D√
H2

1 + D2
tan−1

 M√
H2

1 + D2

− D√
H2

0 + D2
tan−1

 M√
H2

0 + D2


 (28)

3. Methodology

3.1. Solid Angle Projection Law

To obtain the energy exchange between a given surface and a point P, we would simply trace a
cone whose vertex is the point considered P, and its base is the surface in question (dΩ), and proceed
to intersect the said cone with a sphere of unit radius (Figure 5). The enclosure within this intersection,
projected on any reference plane that we may require and divided by the horizontal area of the
aforementioned unit sphere (that is, divided by π), will equate to the value of the configuration factor
determined by virtue of the analytical methods of exact integration described in the previous chapters.

If, by means of what we have discussed in detail in the above sections, we were trying to find
certain geometric factors or proportions, it seems equally reasonable to achieve these same values
through graphic procedures such as the ones employed in Descriptive Geometry.

The advantages are obvious to the project engineer, because if, due to the difficulty of the
mathematical problem, hesitation appears, we are allowed to somehow ‘visualize’ the entire process.

In summary, what has been proven is that the configuration factor is a mere proportion,
a dimensionless number, consisting of a ratio of areas, one of them the area of a certain projection and
the other the total area involved expressed in circular terms, usually π [6].

The most important consequence of the former is that the problem, regardless of its complexity,
will always present a unique non-trivial solution since the projection will have a univocal value and
cannot be non-existent.
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Figure 5. The cone of radiation of this figure cuts the area σ′ on the unit sphere. The orthogonal
projection of σ′ over the irradiated plane produces the area σ′′. Such area divided by πr2(r = 1) equates
to the configuration factor.

In addition, as the configuration factors are actually projections, they hold an additive property,
which is useful to know when dealing with sundry and simultaneous emitting surfaces, because it
is possible to add their effects. The average over the receiving surface of the configuration factors
thus obtained will constitute the form factor that had been so laboriously sought for by means of
mathematical formulation and solving of fourfold integral equations.

Alternatively, graphic methods and analytical methods or a combination thereof can be used.
This is the gist of our procedure.

It also seems gratifying to assume that we have solved the fundamental problem of radiation with
geometric methods. Why is that? Because it means that ‘form’ is very important in this type of problem
and that not all forms act in the same way from a radiative point of view; some geometries favor
exchanges more than others and the mission of the heat transfer analyst is to adequate these forms.
predicting their impact. Such repercussion can also be verified by observers, that is, manufacturers,
society, etc., using, as we shall see, a simple tool.

However, the sole hindrance that we identified at the time was that numerical validation of the
simple rectangle over a horizontal plane (Figure 4) was not readily available, thus casting a shadow
over the viability of our approach. Fortunately, Cabeza-Lainez was able to work out an exact solution
and this relevant finding is presented in Appendix B.

Then a similar problem arose with circular emitters in a free position. Cabeza-Lainez has completely
solved this anew [7], as described in Appendix C, as it may help to validate other curved geometries.

3.2. Algorithms Aided Design

Although today, most Computer Aided Design (CAD) programs incorporate what is known
as parametric design (which implies that it is not necessary to redraw the objects that we design if
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they change shape, position or size), we should not consider all of these as Algorithm Aided Design
programs (AAD).

An algorithm is a logical expression that leads to procedures to be performed through finite sets
of closed basic instructions. Algorithms simulate human abilities to break down a problem into a
series of simple steps that can be easily executed and, although they are closely related to computers,
algorithms can be defined independently of programming languages and applications.

However, not just any procedure can be considered properly as an algorithm, since many
procedures are far from being well defined or contain ambiguities, logical contradictions or infinite loops.

Some important properties that are required for a procedure to be considered an algorithm are:

• An algorithm is a well-defined set of properly concise instructions.
• An algorithm demands a defined set of inputs that may or may not come from the output of a

previous algorithm.
• An algorithm generates a precise output (Figure 6):
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• Finally, an algorithm can produce warnings and error messages through the appropriate editor.
If the inputs are not appropriate, e.g., if we enter text instead of numbers, the algorithm will return
an error message instead of the expected output, via the appropriate editor [8].

In addition, through parameterization, we have not merely obtained a straight line, (Figure 6) but,
by simply modifying the value of the coordinates, moving the mouse over the sliders we can alter the
‘line’ output and draw all the straight lines contained in the Euclidean space with a single gesture of
the tracer.

3.3. Calculation by Algorithms Aided Design through Finite Element Method

The main problem of analytical calculation is that, although we may employ a convenient algebra
of form factors [6] to find the radiance received by a surface, issuing from basic figures limited by
straight lines, the number of shapes of the emitters, whose direct integration is very difficult or
impossible to perform, remains numberless.

To solve such an impasse, we have successfully developed a Grasshopper® algorithm that allows
us to calculate the configuration factor subtended by an arbitrary point of any surface (i.e., irrespective of
its shape and orientation) from an emitter or ‘three-dimensional figure’, with manifold geometry or
inclination (including those whose integration is deemed impossible).
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To calculate the incident radiation n (W/m2), we will only have to add up all the configuration
factors that we may require and multiply them by the luminance that departs from the emitter
(W/sr·m2).

The steps which we have followed to develop the algorithm can be summarized below:

3.3.1. Geometric Definition of Both the Irradiated Surface and the Emitter and, Subsequently,
Division of the Irradiated Surface into a Grid of N × (N − 1) Squares, Locating Its Corners

Let us consider for example, a rectangle 2 m wide by 2 m high whose base is 5 m above the ground.
The rectangle’s vertical axis coincides with the middle point of the horizontal receiving surface of
10 × 10 m.

First we establish the plane of the irradiated surface defining, by means of sliders, the components
of its normal vector and using the ‘Vector XYZ’ function, constructing the said plane with the help of
the ‘Plane Normal’ function as shown in the upper part of the following figure (Figure 7).
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Figure 7. First part of the algorithm.

Subsequently, we divide the irradiated surface into N × (N − 1) squares (finite elements) using the
‘Square’ function that generates a bi-dimensional grid with square cells and retains the points at the
corners of the squares.

Note that (in this case) the first row of corner points has been cancelled, since in the plane of the
‘rectangle’, the radiance will necessarily be equal to zero and the size of the squares is divided by its
number for a better performance of the algorithm (Figures 7 and 8):

The result is detailed in Figure 8:

3.3.2. Calculate the Configuration Factors

To perform this, it is convenient to select a ‘rectangle’ (arbitrary), draw the spheres centered in
each corner of the divisions (through the ‘Sphere’ command) and extrude ‘light cones’ based on the
‘rectangle’ and vertex positioned at the corners of the divisions (‘Extrude point’ command).

In the ensuing operation, we have to draw the intersections between the ‘light cones’ and the
spheres, (Boundary representation vs. Boundary Representation: ‘Brep|Brep’ command), project these
intersections on the selected plane (‘Project’ command) and calculate the areas involved (‘Area’
command). Finally, we normalize the results to obtain dimensionless configuration factors (Figure 9):
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3.3.3. Exporting the Data to Excel and Representing them by Color Maps

To transfer the data to Excel®, we first sort them using the ‘Partition List’ command and then
the ‘GhExcel’ plugin that allows us to export an array of data to the said spreadsheet through the
‘ExcelWrite’ command, (Figure 11).
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Finally, we have designed a ‘renderer’ which assigns to each value obtained a color of the spectrum
to display the results, (Figure 12):
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The outcome for such an algorithm is shown below (Figure 13).
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Figure 13. Color map of the configuration factor obtained by the discretization for each meter
(110 values) of a horizontal area of 10 × 10 m2, illuminated by a ‘rectangle’ of 2 × 2 m2, 5 m above the
ground and whose vertical axis coincides with the middle point of the horizontal surface.

3.3.4. Numerical Results

When exporting the values obtained by the Grasshopper® algorithm to an Excel® sheet, it is
relatively easy to sort them in a matrix and the figures obtained are displayed in Table 1.

In this manner, the form factor F12 is obtained as the average of all the configuration factors f12,
which yields a value (for a discretization of 11 × 11 = 110 points) of F12 = 0.00556888.

If we consider the point with the highest configuration factor (point 5,3), where f12 = 0.01144,
and we want to know the radiation of that point, assuming a radiant power in the rectangle of
1000 W/m2, we will obtain this by simply multiplying the value of f12 by 1000, that is, n = 11.44 W/m2.

The array presented in Table 1 coincides with that found by the analytical procedures (Table 2)
described in the references [6]. In this way the procedure is validated.
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Table 1. Configuration factors of an area of 10 × 10 m2 illuminated by a ‘rectangle’ of 2 × 2 m2 located 5 m from the ground at the middle point of the horizontal surface.

Distance in the X-Axis to the Rectangle’s Plane (m)

Distance in the Y-axis to the
Rectangles Plane (m)

0 1 2 3 4 5 6 7 8 9 10

Dimensionless Configuration Factor f12 (i.e., Divided by π)

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 0.00203 0.00279 0.00371 0.00469 0.00546 0.00577 0.00546 0.00469 0.00371 0.00279 0.00203
2 0.00368 0.00497 0.00650 0.00807 0.00930 0.00977 0.00930 0.00807 0.00650 0.00497 0.00368
3 0.00473 0.00624 0.00796 0.00966 0.01096 0.01144 0.01096 0.00966 0.00796 0.00624 0.00473
4 0.00519 0.00665 0.00825 0.00977 0.01090 0.0132 0.01090 0.00977 0.00825 0.00665 0.00519
5 0.00517 0.00644 0.00778 0.00901 0.00989 0.01021 0.00989 0.00901 0.00778 0.00644 0.00517
6 0.00486 0.00590 0.00695 0.00788 0.00852 0.00876 0.00852 0.00788 0.00695 0.00590 0.00486
7 0.00440 0.00521 0.00600 0.00668 0.00715 0.00732 0.00715 0.00668 0.00600 0.00521 0.00440
8 0.00389 0.00451 0.00510 0.00559 0.00592 0.00604 0.00592 0.00559 0.00510 0.00451 0.00389
9 0.00339 0.00385 0.00429 0.00464 0.00488 0.00496 0.00488 0.00464 0.00429 0.00385 0.00339

10 0.00293 0.00328 0.00360 0.00386 0.00402 0.00408 0.00402 0.00386 0.00360 0.00328 0.00293

Table 2. Configuration factors of an area of 5 × 10 m2 (the values that are omitted are obviously symmetrical) illuminated by a ‘rectangle’ of 2 × 2 m2. Values obtained
by analytical methods ([6], pp. 183–184).

Distance in the X-Axis to the Rectangle’s Plane (m)

Distance in the Y-axis to the Rectangle-s Plane (m)

5 6 7 8 9 10

Dimensionless Configuration Factor f12

0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
1 0.005765 0.00546298 0.00468552 0.00371248 0.00278731 0.00202982
2 0.00976818 0.00929669 0.00806846 0.00649857 0.00496683 0.00367902
3 0.01144492 0.01095576 0.00966096 0.00795806 0.00623622 0.00473341
4 0.01131701 0.0108993 0.00977478 0.00824998 0.00664699 0.00518805
5 0.01020997 0.00988871 0.00901007 0.00778368 0.00644494 0.0051747
6 0.00875831 0.00852443 0.00787588 0.0069471 0.00589812 0.00486368
7 0.0073163 0.00715037 0.0066848 0.00600327 0.0052104 0.00440123
8 0.00603659 0.00591986 0.00558912 0.00509595 0.00450753 0.00388887
9 0.00496121 0.00487895 0.004644 0.00428824 0.00385462 0.00338694

10 0.00408173 0.00402333 0.00385542 0.00359789 0.00327834 0.00292612
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4. Discussion

4.1. Convergence

To test the convergence of the method we need to gradually decrease the size of the elements and
show how, by doing so, the form factors converge towards a certain value which must be increasingly
closer to that calculated analytically.

One of the advantages of our algorithm is that by simply modifying the value of the sliders to
increase the partitions we obtain the new results rapidly, and proof of convergence is readily available.

In the ensuing figure (Figure 14), we found the results by raising the number of partitions or finite
elements from 10 × 10 = 100 elements to 100 × 100 = 10,000 elements, with a computing time of only
136 s (conventional computer).
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Figure 14. The color map of the configuration factor obtained by discretization for each 10 cm
(10201 values) over an area of 10 × 10 m2 radiated by a ‘rectangle’ of 2 × 2 m2, 5 m over the horizontal
surface at its middle axis.

The following figure (Figure 15) shows the values obtained for the form factor by discretizing
the surface of 10 × 10 m in 121, 441, 961, 1681, 2601, 3721, 5041, 6561, 8281, 10,201, 12,321, 14,641,
17,161, 19,881 and 22,801 points, respectively (the value obtained for 22,801 points is F12 = 0.006165497),
showing a clear convergence towards the value F12 = 0.0062 analytically calculated [6].
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4.2. Versatility of the Method

As noted above, the difficulties in obtaining analytical solutions for emitters with forms other
than the trivial are enormous, and even in many cases impossible. However, the method presented
here allows solutions with high accuracy, limited only by the performance of the computer, for any
type of emitters and irrespective of the orientation.

As a more complex example, we have calculated the configuration factors on a 10× 10 m horizontal
surface, radiated by an elliptical emitter whose major and minor axes are 2 m and 1 m respectively and
whose lowest point is located at a height of 5 m. As before, vertical axis of the ellipse coincides with the
middle point of the horizontal surface in 5 m (Figure 16). Notice that, for the time being, the elliptical
shape cannot be solved analytically due the appearance of elliptic integrals in the process [9].
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Figure 16. The color map of the configuration factor obtained by the discretization per each 20 cm
(2601 values) of an area of 10 × 10 m2 illuminated by an Ellipse of 2 m of major semi-axis and 1 m of
minor semi-axis located 5 m from the ground in the middle point of the side of the horizontal surface.

Finally, we have simulated the configuration factors on a 10 × 10 m horizontal surface, given by an
arbitrary emitter in the shape of a scalene triangle of the dimensions depicted in Figure 17. The graphic
results appear in Figure 18 and the numeric values in Table 3.
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Table 3. Configuration factors of an area of 10 × 10 m2 illuminated by a ‘scalene triangle’.

Distance in the X-Axis to the Triangle’s Plane (m)

Distance in the Y-axis to the
Triangles Plane (m)

0 1 2 3 4 5 6 7 8 9 10

Dimensionless Configuration Factor f12 (i.e., Divided by π)

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 0.00329 0.00593 0.01103 0.02039 0.03471 0.04974 0.05761 0.05139 0.03030 0.01256 0.005371
2 0.00554 0.00942 0.01614 0.02677 0.04031 0.05151 0.05363 0.04433 0.02858 0.01539 0.00799
3 0.00642 0.01014 0.01581 0.02349 0.03169 0.03715 0.03682 0.03064 0.02171 0.01371 0.00825
4 0.00627 0.00921 0.01318 0.01789 0.02229 0.02476 0.02415 0.02067 0.01578 0.01106 0.00740
5 0.00559 0.00769 0.01027 0.01303 0.01535 0.01650 0.01604 0.01413 0.01141 0.00862 0.00623
6 0.00474 0.00619 0.00782 0.00943 0.01069 0.01126 0.01097 0.00989 0.00833 0.00664 0.00509
7 0.00392 0.00490 0.00593 0.00689 0.00761 0.00791 0.00773 0.00710 0.00618 0.00513 0.00411
8 0.00321 0.00387 0.00453 0.00513 0.00554 0.00572 0.00560 0.00552 0.00465 0.00399 0.00332
9 0.00262 0.00307 0.00351 0.00388 0.00414 0.00424 0.00416 0.00393 0.00357 0.00314 0.00268

10 0.00214 0.00246 0.00275 0.00299 0.00315 0.00322 0.00316 0.00302 0.00278 0.00249 0.00218

Notice that, in the case of the ellipse and the scalene triangle unlike the rectangle, it is not possible nowadays to calculate the configuration factors by any other procedure.
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5. Conclusions and Future Aims

Given the accurate convergence of the values obtained for the particular case of rectangular
emitters and receivers within a cuboid, we consider that the graphical interface program that we have
proposed is fully accomplished. However, for the time being, we have to warn that there is no feasible
way to validate the other figures presented, such as ellipse and scalene triangle.

Nevertheless, we believe that a complex physical-mathematical problem, which has occupied the
mind of scholars for decades if not centuries, is solved with perfect ease in a semi-automatic manner.

Ensuing research will extend the procedure to other types of three-dimensional spaces where
analytical calculations were proposed but still remain underdeveloped, for instance curvilinear sources
in non-cuboidal domains affected by interferences and obstacles [9].

A much wider repertoire of possible radiative exchanges would be achieved in this fashion,
with relative simplicity and accuracy and without alternative. The repercussions of such findings
would be wide-ranging in fields as diverse as aerospace technologies [10], Light Emitting Diodes
(LED), radiotherapy medicine, risk prevention, acoustics and architecture [11]. On an industrial basis,
we consider that the vast field of artificial lighting and design of luminaries will immediately benefit
from our methods.

Whereas the findings hereby exposed would represent a major achievement in Optics, precisely for
the realms of Heat Transfer and Lighting, it is understood that our contribution has been timely
aided by the enormous potential of Algorithms Aided Design in the numerical resolution of
physical-mathematical problems that, when approached directly, are extremely difficult to accomplish
(if not altogether impossible).

Author Contributions: Conceptualization, J.-M.C.-L.; data curation, F.S.-A.; software, F.S.-A.; investigation,
J.-M.C.-L.; writing–original draft, F.S.-A. and J.-M.C.-L. All authors have read and agreed to the published version
of the manuscript.
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Nomenclature

Fij Form Factor (surface to surface, dimensionless)
fij Configuration factor (surface to point, dimensionless)
Ei, Mi Emitted Radiant Power (W/m2)
Ni Received Radiant Power (W/m2)
ni Unit Received Radiant Power (point from surface, W/m2)
Φi Radiant flux (W)
Li Emitted Luminance or radiance (W/sr·m2)
I Radiant intensity (W/sr)
Ai Surface area (m2)
r distance (m)
θi angle with the normal (radian)
Ω solid angle (sr)

Appendix A. Further Details on the Calculations of Basic Configuration Factors

Appendix A.1. Triangles and Shapes Composed of Triangles

In the first case, which is also the most elementary, we would substitute the value of the cosine as expressed
in Equation (16) and find the fundamental double-integral equation,

E = L
∫ b

0

∫ z

0

y2

(x2 + y2 + z2)2 dzdx (A1)

Note that we write again E (surface-to-point received power) instead of the previous magnitude n because
this nomenclature is more usual. We have chosen an instant of time t in which the luminance or radiance L can be
considered constant, keeping in mind that Lπ = M.

We will solve it as an example of the general ensuing procedure to attest to its difficulty.
The upper line of triangle A1 is defined by equation z = x(a/b), and therefore, replacing the new value of z:

E = L
∫ b

0

∫ a
b x

0

y2

(x2 + y2 + z2)2 dzdx (A2)

Solving the integral of the second member of Equation (A2), (the details of the resolution of this and all other
integrals presented in this article can be consulted in [6]) we obtain:

E =
L
2

 b√
y2 + b2

tan−1 a√
y2 + b2

 (A3)

Respectively, the upper triangle, surface A2 in Figure 2, would have yielded:

E =
L
2

 a√
y2 + b2

tan−1 b√
y2 + b2

 (A4)
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Appendix A.2. Rectangle

The full rectangle is the sum of Equations (A3) and (A4), that is:

E =
L
2

 a√
y2 + a2

tan−1 b√
y2 + a2

+
b√

y2 + b2
tan−1 a√

y2 + b2

 (A5)

We would ask the reader to understand that, with all this complexity, we have only obtained the value of
radiative exchange at a single point located precisely under the vertex of the rectangle and in a particular direction
at right angles to the surface source.

Appendix A.3. Square

For example, in a square whose side is d = 2a = 2b; the final expression is the result of multiplying by eight
the basic triangle previously obtained, which yields:

E = 4L

 d√
4y2 + d2

tan−1 d√
4y2 + d2

 (A6)

Appendix A.4. Equilateral Triangle

If we contemplate the figure of the equilateral triangle (Figure A1), the expression will now be six times the
rotated triangle, and we receive:

E = 3L

 d√
12y2 + d2

tan−1 d
√

3√
12y2 + d2

 (A7)
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Appendix A.5. Hexagon

In the specific case of the hexagon (Figure A2), we would need 12 times the rotated triangle, which,
expressed as a function of the side d, gives us:

E = 6L

 d
√

3√
4y2 + 3d2

tan−1 d√
4y2 + 3d2

 (A8)
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Appendix A.6. Circle

Finally, the limiting case of all simple figures composed of triangles is a regular n→∞ sided polygon
(Figure A3) whose limit is obviously a circle and in it:

E =
L
2
· lim
a→0;n→∞

n·

 b√
y2 + b2

tan−1 a√
y2 + b2


 (A9)
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Since a→0 we can substitute the angle (arc of tangent) for its tangent, finding:

E =
L
2

lim
n→∞

n

 ba

y2 + b2

 (A10)

but when n→∞, the product n·a is equivalent to 2πb or 2πr (the length of the circumference) and, therefore, in a
more usual formulation the amount of energy as a function of radius and distance is found [7]:

E = Lπ

 b2

b2 + y2

 = Lπ
[

r2

y2 + r2

]
(A11)



Mathematics 2020, 8, 2176 21 of 25

Appendix A.7. Calculations in a Plane Perpendicular to the Figure

Imploring the patience of the reader, we need to remark that in the previous paragraphs we have limited
ourselves to establishing the component of radiation that was perpendicular to the emitting surface considered
(the one that is received onto a parallel plane), at a particular point under the vertex or the center of the figure.

Imagine if you can the complexity that arises when trying to find the solution for points moving freely in
space, which is almost unfathomable.

Even so, as is logical, radiance should be treated like a vector, thus, if we want to complete the problem we
will have to also find the values of the two components that are missing and remain parallel to the area considered.
The defining integral then turns out to be (if we multiply by the corresponding cosine):

E = L
∫ ∫

zy
(x2 + y2 + z2)

dxdz (A12)

Applying this proposition to the first case considered we would find that if Y (the distance) is a constant,
the first part of the integral becomes not lengthy and the equation adopts the value:

E =
L
2

tan−1 b
y
−

b√
a2 + b2

tan−1

√
a2 + b2

y

 (A13)

For the entire rectangle, the boundaries would lie between a and 0, instead of using a function of x.
Grouping the sum of the two terms, it turns out that:

E =
L
2

tan−1 b
y
−

y√
a2 + y2

tan−1 b√
a2 + y2

 (A14)

To find the amount of the term due to the upper triangle in Figure 3, we would need to change the integration
limits (from z = a to z = ax/b) and consequently:

E =
L
2

 b√
a2 + b2

tan−1

√
a2 + b2

y
−

y√
a2 + y2

tan−1 b√
a2 + y2

 (A15)

which could have been deduced by logic by subtracting Equation (A13) from Equation (A14).
Adding and subtracting rectangles would allow us to obtain the result for a rectangular shape over an

unlimited horizontal surface as described in Figure 4 and Equation (28). Only a few months ago Cabeza-Lainez
obtained a similar solution for a triangle with a horizontal side and also for circular sectors if the center of the
vertical circle lies on the horizontal surface. [11]

In this quite elaborate fashion, we have discovered how complex it becomes to find an analytical expression
to solve the problem if we only alter the coordinate plane of calculation not to mention figures of geometry other
than the regular triangle or rectangle. That is why we concluded that a graphical solution based on parametric
design would imply a much more general solution and extraordinarily simplify the issue. This is the reasoning
behind our method.

Appendix B. Particulars of the Numerical Validation of the Projected Solid-Angle Principle

Numerical Validation for a Rectangle

Suppose that the emitter is a rectangle 1 m. high and 3 m. wide and we try to calculate the configuration
factor at a point P that lies in the plane of symmetry of the rectangle at a longitudinal distance of 2 m and is located
1 m below the bottom edge of the said rectangle (Figure A4).

So, D = 2, H0 = 2, H1 = 1 and M = 1.5.
With this data, Equation (28) yields the well-known result:

n = L
[

2
√

5
tan−1 1.5

√
5
−

2
√

8
tan−1 1.5

√
8

]
= 0.18368L

(
W/m2

)
However, if we try to check this value by means of the projected solid-angle law, it becomes extremely

difficult, as we shall see.
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Since f12 must be a dimensionless configuration factor, we ought to divide by the area of the projected unit
sphere, that is πr2 = π, from which we would arrive at:

f12 = n/(Lπ) = 0.0584 (A16)

We can geometrically obtain the lengths of the minor semi-axes of the projection of the two ellipses involved
which are, respectively, b1 = 0.8941 and b0 = 0.7071. The major semi-axis is logically 1 m.

Strangely, the only way to solve the problem is by changing the coordinates to (very rare) generalized polar
coordinates, and thus we would have:

x = a ρ cos θ; y = b ρ cos θ,

thus, the differential element yields dA = a b ρ dρ dθ.
This is, in fact, the only possible procedure to obtain the area of an elliptic sector:

A =

∫ θ1

θ2

∫ 1

0
a b ρ dρ dθ = a b

∫ θ1

θ2

[
ρ2

2

]1

0
dθ = a b

∫ θ1

θ2

1
2

dθ = a b
(θ1 − θ2)

2
(A17)

Now it will suffice to find the values of θ1 and θ2 under the new coordinate system. Since the angles are
equal with respect to the axis of symmetry of the ‘rectangle’, the previous expression can be transformed into the
simpler product: a·b·θi.

For the larger ellipse y/x = 2/1.5 (by proportion); a = 1, b = 0.8944.
Then θ1 = tan−1(2/(1.5·0.8944)), which is 0.9799; and the complementary with respect to π/2 is 0.5908

pseudo-radians (a new local unit only valid for ‘each’ ellipse).
The area of the larger ellipse is 0.5984·0.8944 = 0.5284 and accordingly for the small ellipse the area would be

0.3447; therefore, the final area yields 0.5284− 0.3447 = 0.1837.
This quantity divided by π provides

f12 = 0.0584. (A18)

‘Quod erat demonstrandum’.
It is important to stress that the values obtained for the configuration factors through the application of the

principle of the projected solid angle are not approximations to those obtained by analytical calculations but are
identical. Such a demonstration, simple as it is, due to the extreme difficulties arising with the integration of
elliptic geometries, is a finding solely attributed to Cabeza-Lainez. In this way he has dissipated the clouds that
once spread over the validity of such a convenient principle, for our method and beyond.

Appendix C. The Recurrent Problem of Circular Emitters

Circular emitters can be treated in the same way as any type of emitter by virtue of the law of the projected
solid angle (Figure A5). Nonetheless, explicit solutions were unassailable [7,9].



Mathematics 2020, 8, 2176 23 of 25

Mathematics 2020, 8, x FOR PEER REVIEW 25 of 29 

 

It is important to stress that the values obtained for the configuration factors through the 
application of the principle of the projected solid angle are not approximations to those obtained by 
analytical calculations but are identical. Such a demonstration, simple as it is, due to the extreme 
difficulties arising with the integration of elliptic geometries, is a finding solely attributed to Cabeza-
Lainez. In this way he has dissipated the clouds that once spread over the validity of such a 
convenient principle, for our method and beyond. 

Appendix C. The Recurrent Problem of Circular Emitters 

Circular emitters can be treated in the same way as any type of emitter by virtue of the law of 
the projected solid angle (Figure A7). Nonetheless, explicit solutions were unassailable. [7,9] 

 
Figure A7. Projection on the horizontal plane of the intersection of an oblique cone and a unit radius 
sphere. 

Cabeza-Lainez proposed that, through a so-called “pair of dejection” (Figure A8), we could 
determine the parameters of the cone that subtends the emitting circle of radius R, at point P. 

Figure A5. Projection on the horizontal plane of the intersection of an oblique cone and a unit
radius sphere.

Cabeza-Lainez proposed that, through a so-called “pair of dejection” (Figure A6), we could determine the
parameters of the cone that subtends the emitting circle of radius R, at point P.Mathematics 2020, 8, x FOR PEER REVIEW 26 of 29 

 

 
Figure A8. Procedure to find the main angles of the radiant cone. 

The resulting equation of the elliptical cone is: xsin α + ycos α tan β = zcos β (A19) 

The intersection between the oblique cone of parameters α and β and a sphere of unit radius 
defines itself by the expression: x + y + z = 1 xsin α + ycos α tan β = zcos β 

(A20) 

Thus, we arrive at the miraculous equation of the intersection between the former cone and a 
sphere of unit radius with its center in the vertex of the cone (Equation (A20)); this curve that we have 
found is called Tomomi by Cabeza-Lainez [10] and yields the following parametric equations for its 
coordinates (Figure A9), x = sin α cos t. y = sin β sin t z = cos α cos t + cos β sin t (A21) 

 

Figure A6. Procedure to find the main angles of the radiant cone.

The resulting equation of the elliptical cone is:

x2

sin2 α
+

y2

cos2 α tan2 β
=

z2

cos2 β
(A19)

The intersection between the oblique cone of parameters α and β and a sphere of unit radius defines itself by
the expression:

x2 + y2 + z2 = 1
x2

sin2 α
+

y2

cos2 α tan2 β
=

z2

cos2 β
(A20)
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Thus, we arrive at the miraculous equation of the intersection between the former cone and a sphere of unit
radius with its center in the vertex of the cone (Equation (A20)); this curve that we have found is called Tomomi
by Cabeza-Lainez [10] and yields the following parametric equations for its coordinates (Figure A7),

x = sinα cos t.y = sinβ sin tz =

√
cos2 α cos2 t + cos2 β sin2 t (A21)
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Looking for the planes of common symmetry between the sphere and the elliptical cone, and applying
elementary theorems of intersections of quadrics, we can observe the Tomomi curve of Cabeza-Lainez as a branch
of hyperbola or as an ellipse (Figure A8).
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Although it is actually a fourth degree curve as shown (Figure A9) in the ensuing representation, even so it is
not possible in most cases to find its enclosed area by numerical procedures [12].
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Fij Form Factor (surface to surface, dimensionless) 
fij Configuration factor (surface to point, dimensionless) 
Ei, Mi Emitted Radiant Power (W/m2) 
Ni Received Radiant Power (W/m2) 
ni Unit Received Radiant Power (point from surface, W/m2) 
Φi Radiant flux (W) 
Li Emitted Luminance or radiance (W/sr·m2) 
I Radiant intensity (W/sr) 
Ai Surface area (m2) 
r distance (m) 
θi angle with the normal (radian) 
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