
Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Formato de Publicación de la Escuela Técnica
Superior de Ingeniería

Autor: F. Javier Payán Somet

Tutor: Juan José Murillo Fuentes

Dep. Teoría de la Señal y Comunicaciones
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2013

Trabajo Fin de Grado
Grado en Ingeniería Aeroespacial

Development of a Python-Based
Orbital Mechanics Laboratory Class
on Lambert’s Problem

Autor: Lucas Reino Diez
Tutor: Rafael Vázquez Valenzuela

Dpto. Ingeniería Aeroespacial y Mecánica de Fluidos
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2020





Trabajo Fin de Grado

Grado en Ingeniería Aeroespacial

Development of a Python-Based
Orbital Mechanics Laboratory Class on

Lambert’s Problem

Autor:

Lucas Reino Diez

Tutor:

Rafael Vázquez Valenzuela

Profesor Titular

Dpto. Ingeniería Aeroespacial y Mecánica de Fluidos

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2020





Trabajo Fin de Grado: Development of a Python-Based
Orbital Mechanics Laboratory Class on Lambert’s Problem

Autor: Lucas Reino Diez
Tutor: Rafael Vázquez Valenzuela

El tribunal nombrado para juzgar el trabajo arriba indicado, compuesto por los siguientes
profesores:

Presidente:

Vocal/es:

Secretario:

acuerdan otorgarle la calificación de:

El Secretario del Tribunal

Fecha:





Resumen

En la asignatura deMecánica Orbital y Vehículos Espaciales impartida en el cuarto curso del
Grado en Ingeniería Aeroespacial se proporcionan las bases necesarias para afrontar

el cálculo de trayectorias espaciales. Sin embargo, para realizar el análisis y optimización
de una misión interplanetaria (o en general, de cualquier transferencia entre dos órbitas
genéricas) surge la necesidad de resolver el Problema de Lambert. El objetivo de este material
es proporcionar al alumno en formato de práctica de la asignatura unas pautas para progra-
mar en Python un algoritmo que permita resolver de forma numérica dicho problema. Con
esta nueva herramienta, se procederá a obtener ciertos resultados que permiten ahondar un
poco más en un campo tan interesante como es el de misiones espaciales.

I





Abstract

At the Orbital Mechanics and Space Vehicles course imparted in the fourth year of the
Bachelor in Aerospace Engineering, the basis necessary for the calculation of space

trajectories are given. However, to perform the analysis and optimization of an interplanetary
mission (or generally, of any transfer between two generic orbits) the need to solve Lambert’s
Problem arises. The goal of this work is to provide the student with the guidelines for coding
in Python an algorithm that allows said problem to be solved numerically, in a laboratory
class format. With this new tool, certain results will be obtained which allow to delve a bit
more into such a fascinating field as interplanetary missions are.

III





Contents

Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Lambert’s Problem 1
1.2 Learning Python 2
1.3 Scope of this project 2
1.4 Document structure 3

1.4.1 Structure of the laboratory class 3

2 Lambert’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Basic orbital mechanics 5
2.1.1 The equation of motion and conserved quantities 6
2.1.2 Kepler’s laws 9
2.1.3 Orbital elements and coordinate systems 10
2.1.4 The perifocal frame 12

2.2 Geometric properties of conic trajectories 13
2.2.1 Elliptical and circular trajectories (0 ≤ 4 < 1) 14
2.2.2 A comment on the energetic properties of conic trajectories 15
2.2.3 Parabolic trajectories (4 = 1) 16
2.2.4 Hyperbolic trajectories (4 > 1) 17
2.2.5 Eccentric and hyperbolic anomalies 19
2.2.6 Geometric representation of � and � 20

2.3 Orbital position as a function of time 22
2.3.1 Barker’s equation 22
2.3.2 Kepler’s equation 23

2.4 Solving Lambert’s problem 24
2.4.1 The classical form of Lambert’s equations 24
2.4.2 The U and V parameters 27
2.4.3 A unified form of Lambert’s equations 31

2.5 Conclusions 35

V



VI Contents

3 Basic orbital mechanics’ tools used in Lambert’s problem . . . . . . . . 37

3.1 Planetary ephemerides and orbit propagators 37
3.2 Determining r and v through the orbital elements 38
3.3 Spheres of influence and patched conic approximation 39
3.4 Determining an orbit through U, V and the initial data of Lambert’s

problem 42
3.5 Pork-chop plots 46

4 Programming with Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Introduction 49
4.2 Basics 50

4.2.1 Working with Spyder 50
4.2.2 Importing modules and/or packages 50
4.2.3 Basic operations 51
4.2.4 Data types and indexing 51
4.2.5 Defining and using functions 53
4.2.6 For-loops and if-else statements 54

4.3 Numerical Python (NumPy) 56
4.4 Visualizing Data 59

4.4.1 Plotting y=f(x) 59
4.4.2 Plotting more than one curve 61
4.4.3 Implicit functions and contour plots 61
4.4.4 3D plots 62
4.4.5 Setting and/or editing a plot’s attributes 62
4.4.6 Saving the figure to a file 64

4.5 Python, NumPy and Matplotlib for Matlab users 64
4.5.1 General purpose equivalents 64
4.5.2 NumPy equivalents 66
4.5.3 Matplotlib equivalents 66

5 Development of a laboratory class on Lambert’s problem . . . . . . . . 69

5.1 Structure of the laboratory report 69
5.2 Part 1: Programming with Python 70

5.2.1 Example 2: Plotting Mercury’s orbit - Results 71
5.3 Part 2: Lambert’s problem 72

5.3.1 Example 3: Visualizing Lambert’s equations - Results 73
5.3.2 Developing a simple algorithm to solve Lambert’s problem 76

5.4 Part 3: Analysis and optimization of interplanetary missions 83
5.4.1 Example 4: Analyzing the MSL mission - Results 83
5.4.2 Example 5: Optimizing NASA’s MRO mission - Results 84
5.4.3 Additional insight on the Mars launch opportunity windows 88

6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 Conclusions 91
6.2 Future work 92



Contents VII

Appendix A Laboratory report . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendix B Auxiliary Python algorithms . . . . . . . . . . . . . . . . . . . . . 127

B.1 Julian day calculation 127
B.2 Julian day to Gregorian calendar date 128
B.3 Planetary ephemerides 129
B.4 Determining r and v through the orbital elements 131
B.5 Computing the q and J parameters 132
B.6 Determining an orbit through U and V 133
B.7 Computing the starting and arrival velocity vectors 135
B.8 Solving Lambert’s equations for elliptic motion 137
B.9 Plotting a 2D representation of the transfer orbit 138
B.10 Plotting a 3D representation of the transfer orbit 139





1 Introduction

1.1 Lambert’s Problem

Lambert’s problem, sometimes referred to as the orbital boundary problem, is concerned
with the determination of an orbit from two position vectors and the time of flight.

Since the beginning of the space age with the launch of the satellite Sputnik 1 in 1957,
continuing to the present day, Lambert’s problem has been fundamental in the areas of
rendezvous, targeting and preliminary orbit determination. In the past, from the time of
Euler and Lambert, its solution has been essential for obtaining the elements of the orbits of
planets and comets from observations. Over the years a variety of techniques and procedures
have been developed for solving this problem. Each is characterized by a particular form of
the transfer-time equation and a particular choice of the independent variable to be used in
an iterative algorithm to determine the orbital elements.

Following the fundamental work laid down, among others, by Euler, Lambert, Lagrange
and Gauss, the need of a robust algorithm to function for a wide range of conditions led to
revisit the problem during the space age. In this context, the work of Lancaster et al. in 1969
[1] needs to be highlighted, as it provided an universal solution to the problem (that is, valid
for elliptic, hyperbolic and parabolic orbits) and paved the way for further research. In the
following years, a good number of studies were built upon these results. In 1990, Gooding
[2] published a procedure which, based on good heuristics for the initial estimate of the inde-
pendent variable, yielded an accurate value in only three iterations. Further developments
have also been made, looking to reduce computational cost and increase accuracy.

Even though multiple other alternative procedures and algorithms exist, in this project the
approach of Lancaster et al. is followed. Furthermore, as far as the algorithm is concerned,
clarity and simplicity will prevail over robustness and e�ciency given that students will have
to comprehend the procedure and code it themselves in a matter of hours.

In addition to solving the orbital boundary problem, some properties of conic sections
and their relevance within this problem are discussed. Perhaps one of the most remarkable
theorems in this connection is the one discovered by Lambert, having to do with the depen-
dency of the orbital transfer time upon various geometrical parameters. Lambert’s theorem
has had a great relevance in orbital mechanics and is intimately linked with the solution to
Lambert’s problem.

1



2 Chapter 1. Introduction

1.2 Learning Python

Python is a high-level programming language whose design emphasizes productivity and
code readability. Its clear, easy to understand syntax and object-oriented approach aim to
help programmers, data scientists and engineers write comprehensible and logical code for
small and big-scale projects. It was created in the late eighties by Guido Van Rossum. How-
ever, it has only been in the past decade when its popularity has sky-rocketed due to the
development of artificial intelligence and the non-stopping growth of data science, consoli-
dating as the fastest-growing major programming language in these past years. Nowadays it
stands as one of the top programming languages, along with JavaScript, Java or C++.

One of the aims of this project is to introduce the students to Python. As of now, in the
Bachelor of Aerospace Engineering at the University of Seville onlyMatlab is taught as part
of the academic program. It is of great interest for the students to learn multiple languages,
and Python constitutes a great start due to its simplicity compared to other alternatives. For
this reason, it has been chosen for coding the algorithm which solves Lambert’s problem.

Another great advantage of Python is that its releases are open source, which means
everybody can access the source code and use the latest version of the language at zero
cost. Other popular languages for computational science, such as Matlab, are included
in proprietary software and do not share these characteristics. Additionally, Python o�ers
an extensive number of libraries such as numpy, scipy and the plotting package matplotlib,
which are introduced in subsequent chapters.

There are two versions of the Python language being used nowadays: Python 2 and
Python 3. The changes in Python 3 were introduced to address shortcomings in the design
of the language that were identified since Python’s inception. These changes are however
very slight, and the di�erences are minimal. However, in this project Python 3.7.4 is used,
as it is the latest stable version. To ease the students approach to this new language, an
Integrated Development Environment (IDE) similar to that of Matlab is also used.

1.3 Scope of this project

"The discussion of the relations of two or more places of a heavenly
body in its orbit as well as in space, furnishes an abundance of ele-
gant propositions, such as might easily �ll an entire volume. But our
plan does not extend so far as to exhaust this fruitful subject, ..."

Carl Friedrich Gauss, 1809

Quoting Gauss from his book Theoria Motus [3], it is clear that the two-body problem hides
a great amount of remarkable and elegant properties. However, given the short span of time
in which this project is bound to to be finished and in line with Gauss’ remark, the concepts
developed along the document are those strictly necessary to approach the various subjects
treated and fulfill our final purpose, which is to design a two-hour laboratory class for the
students enrolled in the course Orbital Mechanics and Space Vehicles.



1.4 Document structure 3

The main objectives pursued by this laboratory class are therefore, to:

• Teach basic Python

• Introduce Lambert’s problem

• Be understandable given the knowledge of the students

• Have both theoretical content and a practical application

• Have a duration of approximately two hours

1.4 Document structure

This document is structured in clearly di�erentiated chapters. On Chapter 2, everything
relative to Lambert’s problem is discussed. Firstly, we derive some fundamental equations
and establish the basic knowledge necessary to address the problem. After that, a brief recap
on some geometrical properties of conics is done. With all this background information, a
solution to Lambert’s problem is obtained following the approach taken by Lancaster et al..

On Chapter 3 we introduce a set of tools required for the analysis of interplanetary mis-
sions, which allow us to deal with real world examples and obtain reasonable results. Among
them, planetary ephemerides coupled to a trajectory propagator and the concept of pork-
chop plots.

Chapter 4 is dedicated exclusively to Python. Here, a more detailed introduction to the
language is going be made. All the necessary packages and modules are discussed, and the
basic commands are reviewed. Furthermore, a few notions on the di�erent data types and
structures is given, and an in-depth comparison between Matlab and Python is made.

After learning about Lambert’s problem, its solution and the Python language, on Chap-
ter 5 we devise an algorithm to solve the problem in a numerical manner. This algorithm
is then implemented in Python and a demo of the laboratory class is made, showing all the
results which are expected to be obtained later by the student.

On a final chapter, the conclusions obtained from this project are laid out. We also analyze
possible future work to be made on the subject.

1.4.1 Structure of the laboratory class

Said class will have a duration of two hours, along which Lambert’s Problem will be intro-
duced. The laboratory report will consist of a series of examples, which include code that the
students may reproduce on their own, interspersed with the required theoretical contents.
Additionally, the document will be split into three main parts:

• Programming with Python

• Lambert’s problem

• Analysis and optimization of interplanetary missions



4 Chapter 1. Introduction

In the first part, a brief introduction to Python will be made so that the students get
acquainted with the language and the IDE (Integrated Development Environment) of choice.
A few simple examples with some relation to orbital mechanics will be given at this stage to
aid the student in the understanding of Python programming.

After this introduction, a detailed step-by-step solution to Lambert’s Problem will be given,
following the approach taken in Sect. 2.4, and its solution thoroughly analyzed. Before diving
into the analysis and optimization of interplanetary missions, the algorithm which solves
Lambert’s problem will need to be programmed in Python.

The last part will consist mainly of two examples regarding spacecraft missions from
Earth to Mars, including a brief theoretical section introducing pork-chop plots and the
optimization of interplanetary missions through the characteristic energy (�3) (reviewed in
Sect. 3.5). Finally, some further insight on the Mars launch opportunity windows will be
given, which allow to plan future missions ahead.

At this stage, the teacher can propose an (optional) additional problem for the students to
finish at home. All the tools required to solve this problem would have been reviewed during
the laboratory class —this provides endless possibilities for the teacher, as these tools are
not only prepared for an Earth-Mars mission, but include generic algorithms and data from
every Major Planet within the Solar System.



2 Lambert’s Problem

Since the times of the ancient Greeks and throughout the years, orbital mechanics have
caught the attention of many of the greatest minds. Both physicists and mathematicians

have been intrigued by the fascinating properties of celestial bodies, and it has only been in
the last few centuries where great progress has been made. From Kepler to Gauss, including
Newton, Euler, Lagrange and Lambert among others, many have contributed with their
e�orts to this subject. In the past century, with the emergence of space exploration, a great
amount of research has also been made. Nowadays, the technological advances have led to
an increase in the number of interplanetary missions carried out every year.

Just like Kepler’s equation, the solution to Lambert’s problem lays at the very heart of
the most fundamental orbital mechanics and space engineering questions. At the beginning
of this chapter, the basic equations required to face this subject are introduced. Later on,
we address the two-body orbital boundary problem an the procedure necessary to obtain a
solution.

A great number of books have been written in the past years on these topics. The contents
presented in the following section have been inspired by the class notes from the Orbital
Mechanics and Space Vehicles course imparted by Rafael Vázquez Valenzuela at the University
of Seville [4], and the work laid out by Battin [5] and Curtis [6].

2.1 Basic orbital mechanics

In 1687, Newton showed in his book Principia [7] that the attraction of a homogeneous (by
layers) sphere on a particle is the same as if the mass of the sphere were concentrated at
its center. Based on the fundamental laws found on the same book, the force of attraction
between two isolated bodies can be expressed as

F1 =
�<1<2

A2
r
A
= <1

¥R1, F2 = −F1 = <2
¥R2, (2.1)

where � is the gravitational constant, <1 and <2 are the masses of the bodies, and R1 and
R2 are the position vectors in relation to an arbitrary reference origin, as shown in Fig. 2.1a.
Additionally, r is the vector going from the first body to the second one, and A = ‖r‖.

5



6 Chapter 2. Lambert’s Problem

Figure 2.1 Diagram showing the frames of reference used.

If we compute the position of the center of mass of the system and find its acceleration:

R�" =
<1R1 +<2R2

<1 +<2

, ¥R�" =
<1
¥R1 +<2

¥R2

<1 +<2

= 0 (2.2)

it is obtained that it either stays still or drifts through space at a constant speed, due to its
acceleration being zero. Therefore, the frame of reference can be displaced so that its origin
lays at the center of mass while still being an inertial frame of reference (Fig. 2.1b). This
property simplifies greatly the formulation of the equations that follow.

2.1.1 The equation of motion and conserved quantities

A classical approach to the two-body problem is to consider one mass much larger than the
other, that is, <1 � <2. In most cases this is a reasonable assumption to make; the mass of
the Sun is a few million times larger than Earth’s, and the mass of the International Space
Station (or any regular satellite) is over a billion times smaller. Additionally, throughout
the entirety of this document all possible disturbances to the system are neglected. That
includes those generated by the gravity of external bodies, the non-homogeneity and non-
spherical shape of the masses studied, solar radiation pressure and atmospheric drag. The
non-perturbed two-body problem is also known in classical mechanics as Kepler’s problem.

Based on these assumptions, on an isolated system where <1 � <2

r1 = −
<2

<1 +<2

r ≈ 0, r2 =
<1

<1 +<2

r ≈ r, (2.3)

and therefore ¥R�" = ¥R1. The equation of motion of the system is then

¥r = ¥R2− ¥R1 = −� (<1 +<2)
r
A3
= −` r

A3
, (2.4)

where ` is the standard gravitational parameter of the system. When <1�<2, then ` ≈ `1 =
�<1, which is that of the first body alone. For several objects in the Solar System, the value
of ` is known to greater accuracy than either � or < as it can be measured by observational
astronomy alone.

As a natural consequence of the equation of motion there are a few quantities that are
conserved throughout the movement, which appear in what physicists refer to as �rst integrals.
In our case, the state of an orbiting body at any given time is defined by the orbiting body’s



2.1 Basic orbital mechanics 7

position and velocity with respect to the central body. This can be represented by the three-
dimensional Cartesian coordinates (represented by G, H, and I) and the similar Cartesian
components of the orbiting body’s velocity (EG , EH and EI). Therefore the configuration of
two gravitationally interacting bodies constitutes a mechanical system with six degrees of
freedom, and a maximum of six functionally independent first integrals can be obtained.

Before proceeding let us first define v = ¤r, keeping in mind that E = ‖v‖ ≠ ¤A. Additionally,

r · r = A2,

so that

3

3C
(r · r) = 2A

3A

3C
.

But

3

3C
(r · r) = r · 3r

3C
+ 3r
3C
· r = 2r · 3r

3C
.

Thus, we obtain the important identity

r ·v = A ¤A. (2.5)

Recall as well the vector identity known as the bac-cab rule:

A× (B×C) = B(A ·C) −C(A ·B). (2.6)

Carrying out the dot product of (2.4) with v yields

¥r ·v = −` r
A3
·v =⇒ 1

2

3v2

3C
= − `

A3
1

2

3r2

3C

=⇒ 3E2

3C
= −`2 ¤A

A2
=⇒ 3

3C

(
E2

2

)
= 2`

3

3C

(
1

A

)
=
3

3C

( `
A

)
,

which leads to
E2

2
− `
A
= const. = n, (2.7)

a scalar first integral which defines the speci�c energy n (a name given by the units of the
equation, <2/B2 = �/:6). (2.7) is a statement of conservation of energy, as E2/2 is the relative
kinetic energy per unit of mass and (−`/A) is the potential energy per unit mass of the body
<2 in the gravitational field of <1. This equation is also known as the vis-viva ("living force")
equation.

Taking now the cross product of r with (2.4):

r× ¥r = −` r× r
A3

= 0 =⇒ 3

3C
(r×v) = 0,

therefore
r×v = const. = h. (2.8)

The cross product of r with v, h, corresponds with the definition of speci�c angular momentum.



8 Chapter 2. Lambert’s Problem

It follows that r ·h = 0 and v ·h = 0, which implies that the motion is confined to the plane
perpendicular to h and containing the origin.

By carrying out the cross product of (2.4) with ℎ, we obtain

¥r×h = −` r×h
A3

=⇒ 3

3C
(v×h) = − `

A3
(r×h) = − `

A3
[r× (r×v)]

= − `
A3
[r(r ·v) −v(r · r)]

= − `
A3
[r(A ¤A) −vA2]

= −` r ¤A −vA
A2

= `
3

3C

( r
A

)
,

that is,
v×h− ` r

A
= const. = `e. (2.9)

The dimensionless vector `e is sometimes called the Laplace vector. We shall, instead, use the
terminology eccentricity vector for e since its magnitude 4 is the eccentricity of the orbit. The
line defined by e is commonly called the line of apsides, and an it lays on the orbital plane.
In order to obtain a scalar equation, let us take the dot product of (2.9) with r:

r · (v×h) − ` r · r
A
= `e · r,

where
r · (v×h) = h · (r×v) = h ·h = ℎ2.

Therefore
ℎ2− `A = `4A cos\, (2.10)

in which \ is the true anomaly, defined as the angle between the fixed vector e and the variable
position vector r. We may write (2.10) as

A =
ℎ2/`

1+ 4 cos\
=

?

1+ 4 cos\
, (2.11)

where ? is simply known as the parameter. This is the orbit equation in polar coordinates, and
it defines the path of the body <2 around <1, relative to <1. Clearly the orbit is symmetrical
about the line of apsides. Furthermore, the orbit is bounded if 4 < 1 an unbounded if 4 ≥ 1.
Interestingly, (2.11) represents a conic section or simply a conic. Namely, it represents a circle
when 4 = 0, an ellipse when 4 < 1, a parabola when 4 = 1 or an hyperbola when 4 > 1.

(2.7)-(2.9) constitute seven scalar first integrals. The specific energy n and the vectors h
and e together determine the size, shape and orientation of the orbit with respect to the
frame of reference. Their components provide seven scalar constants of integration of the
two-body equation of motion. However, this constants are not independent as it would
render the problem over-determined. An important relationship is revealed by calculating
the magnitude of the eccentricity vector from (2.9):

42 = e ·e = 1

`2
(v×h) · (v×h) − 2

`A
r · (v×h) +1,



2.1 Basic orbital mechanics 9

but
(v×h) · (v×h) = v ·h× (v×h) = ℎ2E2,

since h and v are orthogonal and

r · (v×h) = h · (r×v) = ℎ2,

which leads to

1− 42 = ℎ
2

`

(
2

A
− E

2

`

)
= ?

(
2

A
− E

2

`

)
.

The second factor has the dimensions of length−1. It is usual to define

0 =

(
2

A
− E

2

`

)−1
, (2.12)

which resembles (2.7). In fact, the specific energy equation can be written in the form

n =
E2

2
− `
A
= − `

20
. (2.13)

Clearly, the quantities ?, 0 and 4 are then related by

? = 0(1− 42). (2.14)

It is also shown that h ·e= 0. In summary, for Kepler’s problem (formulated by a sixth-order
di�erential system), (2.7)-(2.9) only provide five independent scalar constants of integration.
To complete the solution, an additional first integral will be required. More precisely, the
relation between the location of the body in orbit and some particular instant of time is
missing. This is the subject of Sect. 2.3

2.1.2 Kepler’s laws

Tycho Brahe’s observations of the planet Mars, whose orbital eccentricity, fortunately, was
pronounced, provided Kepler with the means of testing his theories of planetary motion.
Between 1609 and 1619 he published the famous Kepler’s laws of planetary motion, which state
that

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of
time.

3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major
axis of its orbit.

With the results obtained in Sect. 2.1 we can tackle such assertions. Since the orbit equa-
tion describes conics, including ellipses, it is a mathematical statement of Kepler’s first law
(since the ellipse is the only bounded conic and the orbits of the planets are indeed bounded).
Recall that this is not true for all orbits, but since the Sun’s mass is far greater than that of
any other body in the Solar System, the solution obtained is indeed valid. Two-body orbits
are often referred to as Keplerian orbits.



10 Chapter 2. Lambert’s Problem

Kepler’s second law is a direct consequence of (2.8). Let us first express r and v in polar
coordinates:

r = A eA , v = ¤r = ¤A eA + A ¤\ e\ . (2.15)

We then find that
h = r×v = A2 ¤\ eI ,

while

�(C) =
∫ \ (C)

0

∫ A (C)

0
A ′3A ′3\ ′ =

∫ \ (C)

0

A2(\ ′)
2

3\ ′ =⇒ 3�

3C
=
A2 ¤\
2
=
ℎ

2
= const.

Since 3�/3C is the rate at which the radius vector sweeps out area, we have a verification of
Kepler’s second law. The module of the specific angular momentum vector is found to be
twice the areal velocity.

The period of elliptic motion may be obtained from a simple application of Kepler’s second
law since it is the time required for the radius vector to sweep over the entire closed area.
Denoting the period by ) and recalling that the area of an ellipse is c01 (where 0 is the
semi-major axis 1 and 1 the semi-minor axis), we have

) =
�

¤�
=
c01

ℎ/2 =
2c01

ℎ
. (2.16)

Additionally, as it is seen in Sect. 2.2, the semi-minor axis can be expressed in terms of 0
and the eccentricity of the orbit 4:

1 = 0
√

1− 42.

Substituting this identity and (2.14) into (2.16), we obtain

) =
2c02

√
1− 42√

`0(1− 42)
=⇒ ) = 2c

√
03

`
, (2.17)

which leads to Kepler’s third law:

)2 = 4c2
03

`
.

2.1.3 Orbital elements and coordinate systems

The solution to Kepler’s problem depends on six independent arbitrary constants. These
are referred to as the elements of the orbit. For practical applications, a set of parameters
which provide easy to interpret information about the properties and characteristics of the
orbit are preferred. Three possible orbital elements are 0, 4 and \. They define the conic
and the position of the body irrespective of its relation to the frame of reference. Three other
quantities are required for the spatial orientation of the orbit. The classical choices for the
remaining three elements are the Euler angles. In Fig. 2.2, these angles are illustrated.

1 The use of 0 for both the semi-major axis and an energetic constant in (2.12) is not coincidental. In Sect. 2.2
a more detailed explanation can be found.



2.1 Basic orbital mechanics 11

Figure 2.2 Orbital elements.

On one hand, the angle of inclination of the orbital plane with respect to a reference plane
is symbolized by 8. The line of intersection of the reference plane with the plane of orbit is
called the line of nodes. It passes through the focus � of the conic section with a direction
given by the nodal vector n. The points where the orbit intersects this line receive the name
of ascending node � and descending node �, the ascending node being the point at which the
body crosses the reference plane going upwards.

The point % in the figure at which A is minimum receives the name of periapsis —an apsis
being the point in an orbit where the motion is perpendicular to the radius vector. The ellipse
has a second apsis called apoapsis, where A reaches its maximum value. Both lay on the line
of apsides, hence its name. Recall that the line of apsides is defined by the eccentricity vector
e and also contains the focus of the ellipse. The true anomaly \ is the angle between the line
of apsides and the position vector r. The periapsis therefore corresponds to \ = 0. Moreover,
l is the angle which the line of apsides makes with the line of nodes, computed from �.

On the other hand, Ω is the angle between the line of nodes and a reference direction.
The three angles Ω, 8 and l are the Euler angles of the orbit. When dealing with Earth’s
orbit around the Sun, it is usual to take the reference direction towards the First Point of
Aries, which is where n points when the Sun crosses the equator during the vernal equinox.
In an heliocentric reference system, the reference plane is commonly the one in which the
Earth orbits the Sun, known as the ecliptic.

Typically, the coordinates for the bodies in the Solar System can be either heliocentric (Sun-
centered) or geocentric (Earth-centered). The two fundamental coordinate systems are known
as the ecliptic system and the equatorial system. In this project we will work with an heliocentric
ecliptic coordinate system; its origin being the Sun’s center, its reference plane the ecliptic,
and its primary direction the First Point of Aries as shown on Fig. 2.3.



12 Chapter 2. Lambert’s Problem

Figure 2.3 Heliocentric ecliptic
coordinate system.

The position of a point � in space is determined by the heliocentric latitude _, the helio-
centric longitude q and the distance to the Sun A. In the figure, the Sun is represented by
the astronomical symbol �. Usually both the heliocentric latitude and longitude carry the
subscript � to di�erentiate them from those used in the geocentric system, centered on the
Earth. However, we don’t use this coordinate system so the subscript will be dropped. The
- and . axis lay at the ecliptic plane, which in turn forms an angle Y with the equator plane.
This angle is referred to as the obliquity of the ecliptic and takes a value of about 23.4◦.

2.1.4 The perifocal frame

The perifocal frame is the "natural frame" for an orbit. It is a reference system whose origin
lays at the focus of the orbit. Its Ḡ H̄ plane contains the orbit, and the Ḡ axis goes from the
focus through the periapsis. The H̄ axis is placed at \ = 90◦ following the motion, and the Ī
axis is chosen as to obtain a right-handed coordinate system. In other words, Ḡ and Ī take
the direction of e and h respectively.

Figure 2.4 Perifocal frame Ḡ H̄Ī.



2.2 Geometric properties of conic trajectories 13

An alternative reference frame can be obtained if the origin is displaced to the center of
the conic section. We will refer to this frame as the GHI frame. In both coordinate systems,
the unit vectors will be eG , eH and eI .

In Fig. 2.4 a diagram showing the position and velocity vectors is showed. Additionally,
we define the �ight-path angle W as the one that v makes with the direction perpendicular to
r. The velocity vector can be therefore expressed in polar coordinates as

v = E sinW eA + E cosW e\ . (2.18)

When dealing with Lambert’s problem, a two dimensional approach is taken by using the
perifocal frame of reference, usually combined with polar coordinates. However, depending
on the context, the data for celestial bodies is generally given in either heliocentric or geo-
centric coordinate systems. Therefore, a means to translate information from one system to
the other is required. This is discussed in Chapter 3.

2.2 Geometric properties of conic trajectories

In this section we review some basic geometric properties that become useful in the analysis
of Lambert’s Problem. Our focus is on conics, namely circles, ellipses, parabolas and hyper-
bolas.

Figure 2.5 An ellipse, parabola or
hyperbola can be obtained by inter-
secting a cone with a plane. [5]



14 Chapter 2. Lambert’s Problem

2.2.1 Elliptical and circular trajectories (0 ≤ 4 < 1)

We may begin by studying elliptical trajectories. Let �, � ′ be the foci and � the center of
the ellipse shown in Fig. 2.6. Assume that the massive body is located at �, therefore we will
refer to this point as the focus and to � ′ as the vacant focus.

Figure 2.6 Geometric parameters
of an ellipse.

An ellipse whose axes of symmetry lay on the G and H Cartesian axes can be fully deter-
mined by two parameters. Typically its semi-major axis 0 and the eccentricity 4 are chosen.
However, there are some other parameters which can become useful under certain circum-
stances. The distance 2 between the center and its focus receives the name of focal distance,
and by definition 2 = 04. Moreover, the parameter ? gains a geometric interpretation as it
becomes the length of the segment which starts vertically from the focus � and ends at the
ellipse itself. This length is sometimes referred to as the semilatus rectum and can be verified
by introducing \ = 90◦ in (2.11). The semi-minor axis is denoted by the letter 1, and the
distances from the periapsis and apoapsis to the focus are A? and A0 respectively, being

A? = 0− 2 = 0(1− 4), A0 = 0 + 2 = 0(1+ 4). (2.19)

There are multiple ways to geometrically define an ellipse. One of them is to use the orbit
equation in polar coordinates (2.11), centered at the focus �. However, a perhaps more
geometric definition is the following. Given two fixed points �, � ′ (the foci) and a distance
20 which is greater than the distance between the foci (22), the ellipse is the set of points
% such that the sum of the distances |%� | and |%� ′ | is equal to 20. Therefore, looking at
Fig. 2.6, the triangle 4��� provides the following relation between 0, 1, and 2:

02 = 12 + 22. (2.20)

Substituting 2 = 04 in (2.20) reveals an expression of the semi-minor axis 1 in terms of the
semi-major axis and the eccentricity,

1 =
√
02− 0242 = 0

√
1− 42. (2.21)

The case � = � ′ yields a circle, which is really an ellipse whose eccentricity is zero. When
this occurs, both axis have the same length (0 = 1).



2.2 Geometric properties of conic trajectories 15

2.2.2 A comment on the energetic properties of conic trajectories

Figure 2.7 Orbits of various eccentricities, having a common focus � and periapsis %.

As seen in Sect. 2.1.1, the specific energy of a two-body orbit is −`/20. Di�erent orbits
can be classified according to the value of this parameter. Recall that when deriving this
formula, 0 was an arbitrarily defined parameter. From the conservation of the eccentricity
vector, the relation (2.14) was also found. It involved 0, the parameter ?, and the eccentricity:

? = 0(1− 42).

However, in Sect. 2.2.1 we consider 0 to be the semi-major axis of an ellipse. The use of
0 for both the semi-major axis and an energetic constant is not coincidental. Consider the
formula which describes an ellipse centered at the origin of a Cartesian coordinate system

G2

02
+ H

2

12
= 1. (2.22)

To switch between the Cartesian system and a set of polar coordinates centered at the focus
�, the following change of variables must be made:

G = 04 + A cos\, H = A sin\.

Substituting this change into (2.22) leads to the familiar formula

A =
1
√

1− 42
1+ 4 cos\

,

which upon being compared with the orbit equation (2.11) reveals an expression of the semi-
minor axis 1 in terms of the semi-major axis and the eccentricity,

? = 1
√

1− 42. (2.23)



16 Chapter 2. Lambert’s Problem

By substituting (2.21), we arrive to

? = 0(1− 42),

an identical expression to that involving the energetic constant. Therefore, these two appar-
ently unrelated parameters are indeed equivalent. This applies not only to ellipses, but to
any given conical section.

Consequently, a relationship between the energy of an orbit and its size exist. In Fig. 2.7,
various orbits of di�erent size (proportional to their eccentricity, being A? fixed) are repre-
sented. In Sect. 2.2.4, it will be shown that 0 takes a negative value for the hyperbola. The
parabola then acts as the demarcation between closed, negative energy orbits (ellipses) and
open, positive energy orbits (hyperbolas). The minimum-energy orbit is an ellipse (0 > 0) with
the smallest possible value of the semi-major axis 0.

From the specific energy equation (2.13), we also obtain the speed E of an orbiting body
at a distance A from its focus:

E =

√
2`

A
− `
0
. (2.24)

2.2.3 Parabolic trajectories (4 = 1)

Figure 2.8 Geometric parameters
of a parabola.

When the eccentricity equals 1, then the orbit equation becomes

A =
?

1+ cos\
. (2.25)

As the true anomaly \ approaches 180◦, the denominator approaches zero, so that A tends
towards infinity. Therefore, −180◦ < \ < 180◦. The parameter ? still holds its geometric
significance, but not the same can be applied to the rest of parameters. For instance, recall
that ? = ℎ2/` and thus it carries a physical meaning. At the same time, ? = 0(1− 42), which
due to 4 being zero can only imply that 0 tends towards infinity (so an indeterminate form
of the type ∞× 0 can be obtained, which results in ? taking a finite value). Therefore, a
parabola is not a closed trajectory and only the periapsis % can be defined. From (2.25) its
coordinates turn out to be (?/2, 0).



2.2 Geometric properties of conic trajectories 17

As 0 tends towards infinity, the specific energy of a parabolic orbit is zero. In other
words, the speed anywhere on a parabolic path is

E =

√
2`

A
.

An orbiting body will coast to infinity, arriving there with zero speed relative to the massive
body. It will not return. Parabolic paths are therefore called escape trajectories. The escape
velocity at a given distance A from the center of attraction is then

E4 =

√
2`

A
. (2.26)

2.2.4 Hyperbolic trajectories (4 > 1)

Figure 2.9 Geometric parameters
of a hyperbola.

Lastly, if 4 > 1, the orbit equation

A =
?

1+ 4 cos\
(2.27)

describes the geometry of the hyperbola shown in Fig. 2.9. The system consists of two
symmetric curves. One of them is occupied by the orbiting body, and the other one is
its empty, mathematical image. The vacant trajectory, shown on the right, is physically
impossible because it would require a repulsive gravitational force (as the massive body is
located at the focus, �).

A hyperbolic orbit has a few particular characteristics that di�erentiate it from an
elliptical or parabolic one. For instance, the denominator of (2.27) will go to zero when
cos\ = −1/4. We denote this value of the true anomaly

\∞ = cos−1(−1/4), (2.28)

since the radial distance approaches infinity as the true anomaly approaches \∞. From
trigonometry it follows that

sin\∞ =

√
42−1

4
. (2.29)



18 Chapter 2. Lambert’s Problem

Therefore, the occupied orbit is bounded by two asymptotes (as illustrated in Fig. 2.9) and
−\∞ < \ < \∞. The angle between these asymptotes is called the turn angle X. As its name
implies, it is the angle through which the velocity vector is rotated as the orbiting body comes
closer to the attracting body and heads back towards infinity. From the figure we see that

X = 2\∞−180◦ = 2(\∞−90◦),

which by introducing 2.28 leads to

X = 2sin−1(1/4). (2.30)

As to the obtaining of the parameters 0, 1 and 2, a few discrepancies exist between the
approaches taken by di�erent authors, mostly having to do with the sign of each parameter.
When dealing with a hyperbola, these quantities are not as intuitively measured as they were
in the previous cases. In this work, the approach taken by Vázquez in his class notes [4] is
followed and all three parameters turn out to be negative. First, from (2.14) the length −0
of the semi-major axis can be obtained. Given that ? is strictly positive, 0 must then take
a negative value. Secondly, the vertical distance −1 from the periapsis % to an asymptote
becomes the semi-minor axis of the hyperbola. From Fig. 2.9, we see that its length is

−1 = −0 tan(180◦− \∞) = −0
sin(180◦− \∞)
cos(180◦− \∞)

= −0 sin\∞
−cos\∞

= −0
√
42−1/4
−(−1/4) ,

so therefore
1 = 0

√
42−1. (2.31)

When 0 and 1 are equal, the resulting hyperbola is called an equilateral or rectangular hyper-
bola, and 4 =

√
2. To obtain 2 we simply apply its definition for the elliptic case, 2 = 04, and

similarly it represents the distance between the center � and the focus �. Finally, we remark
that the geometric significance of the parameter ?, being the semilatus rectum, still remains
valid.

Let E∞ denote the speed at which a body on a hyperbolic path arrives at infinity. According
to (2.24)

E∞ =

√
−`
0
, (2.32)

and it receives the name of hyperbolic excess velocity. In terms of E∞ we may write (2.13) as

E2

2
− `
A
=
E2∞
2
.

Substituting the expression for escape velocity (2.26), we obtain for a hyperbolic trajectory

E2 = E24 + E2∞. (2.33)

This equation shows that hyperbolic excess velocity represents the excess specific kinetic
energy over that which is required to simply escape from the center of attraction. The square
of E∞ is denoted �3 (�3 = E

2
∞), and is known as the characteristic energy. �3 is a measure of the

energy required for an interplanetary mission, and it allows for the comparison of di�erent
trajectories in energetic terms. To match a launcher with a mission, �3 | launcher > �3 | mission.



2.2 Geometric properties of conic trajectories 19

2.2.5 Eccentric and hyperbolic anomalies

A new angle to replace the true anomaly \ is customary for elliptic motion, and helps relating
time and position. Let � be the center and � the focus of an ellipse as shown in Fig. 2.10.
Construct a circle of center � and radius 0. For any given value of \, a vertical line can be
drawn from % (belonging to the ellipse) to & (belonging to the circle). The angle ∠&�� was
called the eccentric anomaly by Kepler and is denoted by � .

Figure 2.10 Eccentric anomaly.

On a Cartesian coordinate system centered at �, the equation of the ellipse can be ex-
pressed in parametric form as

G = 04 + A cos\, H = A sin\, (2.34a)

and in terms of � ,

G = 0 cos�, H = 1 sin� = 0
√

1− 42 sin�. (2.34b)

The radial position of the point % is easily expressed in terms of � using (2.34a) and (2.34b):

A2 = A2 sin2 \ + A2 cos2 \ = 02 [(1− 42) sin2 � + cos2 � −24 cos� + 42]
= 02 [1−24 cos� + 42 cos2 �]
= [0(1− 4 cos�)]2.

Thus
A = 0(1− 4 cos�), (2.35)

and if this is compared with the polar equation of the ellipse

A =
0(1− 42)
1+ 4 cos\

,

we obtain the identities

cos\ =
cos� − 4

1− 4 cos�
, sin\ =

√
1− 42 sin�

1− 4 cos�
. (2.36)



20 Chapter 2. Lambert’s Problem

From (2.36) an alternative identity can be derived:

tan
\

2
=

sin\

1+ cos\
=

√
1+ 4
1− 4

sin�

1+ cos�
=⇒ tan

\

2
=

√
1+ 4
1− 4 tan

�

2
. (2.37)

This is a most useful relation between \ and � , since \/2 and �/2 are always in the same
quadrant.

An analogous procedure for hyperbolic motion can be formulated. However, the analysis
is more easily accomplished in terms of hyperbolic, rather than trigonometric, functions.
Consider the formula which describes an hyperbola centered at the origin of a Cartesian
coordinate system,

G2

02
− H

2

12
= 1,

and the familiar identity
cosh2� − sinh2� = 1.

The parametric equations of the hyperbola can then be written as

G = 0 cosh�, H = 1 sinh�, (2.38)

and the radial position becomes

A = 0(1− 4 cosh�). (2.39)

Similarly to the elliptic case, it can be shown that the relation between � and the true
anomaly is

tan
\

2
=

√
4 +1

4−1
tanh

�

2
. (2.40)

An alternative formulation using trigonometric functions and the Gudermannian transfor-
mation can be made, but is not as elegant and requires a greater number of steps. However,
it does provide a clearer geometric interpretation. For further information, refer to [5].

2.2.6 Geometric representation of � and �

From Sect. 2.1.2, the rate at which the radius vector sweeps out area is

3�

3C
=
A2 ¤\
2
,

therefore
3� =

1

2
A23\.

Expressing this equation in Cartesian coordinates we obtain

3� =
1

2
(G3H− H3G).

Hence, for the unit circle

G2 + H2 = 1 or G = cos�, H = sin�,



2.2 Geometric properties of conic trajectories 21

and for the unit equilateral hyperbola

G2− H2 = 1 or G = cosh�, H = sinh�,

we have

3� = 3�/2 (unit circle),

3� = 3�/2 (unit equilateral hyperbola).

The shaded areas shown in Fig. 2.11 are then equal to �/2 and �/2 respectively. For a circle,
� also corresponds to the physical angle ∠'�%. However, � does not have such an interpre-
tation, and this geometric construction is perhaps the only way to visualize it. Trigonometric
functions are frequently called circular functions and this analogy between circular and and
hyperbolic functions is the reason for the designation of the latter as hyperbolic.

Figure 2.11 Geometric significance of � and �.

From this discussion, it is clear that just as an auxiliary circle is used in the analysis of
elliptical orbits, when treating hyperbolic orbits an equilateral hyperbola with identical major
axis to the one under consideration should be used. This is shown in Fig. 2.12. When the
equilateral parabola is not unitary, the shaded area corresponds to 02�/2.

Figure 2.12 Hyperbolic anomaly.



22 Chapter 2. Lambert’s Problem

2.3 Orbital position as a function of time

Being able to determine a relation between the position of an orbiting body and time is
essential to the resolution of Lambert’s problem. However, it’s form depends on the type of
orbit (circular, elliptic, parabolic or hyperbolic) and in most cases it is not an easily obtained
relation.

For circular orbits the solution is yet quite simple. As the distance 0 from any point of a
circle to its center does not vary, from (2.24) we obtain that the velocity of an orbiting body
in a circular motion must be constant and equal to

E2 =

√
`

0
. (2.41)

The angular velocity is the linear velocity divided by the radius 0,

l =
E2

0
=

√
`

03
, (2.42)

and therefore the argument of latitude D (D = l+ \) is proportional to the time C,

D = lC =

√
`

03
C. (2.43)

For elliptic orbits, it is usual to define the mean angular motion or simply mean motion,
denoted by =. This quantity represents the angular velocity of a body moving along the
auxiliary circle, with a radius equal to the semi-major axis of the ellipse. The term used
implies an average angular velocity, and indeed from (2.17) it follows that

= =

√
`

03
=

2c

)
, (2.44)

being ) the period of the orbit. Thus, Kepler’s third law of motion may be stated simply as

` = =203. (2.45)

2.3.1 Barker’s equation

The relation between the true anomaly and the time for a parabola is called Barker’s equation.
Substituting the orbit equation of a parabola,

A =
?

1+ cos\
,

into Kepler’s law of areas,

A2
3\

3C
= ℎ =

√
?`, (2.46)

yields

?2

(1+ cos\)2
3\

3C
=
√
?` =⇒ 1

(1+ cos\)2 3\ =

√
ℎ

?3
3C.



2.3 Orbital position as a function of time 23

Performing the integration we obtain Barker’s equation,

tan3 \

2
+3tan

\

2
= 2� where � = 3ΔC

√
ℎ

?3
(2.47)

and ΔC is the time relative to periapsis passage1. The solution for \ when ΔC is given requires
the root of a cubic equation. To obtain it, we substitute

tan
\

2
= I− 1

I

and derive
I6−2�I3−1 = 0,

for which
I = (�±

√
�2 +1) 13 .

The two solutions verify I1I2 = −1, and therefore

tan
\

2
= I1−

1

I1
= I2−

1

I2
= I1 + I2 = (�+

√
�2 +1) 13 + (�−

√
�2 +1) 13 .

2.3.2 Kepler’s equation

A direct integration of (2.46) does not result in a useful expression except for a circle or
parabola. Kepler’s original derivation of the equation which bears his name was geometric,
but for this project an analytic derivation is preferred because of its simplicity. This approach
involves the eccentric anomaly defined in Sect. 2.2.5. We use the identities (2.36) to obtain

3\ =

√
1− 42

1− 4 cos�
3�. (2.48)

Hence, from the law of areas and (2.35), we have

A23\ = 0
√

1− 42(1− 4 cos�) 3� = ℎ 3C.

The integration is now trivial and the result is traditionally expressed as

" = � − 4 sin� where " =

√
`

03
ΔC = =ΔC, (2.49)

= being the mean motion and ΔC, once again, the time relative to periapsis passage. "

was called the mean anomaly by Kepler, and one may interpret it as the angular position of
a body with constant angular velocity along the auxiliary circle. The relation between the
mean anomaly and the eccentric anomaly, as expressed by (2.49), is called Kepler’s equation.
The hyperbolic form of Kepler’s equation can be obtained following a similar procedure, but
using the hyperbolic anomaly instead of � . We then arrive to

# = 4 sin� −� where # =

√
`

−03ΔC. (2.50)

1 The time of periapsis passage is the time at which an orbiting body moves through the periapsis of the orbit.
Many authors denote this instant by g, and therefore ΔC = C − g.



24 Chapter 2. Lambert’s Problem

2.4 Solving Lambert’s problem

Lambert’s problem, sometimes referred to as the orbital boundary problem, is concerned
with the determination of an orbit from two position vectors and the time of flight. Over the
years a variety of techniques and procedures have been developed for solving this problem.
In this project the approach taken by Lancaster et al. [1] will be followed, as it is relatively
simple compared to other alternative procedures and algorithms. Furthermore, it provides
an universal solution to the problem (that is, valid for elliptic, hyperbolic and parabolic
orbits).

Consider an orbiting body located at distances A1 and A2 from the center of attraction at
times C1 and C2 respectively. Let 2 be the distance and Δ\ the transfer angle between the
positions of the orbiting body at the two times, where 0 ≤ Δ\ ≤ 2c.

Figure 2.13 A diagram of the two-body orbital
boundary problem.

Lambert’s problem is that of finding the semi-major axis (or some related quantity) of the
orbit, given C1, A1, C2, A2 and Δ\. When Lambert’s problem has been solved, other quantities
associated with the orbit are easily found, as will be later discussed.

2.4.1 The classical form of Lambert’s equations

With origin at the center of attraction, we have, for elliptic motion,

A1 = 0(1− 4 cos�1), (2.51)

A2 = 0(1− 4 cos�2), (2.52)

=(C1− g) = �1− 4 sin�1, (2.53)

=(C2− g) = �2− 4 sin�2, (2.54)

where = is the mean motion and g the time of periapsis passage, as defined in the previous
section. In the perifocal frame of reference, r1 and r2 are expressed as

r1 = 0(cos�1− 4) eG + 0
√

1− 42 sin�1 eH ,

r2 = 0(cos�2− 4) eG + 0
√

1− 42 sin�2 eH .
(2.55)



2.4 Solving Lambert’s problem 25

Using the law of cosines, we can express 2 in terms of A1, A2 and Δ\:

22 = A21 + A22 −2A1A2 cosΔ\, (2.56)

which is to say
22 = A21 + A22 −2r1 · r2. (2.57)

Substituting (2.55) in (2.57), we have

22 = 02(cos�2− cos�1)2 + 02(1− 42) (sin�2− sin�1)2,

= 402
(
1− 42 cos2

�1 +�2

2

)
sin2 �2−�1

2
. (2.58)

Adding (2.51) and (2.52),

A1 + A2 = 20

(
1− 4 cos

�1 +�2

2
cos

�2−�1

2

)
. (2.59)

Subtracting (2.53) from (2.54),

=(C2− C1) = (�2−�1) −24 cos
�1 +�2

2
sin

�2−�1

2
. (2.60)

(2.58), (2.59) and (2.60) determine the three unknowns 0, (�2−�1) and 4 cos[(�1+�2)/2].
To simplify these equations it is customary to define two new parameters, U and V. Let

cos
U+ V

2
= 4 cos

�1 +�2

2
, 0 ≤ U+ V < 2c, (2.61)

and
U− V = �2−�1−2<c, 0 ≤ U− V < 2c, (2.62)

where < is the number of complete revolutions made by the orbiting body between times C1
and C2. (2.58), (2.59) and (2.60) then become

2

20
= sin

U+ V
2

sin
U− V

2
, (2.63)

A1 + A2
20

= 1− cos
U+ V

2
cos

U− V
2

, (2.64)

=(C1− C2) = 2<c +U− V− cos
U+ V

2
sin

U− V
2

. (2.65)

With appropriate trigonometric identities, (2.63) and (2.64) can be expressed as

cos V− cosU =
2

0
,

cos V+ cosU = 2− A1 + A2
0

.



26 Chapter 2. Lambert’s Problem

Solving these two equations, yields

cosU = 1− B
0
= 1+2*, (2.66)

cos V = 1+2 *, (2.67)

where we have defined

B =
A1 + A2 + 2

2
, * = − B

20
, and  = 1− 2

B
. (2.68)

Since cosU = 1−2sin2(U/2), (2.66) can be changed to

* = −sin2 U

2
, 0 ≤ U < 2c, (2.69)

and similarly, (2.67) becomes

 * = −sin2 V

2
, −c ≤ V < c. (2.70)

Note that the limits for U and V come from the two inequalities for (2.61) and (2.62), as
detailed below in Sect. 2.4.2.

The parameter  can be alternatively expressed as

 =
B− 2
B

=
A1 + A2− 2

2B
=
(A1 + A2)2− 22

4B2
,

and introducing (2.56), we have

 =
A1A2(1+ cosΔ\)

2B2
=
A1A2

B2
cos2

Δ\

2
.

Now, substituting (2.69) in (2.70),

sin
V

2
= @ sin

U

2
, −c ≤ V < c, (2.71)

where

@ = ±
√
 =

√
A1A2

B
cos

Δ\

2
. (2.72)

Note that the sign of @ is taken care of by the angle Δ\:

1 ≥ @ ≥ 0 for Δ\ ≤ c,
0 ≥ @ ≥ −1 for Δ\ ≥ c.

(2.73)

We now have an equation relating U and V as a function of @, which is known. Therefore, we
need another equation relating these two parameters to find their values. We can introduce
* into (2.65), since

=(C2− C1) =
√
`

03
(C2− C1) = � (−*)

3
2 ,



2.4 Solving Lambert’s problem 27

where

� =

√
8`

B3
(C2− C1). (2.74)

Consequently,

� = (−*)− 3
2

[
2<c +U− V− cos

U+ V
2

sin
U− V

2

]
, (2.75)

which can also be written as

� = (−*)− 3
2 [2<c +U− V− (sinU− sin V)] . (2.76)

Substituting (2.69) into (2.76), we obtain

� sin3 U

2
= 2<c +U− V− sinU+ sin V. (2.77)

(2.71) and (2.77) with 0 ≤ U < 2c are Lambert’s equations for elliptic motion. Given � and
@, they are to be solved for U and V. Then, 0 can be obtained from (2.69) and it is a simple
matter to find all other quantities associated with the orbit (more information in Sect. 3.4).

2.4.2 The U and V parameters

As it has been shown, in the classical formulation of Lambert’s Problem, two angles U and V
appear. Historically, they serve as a means to simplify the equations involved in Lambert’s
problem. In the following lines, some further insight into these parameters is provided, and
a geometric interpretation given by John E. Prussing [8] is briefly summarized.

First, consider their definition,

cos
U+ V

2
= 4 cos

�1 +�2

2
, 0 ≤ U+ V < 2c,

U− V = �2−�1−2<c, 0 ≤ U− V < 2c.

These two inequalities are geometrically equivalent to the shaded region showed in Fig. 2.14.

Figure 2.14 The UV plane.



28 Chapter 2. Lambert’s Problem

From this representation it is evident that 0 ≤ U < 2c and −c ≤ V < c. We can also obtain
0 ≤ U < 2c by adding both inequalities, and if we add V−U to each part of the first inequality
and divide the result by two, we obtain −c ≤ V < c.

These limits are defined due to the nature of trigonometric functions. If U and V were
unbounded, an infinite number of solutions would satisfy Lambert’s equations; given a pair
of values U0, V0 that were a solution to the problem, any pair U0 +4:c, V0 +4:c (: being an
integer) would also satisfy the equations. Therefore, limits are required to obtain an unique
solution.

When the orbiting body makes a number of complete revolutions between times C1 and
C2, �2 − �1 will be greater than 2c. The parameter <, which accounts for the number of
revolutions, is introduced to maintain U and V within their limits.

To approach the geometric interpretation of the parameters in question it is necessary to
introduce perhaps one of the most remarkable theorems in the connection between orbital
quantities and the many surprising properties of conics. Discovered by Lambert, Lambert’s
theorem has to do with the time to traverse an elliptic arc (although it is true for a general
conic). Making reference to the parameters shown in Fig. 2.13, Lambert conjectured that
the orbital flight time depends only upon the semi-major axis, the sum of A1 and A2, and 2. If C2− C1
is the time to describe the arc from %1 to %2, then Lambert’s theorem states that

√
`(C2− C1) = � (0, A1 + A2, 2), (2.78)

which can indeed be proven using the equations obtained in Sect. 2.4.1.

Lambert’s theorem permits interesting and important geometric transformations of the
boundary value problem while maintaining some key properties. For example, consider an
elliptic arc from %1 to %2. By moving the focus and vacant focus the ellipse can become
very flat. Ultimately, the limiting case is obtained with the foci at �A and �

′
A , as illustrated

in Fig. 2.15, and the entire curve flattens out to coincide with the major axis. The orbit is
then a rectilinear ellipse (4 = 1, ? = 0, 0 ≠ 0), which has the same values of A1 +A2 and 0 and
hence the same flight time C2− C1, and U and V as the original orbit.

Figure 2.15 Transformation
of an ellipse.



2.4 Solving Lambert’s problem 29

For simplicity, consider the case with no complete revolutions between times C1 and C2,
that is, < = 0. Kepler’s equation for the flight time between two points in an elliptical orbit,
whose locations are specified by the values of eccentric anomaly �1 and �2, is

√
`(C2− C1) = 0

3
2 [�2−�1− 4(sin�2− sin�1)] .

By comparing this equation with the one obtained in terms of U and V,

√
`(C2− C1) = 0

3
2 [U− V− (sinU− sin V)],

one can interpret U and V as the values of eccentric anomaly on the rectilinear ellipse (4 = 1)
between %1 and %2, having the same values of 0 and A1 + A2 as the original orbit.

Figure 2.16 Geometric interpretation of
the angles U and V for an elliptic orbit.

The geometric interpretation of U and V then follows the usual interpretation of eccentric
anomaly, as shown in Fig. 2.16. Of course, this interpretation corresponds to the orbit
sketched in Fig. 2.15. When the transfer angle Δ\ exceeds 180 degrees, or when � ′ is
contained within the area �C 5 swept1 by the radius vector from C1 to C2, U and V may belong
in di�erent quadrants. Based on Battin’s transformations of the four basic ellipses (Fig. 2.17),
a simple rule can be derived:

U ≤ c, V ≥ 0 if Δ\ ≤ c and � ′ ∉ �C 5

U ≥ c, V ≥ 0 if Δ\ ≤ c and � ′ ∈ �C 5

U ≥ c, V ≤ 0 if Δ\ ≥ c and � ′ ∈ �C 5

U ≤ c, V ≤ 0 if Δ\ ≥ c and � ′ ∉ �C 5

(2.79)

For the particular case sketched in Fig. 2.15, Δ\ ≤ c and � ′ ∉ �C 5 , so the result shown in
Fig. 2.16 is obtained. When solving Lambert’s problem, this correspondence between the
quadrants of U and V and whether � ′ is contained within �C 5 , gives a good intuition on
how the complete orbit may look like. Recall from (2.73) that the condition for Δ\ can be
substituted by one involving the sign of @.

1 In other words, �C 5 is the area enclosed by the straight segments A1, A2 and the elliptic arc traveled from %1
to %2.



30 Chapter 2. Lambert’s Problem

Figure 2.17 Transformations of the four basic ellipses. Adapted from [5].

The cases illustrated in Fig. 2.17 follow the same order (from top to bottom) as those
presented in (2.79).



2.4 Solving Lambert’s problem 31

2.4.3 A unified form of Lambert’s equations

Up until now the focus has been on elliptic orbits. However, following the approach taken
by Lancaster et al. [1], in this section we show how to compute an universal solution valid
for elliptic, hyperbolic and parabolic transfers.

By a derivation very similar to that for the elliptic case, one finds for the hyperbolic case

� = −*− 3
2 [W− X− (sinhW− sinhX)], (2.80)

* = sinh2 W

2
, (2.81)

sinh
X

2
= @ sinh

W

2
. (2.82)

Unfortunately, just as the hyperbolic anomaly � does not have a geometric interpretation as
an angle, neither do W and X.

It is customary in the literature to consider � as a function of *. However, when < = 0,
(2.76) and (2.80) break down for * = 0 and su�er from a critical loss of significant digits in
the neighborhood of * = 0. To remedy this, (2.76) is written in the form

� = f(−*) − @ f(− *), (2.83)

where

f(D) = 2
arcsin

√
D−

√
D(1−D)

D
3
2

Replacing arcsin
√
D and

√
D(1−D) by a series [9] with 0 ≤ U < c, we have

f(D) = 4

3
+
∞∑
==1

0=D
=, 0= =

2=−1

==−2(2=+3)=! for |D | < 1.

A similar procedure produces the same series for the hyperbolic case. For the parabolic case,
we have * = 0, and the series gives

� =
4

3
(1− @3). (2.84)

Thus with < = 0, we have a series which is valid for elliptic, hyperbolic and parabolic transfers
provided |* | < 1 (with 0 ≤ U < c for the elliptic case).

The choice of* as the independent variable makes � a double-valued function (two values
of U or W can be obtained from (2.69) and (2.81) respectively, which provide two di�erent
solutions for �). This problem can be avoided by choosing U or W as the independent variable.
However, an even better choice was proposed by Lancaster et al. If we choose

G = cos
U

2
, −1 ≤ G ≤ 1,

= cosh
W

2
, G > 1,

as the independent variable, a better-behaved function is obtained.



32 Chapter 2. Lambert’s Problem

We then have, for elliptic, hyperbolic and parabolic transfers,

* = G2−1.

For the parabolic case, we let G = 1.

For the elliptic case, let

H = sin
U

2
=
√
−*,

I = cos
V

2
=
√

1+ *,

5 = sin
U− V

2
= H(I− @G),

6 = cos
U− V

2
= GI− @*,

ℎ =
1

2
(sinU− sin V) = H(G− @I),

_ = arctan
5

6
, 0 ≤ _ ≤ c.

It then follows from (2.75) that

� = 2
<c +_− ℎ

H3
.

For the hyperbolic case, let

H = sinh
W

2
=
√
*,

I = cosh
X

2
=
√

1+ *,

5 = sinh
W− X

2
= H(I− @G),

6 = cosh
W− X

2
= GI− @*,

ℎ =
1

2
(sinhW− sinhX) = H(G− @I).

Note that 0 ≤ W− X <∞, since 0 ≤ 5 <∞. Additionally,

W− X
2

= arctanh
5

6
= ln( 5 +6).

Thus, for the hyperbolic case,

� = 2
ℎ− ln( 5 +6)

H3
.



2.4 Solving Lambert’s problem 33

A self-contained universal algorithm

Given two position vectors1 r1, r2 and a time of flight C 5 = C2− C1, the parameters required to
formulate Lambert’s equations (@ and �) can be obtained.

Usually, an iterative process is employed to solve Lambert’s problem. Therefore, an initial
estimate for the iteration parameter (in this case G, but alternative variables can be chosen)
is made, through which a value of � is obtained. Then, depending on whether this value is
greater or less than the actual one, a new estimation of the iteration parameter is proposed.
This choice is based on the derivative of � with respect to the iteration parameter. The
following formula for the derivative holds for all cases except for G = 0 with @ = ±1, and for
G = 1:

3�

3G
=

4−4@ G/I−3G)

�
.

If G is near 1, we di�erentiate (2.83) to obtain

3�

3G
= 2G [@ 2f′(− �) −f′(−�)], f′(D) = 3f

3D
=

∞∑
==1

=0=D
=−1.

Figure 2.18 Plot of � against G for selected values of @ and <. Adapted from [2].

Fig. 2.18 plots � against G for particular values of @ and <. Its most striking feature consists
in the gaps (unrealizable regions) that occur in the part of the figure associated with elliptic
orbits (G < 1). Another interesting observation is that in the case < ≠ 0 for given values of
� and @, two di�erent elliptic orbits are possible solutions to the problem. In Chapter 5 an
in-depth analysis of this figure is made.

1 These can be obtained through the planetary ephemerides, an important tool which is reviewed in Sect. 3.1.



34 Chapter 2. Lambert’s Problem

As for now, note the discontinuity in the slope for G = 0 with @ = ±1. Thus we are led to
consider four cases: @ = ±1 with G ≥ 0 and @ = ±1 with G ≤ 0. Examination of the formulas
for 3�/3G in these cases reveals that if @ = 1, we have a left-hand derivative of −8 and a right-
hand derivative of 0 at G = 0. If @ = −1, we have a left-hand derivative of 0 and a right-hand
derivative of −8 at G = 0.

According to Lancaster et al. [1], if the Newton-Raphson method is being used to find G,
for −0.05 < G < 0.05 a switch should be made to the secant (regula falsi) method to avoid
computing the derivative.

Below, a simple algorithm which covers all key aspects and procedures addressed so far is
presented.

Algorithm 1: Universal algorithm for Lambert’s Problem
Data: r1: radius vector of the starting position at C1

r2: radius vector of the arrival position at C2
C 5 : flight time (C 5 = C2− C1)

Result: Find G
Obtain A1 = ‖r1‖ and A2 = ‖r2‖;
Compute Δ\, the angle between r1 and r2;
Compute 2 and B from (2.56) and (2.68) respectively;
Compute @ from (2.72);
 = @2;
Compute �real from (2.74), where ` is that of the central body;
G = G0 (initial estimate);
� = 0 to enter the while condition;
while � does not come close enough to �real (G to the correct solution) do

* = G2−1;
if G is near 1 then

Compute � from (2.83);
else

H =
√
|* |;

I =
√

1+ *;
5 = H(I− @G);
6 = GI− @*;
if * < 0 then

_ = arctan( 5 /6);
3 = <c +_, where 0 ≤ _ ≤ c;

else
3 = ln( 5 +6);

end
� = 2(G− @I− 3/H)/*;

end
if |G | < 0.05 then

Estimate new value of G using the Newton-Raphson method;
else

Estimate new value of G using the secant method;
end

end



2.5 Conclusions 35

Multiple improvements have been made to this algorithm, including those by Gooding
[2] regarding well-thought heuristics for the initial estimate of G. Moreover, many variants
have been developed to optimize speed, precision and robustness (although in this form it
is already quite robust).

2.5 Conclusions

Along this first chapter, all the necessary background in orbital mechanics needed to ap-
proach Lambert’s problem has been addressed. Starting from Newton’s basic law of univer-
sal gravitation, we have worked up to obtaining some of the most fundamental equations for
the analysis of the two-body orbital boundary problem, culminating in Lambert’s equations.

When developing a laboratory class for a group of students with a limited duration, an
equilibrium must be reached between the quantity and the di�culty of the contents intro-
duced. Therefore, for this project, a decision has been made to consider solely the classical
form of Lambert’s equations, valid for ellipses.

In this form, (2.61) and (2.62) can be solved using refined root finding algorithms such as
fsolve, readily accessible in Python. This approach is appropriate for the laboratory class,
as the mathematical details of the di�erent methods used to solve this pair of non-linear
equations are beyond its scope.

The universal solution presented in Sect. 2.4.3 adds quite some di�culty to the problem,
as decision trees appear within the algorithm. These imply a more complex structure of the
code, and fsolve could no longer be applied to the equations directly. However, its existence
is mentioned in the laboratory report and some references are given for the students who
may have an interest in extending their knowledge.

The proposed idea is then to introduce the classical form of Lambert’s equations,

� sin3 U

2
= 2<c +U− V− sinU+ sin V,

sin
V

2
= @ sin

U

2
,

and solve them through fsolve or a similar function. However, for the cases in which the
resulting orbit approaches a parabola (that is, for U near 0), an additional piece of code
(based on the series expression for �) may be provided to increase the precision and ensure
convergence.

In Chapter 5, a straight-forward algorithm using Python (which is introduced in Chapter 4)
is developed, together with a comprehensive analysis of its convergence, robustness and
precision. Additionally, some examples and interesting results are reviewed.





3 Basic orbital mechanics’ tools
used in Lambert’s problem

To perform the analysis and optimization of an interplanetary mission (or generally, of
any transfer between two generic orbits), a great amount of information related to the

di�erent orbits involved is necessary. For instance, the positions of the starting and arrival
planets within the set of dates studied are required. Based on planetary ephemerides and
using orbit propagators (important tools reviewed in Sect. 3.1) a procedure to obtain these
position vectors is described in Sect. 3.2. In Sect. 3.3 we introduce the concept of sphere
of in�uence and the method of patched conic approximation. The orbital parameters of the
trajectory between each pair of points can then be computed through solving Lambert’s
equations. Given U and V, a procedure to obtain all the other quantities associated with
the orbit is addressed in Sect. 3.4. This information, together with the values of the initial
and final velocity vectors, provide the characteristic energy �3 required for each studied
trajectory. The results are traditionally expressed in the so-called pork-chop plots, described
in Sect. 3.5.

3.1 Planetary ephemerides and orbit propagators

In astronomy and celestial navigation, an ephemeris (or ephemerides in plural) gives the tra-
jectory of a given astronomical object. In most cases, this includes its position and velocity
over time. Historically, positions were given as printed tables of values for regular intervals of
date and time. Modern ephemerides, however, are often computed electronically, although
in some cases printed tables are still produced. Usually, ephemerides are used in conjunc-
tion with orbit propagators. A propagator is an algorithm whose objective is to obtain future
ephemerides from the known orbital parameters at a certain epoch. An epoch is an instant
in time that serves as a reference point from which time is measured. For astronomical pur-
poses, epoch J2000.0 is commonly used and most data has been updated to this standard. It
corresponds to January 1, 2000 at 12:00 TT (Terrestrial Time)1, and the prefix "J" indicates
that it is a Julian epoch (based on Julian years, which we discuss later).

1 Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical
Union, primarily for time measurements of astronomical observations made from the surface of Earth. TT is
distinct from the time scale often used as a basis for civil purposes, Universal Time (UT), but the di�erence
is minimal (∼ 32 seconds). When using propagators for large time intervals, J2000.0 can be approximated to
January 1, 2000 at 12:00 UT.

37



38 Chapter 3. Basic orbital mechanics’ tools used in Lambert’s problem

For this project, a simple linear propagator is chosen, as it provides enough accuracy for
our purposes and is easy to implement. For simplicity, we will only consider the major planets
of the Solar System. The initial values of each set of orbital elements and their rates, with
respect to the plane of the ecliptic and J2000.0, can be obtained from Standish et al. [10].
These are valid for any date between 1800 AD and 2050 AD. The orbital elements for one
of the planets at a given Julian date �� are then obtained from:

(0, 4, 8, Ω, s, !) = (00, 40, 80, Ω0, s0, !0) +
3

3C
(0, 4, 8, Ω, s, !) ·)2 , (3.1)

where s = Ω+l is the longitude of periapsis and ! = s +" is the mean longitude (" being
the mean anomaly and the rest of variables those defined in Sect. 2.1.3). )2, the number of
centuries past J2000.0, is

)2 =
�� −2451545

36525
.

A Julian date represents the continuous count of days since the beginning of the Julian
Period ( January 1, 4713 BC at 12:00 UT). For instance, J2000.0 corresponds to �� 2452545.
A Julian year is defined as exactly 365.25 days, and therefore a Julian century consists of
36525 days. The following formula provides the Julian day corresponding to a given date at
00:00 UT:

�� = 367. −
⌊
7�+7 b(" +9)/12c

4

⌋
+

⌊
275"

9

⌋
+� +1721013.5, (3.2)

where . is the year, " the month and � the day of the month. The symbol bGc represents
the floor function, which omits the fractional part of G. This formula is valid for all Julian
calendar years ≥ 4713 BC, that is, �� ≥ 0.

For the analysis of interplanetary missions, the positions of the starting and arrival planets
within the set of dates studied are required. To compute these, a simple function can be
created in Python which takes each date expressed in Julian days as an input, and outputs
the orbital elements of a selected major planet. In Appendix B such function can be found,
along another that computes the Julian day of a date given in DD/MM/YYYY format. From
those orbital elements, the radius vector and the velocity can be obtained following the
procedure in Sect. 3.2.

3.2 Determining r and v through the orbital elements

The orbital elements of a celestial body fully describe its location and motion through space.
However, in many cases it is more convenient to express this information in terms of the
body’s position vector r and its velocity v.

For this project, students will be required to plot the orbits using Python. To accomplish
this, multiple values of the position vector must be obtained within a fixed interval of time
(for example, to plot a complete orbit its period must be considered). Therefore, a new set
of orbital elements slightly di�erent to those in (3.1) (which are the ones found in [10]) is
proposed:

(0, 4, 8, Ω, l, ΔC), (3.3)



3.3 Spheres of influence and patched conic approximation 39

where ΔC = C− g and g is the time of periapsis passage. ΔC is preferred because then a sweep
in days can be made to compute each position vector, instead of having to figure out the
range in terms of !, " or any other angular variable. To obtain l and ΔC from s and !,
we use the following identities:

l =s−Ω,

" = !−s =⇒ ΔC = "

√
03

`
.

From (3.3), the position vector and the velocity can be computed in a simple and straight-
forward manner. First, by using an iterative method (fsolve in practice) � is obtained from
Kepler’s equation,

� − 4 sin� = ΔC

√
`

03
.

Then, r is expressed in perifocal coordinates as

rperif = 0(cos� − 4) eG + 0
√

1− 42 sin� eH ,

and v can be derived from the conservation of the eccentricity vector,

v×h− ` r
A
= `e =⇒ v×h = − `

ℎ2

[(
e+ r

A

)
×h

]
×h =⇒ v =

h
0(1− 42) ×

(
e+ r

A

)
,

=⇒ vperif = −
√
`0

A
sin� eG +

√
`0(1− 42)

A
cos� eH . (3.4)

To convert r and v to heliocentric ecliptic coordinates, we simply multiply them by the
following rotation matrix R:

R =
©«
coslcosΩ− sinl sinΩcos 8 −sinlcosΩ− cosl sinΩcos 8
cosl sinΩ+ sinlcosΩcos 8 −sinl sinΩ+ coslcosΩcos 8

sinl sin 8 cosl sin 8

ª®¬ ,
which is a 3× 2 matrix and therefore transforms two-dimensional vectors (rperif and vperif)
into three-dimensional ones (recl and vecl):

recl =Rrperif, vecl =Rvperif.

In this new coordinate system we use the J2000.0 ecliptic plane as the reference plane, with
the - axis pointing towards the vernal equinox.

3.3 Spheres of influence and patched conic approximation

In this section we briefly introduce the concept of sphere of in�uence and the method of patched
conic approximation. They both simplify trajectory calculations for spacecraft in a multiple-
body environment.



40 Chapter 3. Basic orbital mechanics’ tools used in Lambert’s problem

A sphere of influence (SOI) is the approximately spherical region around a celestial body
where the primary gravitational influence on an orbiting object is said body. This is typi-
cally used to describe the areas in the Solar System where planets dominate the orbits of
surrounding objects such as moons, despite the much more massive but distant Sun.

The patched conic approximation divides space into various parts by assigning each of the
= bodies its own SOI. Therefore, an orbiting object is considered to be under the gravitational
influence of only one massive body at a time. This reduces a complicated =-body problem
to multiple two-body problems, for which the solutions are the well-known conic sections.
For example, once an orbiting object leaves a planet’s SOI, the only gravitational influence
considered would be the Sun (until the object enters another body’s sphere of influence).

For our purposes, only the transfer orbit within the Sun’s SOI is considered. To compute
the energetic cost of a mission in terms of �3, we need to obtain its value for both the launch
and arrival maneuvers. By way of illustration, let us consider an interplanetary mission from
Earth to Mars. Initially, the spacecraft would be orbiting the Earth in a parking orbit. A
parking orbit is a temporary orbit, usually at low altitudes. When a spacecraft embarks on
a space mission, it first boosts into the parking orbit, then coasts for a while, then fires again
to enter the final desired trajectory.

Figure 3.1 Geocentric phase in the
patched conic approximation.

In Fig. 3.1, the Earth is represented by a blue dot. The impulse ΔV1 is given to the
spacecraft at the parking orbit to set it onto an hyperbolic trajectory. This allows it to
escape Earth’s SOI with a velocity V∞1 along one of the hyperbola’s asymptotes, which is a
good approximation considering that the Earth’s SOI is close to 2 million km in diameter
(while parking orbits range within 100 ∼ 300 km of altitude).

When the spacecraft reaches the Earth’s SOI, we switch from a geocentric frame of ref-
erence to a heliocentric one. Considering these as inertial reference frames1, V∞1 and the
Earth’s velocity V⊕ can be added to obtain V1, the velocity in the heliocentric frame of
reference.

1 Even though this is not true, the error introduced is small and within the order of magnitude of those introduced
with the rest of approximations.



3.3 Spheres of influence and patched conic approximation 41

Computing �3 in this scenario is simple. On one hand, V⊕ can be obtained from the
Earth’s ephemerides as described in Sect. 3.2. Furthermore, V1 is the velocity at the starting
point of the transfer orbit and therefore it can be obtained through Lambert’s problem. Then,

�3 | launch =+2
∞1 =

V1−V⊕
2

After reaching the Earth’s SOI, the spacecraft begins its journey through the Solar System
under the Sun’s gravitational influence, as illustrated in Fig. 3.2. In this figure, the planets’
spheres of influence have been exaggerated to distinguish the di�erent phases (on real scale,
these would be barely noticeable). It is common practice to simply consider the starting
and arrival points of the transference orbit as the planets’ positions, which greatly reduces
the complexity of the analysis and is a good approximation. Additionally, the time spent
cruising through outer space (on a transfer orbit) greatly exceeds the time spent escaping
and entering the planets’ spheres of influence. Therefore, it is usual to neglect the latter in
order to further simplify the analysis.

Figure 3.2 Heliocentric phase in the patched conic approximation. Note that the Earth and
Mars’ spheres of influence are exaggerated, and the drawing is not to scale.

Lastly, the spacecraft enters a planetocentric phase (in this example, based on Mars) when
it approaches the arrival planet. Once inside Mars’ SOI, it describes a hyperbolic trajectory
(arriving once again along an asymptote), at whose periapsis an impulse ΔV1 is applied to
the spacecraft to return it into a parking orbit.



42 Chapter 3. Basic orbital mechanics’ tools used in Lambert’s problem

Note that the radius of periapsis of the arrival hyperbola cannot be deduced under the
considered approximations, and has to be arbitrarily imposed. However, this is not unreal-
istic since small impulse corrections of the orbit during the heliocentric phase would easily
allow to fix this value in a real flight. In Fig. 3.3 a diagram detailing this final phase is shown.

Figure 3.3 Planetocentric phase in
the patched conic approximation.

To compute �3 | arrival, a procedure analogous to the one described for the geocentric phase
is followed. In this case,

�3 | arrival =+2
∞2 =

V2−V♂
2,

and the total energetic cost of the mission is then

�3 | total = �3 | launch +�3 | arrival.

3.4 Determining an orbit through U, V and the initial data of
Lambert’s problem

Once Lambert’s equations have been solved for U and V, all other quantities associated with
the transfer orbit that is solution to Lambert’s problem can be obtained. In this section a
procedure is described which allows to fully determine its orbital elements. Our aim is to
compute the same set of orbital elements that were used previously to obtain r and v, as this
reduces the number of functions that will need to be introduced in the laboratory class.

Furthermore, as discussed in Sect. 2.5, only the elliptic form of Lambert’s equations will be
considered. Therefore, our focus is on ellipses, although a similar procedure can be applied
for the hyperbolic and parabolic cases.

In addition to U and V, we require the initial problem data (C1, A1, C2, A2 and Δ\, as stated in
Sect. 2.4). Usually, the starting and arrival position vectors (r1 and r2) are obtained from the
planetary ephemerides at a pair of given dates (C1 and C2). However, Δ\ cannot be computed
unambiguously from these position vectors. Two possible angles can be measured between
two vectors; if we denote one of them as X, the other will be 2c− X. This translates into two
possible transfer orbits between r1 and r2. One of them will follow a clockwise motion, while
the other an anticlockwise motion.



3.4 Determining an orbit through U, V and the initial data of Lambert’s problem 43

In our Solar System, the orbits about the Sun of all planets and most other objects are
direct, that is, in the same direction as the Sun rotates. An orbit in the direction opposite
to the rotation of its central object receives the name of retrograde orbit. To avoid possible
confusion, we will refer to direct and retrograde motion instead of clockwise or anticlockwise
motion (always with respect to the Sun’s rotation, in the context of an interplanetary mission).

Therefore, to correctly choose Δ\, we need to specify whether the considered transfer
orbit is direct or retrograde. In the heliocentric ecliptic coordinate system, a direct orbit has
its specific angular momentum h pointing towards the positive / axis (in other words, its /
component hI is positive). If the vector resulting from the operation r1 × r2 points towards
the positive / axis, the smallest angle between r1 and r2 would provide a direct transfer
orbit:

Δ\ = Δ\small = arccos
r1 · r2
A1A2

However, if r1×r2 points towards the negative / axis and a direct transfer orbit is still desired,
Δ\ = 2c−Δ\small. On the other hand, when a retrograde orbit is desired the opposite is true.

Usually, direct orbits are preferred as they imply much lower energetic costs since V⊕ is
added to the escape velocity (whereas to achieve a retrograde orbit it should be cancelled).
Therefore, in this project we will ignore retrograde orbits and only consider direct motion.
Once Δ\ has been determined, we proceed to the calculation of the orbital elements. First,
let us compute 2 and B from r1 and r2,

22 = A21 + A22 −2r1 · r2, B =
A1 + A2 + 2

2
.

Then, the semi-major axis 0 can be obtained from

sin2 U

2
=
B

20
=⇒ 0 =

B

2sin2(U/2)
,

and additionally,
�2−�1 = 2c< +U− V.

Carrying out the dot product of (3.2) with (3.4) yields

r ·v =
√
`0

A2
sin2 � + `0(1− 4

2)
A2

cos2 � =

√
`0

A
4 sin�,

which together with (2.5) and (2.35) provide two important identities,

4 cos� = 1− A
0
, 4 sin� =

A ¤A
√
`0
.

Substituting these into

=(C2− C1) = �1− 4 sin�1−�2 + 4 sin�2,

leads to

¤A1 = EA1 =
=(C2− C1) − (�2−�1) + (1− A1/0) sin(�2−�1)

A1 [1− cos(�2−�1)]/
√
`0

,



44 Chapter 3. Basic orbital mechanics’ tools used in Lambert’s problem

and a similar equation for ¤A2. Furthermore,

E =

√
2`

A
− `
0
,

and

E \ =

√
E2− E2A .

For the velocity v1 we have
v1 = vA1 + v\1

where vA1 is along r1 and v\1 is in the plane of motion perpendicular to r1 and in the
direction of motion (in the direction of increasing true anomaly). We have

vA1 = EA1
r1
A1
, v\1 = 21r1 + 22r2,

where 21 and 22 are to be determined. Since

r1 ·v\1 = 0 = 21A21 + 22r1 · r2,

r2 ·v\1 = A2E \1 sinΔ\ = 21r1 · r2 + 22A22 ,

and r1 · r2 = A1A2 cosΔ\, we have

21A1 + 22(A2 cosΔ\) = 0,

21(A1 cosΔ\) + 22A2 = E \1 sinΔ\.

Solving for 21 and 22, we obtain

v1 =
(
EA1−

E \1

tanΔ\

) r1
A1
+ E \1

sinΔ\

r2
A2
.

In a similar way, we find

v2 = −
E \2

sinΔ\

r1
A1
+

(
EA2−

E \2

tanΔ\

) r2
A2
.

We must keep in mind that these procedures later become functions in Python. Even
though r1, r2, v1 and v2 can all be computed directly, without determining the complete
set of orbital parameters, it is good practice to keep the functions simple and modular.
Therefore, we obtain the remaining parameters to later make use of the previous function
which outputs r and v. Moreover, this allows us to easily compute any pair r, v from the
transfer orbit, and not just those at times C1 and C2.

Through r1 and v1, the specific angular momentum h and the eccentricity vector e can
be computed. From their definitions in Sect. 2.1, we have

h = r1×v1, ℎ = ‖h‖,

e =
v1×h
`
− r1
A1
, 4 = ‖e‖.



3.4 Determining an orbit through U, V and the initial data of Lambert’s problem 45

Additionally, we obtain the nodal vector n,

n =
eI ×heI ×h ,

where eI represents the unit vector in the / direction, and not the / axis component of the
eccentricity vector.

The angle of inclination 8 can be easily computed from h,

8 = arccos
hI
ℎ
,

where 0 ≤ 8 ≤ c.

Recall from Fig. 2.2 that the longitude of the ascending node Ω becomes the angle between
n and the First Point of Aries (the G direction in our coordinate system). Therefore,

Ω = arctan
=H

=G
,

and to choose the quadrant correctly, the Python function arctan2() can be used. This
function returns an angle between −c and c.

The argument of periapsis l can be interpreted as the angle between n and e,

l = arccos
n ·e
4
.

If the / component of e is positive, e will lay above the reference plane and 0 ≤ l ≤ c. On
the other hand, if the / component of e is negative, −c ≤ l ≤ 0.

Finally, to obtain ΔC we must first compute the true anomaly \. From the orbit equation
in polar coordinates,

\1 = arccos
0(1− 42) − A1

4A1
,

where 0 ≤ \ ≤ c if the orbit is being traveled from periapsis to apoapsis (if ¤A1 > 0), and
−c ≤ \ ≤ 0 in the opposite scenario ( ¤A1 < 0). Then,

�1 = 2arctan

(√
1− 4
1+ 4 tan

\1

2

)
=⇒ "1 = �1− 4 sin�1,

ΔC1 = "1

√
03

`
.

Note that ΔC1 = C1 − g has been arbitrarily chosen, instead of ΔC2. In the practical class,
students will be asked to plot the transfer orbit. This is achieved through a simple for-
loop, indicating a selected number of dates (ranging between C1 and C2). By choosing ΔC1 it
becomes simpler to perform a sweep in the usual direction of time, which is perhaps more
intuitive.

A Python function which implements the contents presented in this section can be found
in Appendix B.



46 Chapter 3. Basic orbital mechanics’ tools used in Lambert’s problem

3.5 Pork-chop plots

The tool traditionally used to choose the starting and arrival dates for a one-way impulsive
mission is the pork-chop1 plot. The classical pork-chop plot uses as a cost function the
characteristic energy �3 = E

2
∞, and expresses it as a function of possible starting and arrival

dates. A given contour, called a pork-chop curve, represents constant �3, and at the center of
these pork-chop curves we find the optimal transfer orbit (the one with minimum �3).

Figure 3.4 Representative pork-chop plot for the 2005 Mars launch opportunity. A given
blue contour represents a solution with a constant �3, and the red lines represent trips with

the same time of flight. [11]

More than one optimal solution may exist for a given range of dates. In Fig. 3.4 a pork-
chop plot for the 2005 Mars launch opportunity is represented (�3 | launch). On the horizontal
axis, di�erent starting dates are considered. On the vertical axis, we find possible arrival
dates.

1 This name comes from the distinctive shape of the plot, resembling grilled pork meat.



3.5 Pork-chop plots 47

Here, the pork-chop curves are represented up to �3 = 30 km2/s2, which is an upper limit
given by the maximum �3 that can be provided by the launcher. We can clearly di�erentiate
two separate regions on this pork-chop plot. In the lower part of the graph we find transfer
orbits of Type 1, which imply short times of flight of about seven months. In the upper part,
we find transfer orbits of Type 2, which can take up to two years. The decision whether to
choose Type 1 or Type 2 transfer orbits depends on multiple factors; the �3 required, the
suitability of both the starting and arrival dates, the time of flight, etc.

That a transfer orbit is Type 1 or Type 2 has further geometrical implications. A transfer
orbit of Type 1 implies Δ\ < 180◦, while one of Type 2 Δ\ > 180◦. To appreciate this more
clearly, let us plot the transfer orbits corresponding to both optimal points present in Fig. 3.4.
To do this, the Python functions developed through Sects. 3.1-3.4, and an additional piece
of code to produce the plots (addressed in Chapter 5) are to be used.

In Figs. 3.5 and 3.6 a three dimensional plot of each transfer orbit is shown, together
with its two-dimensional projection in the -. plane. Clearly, the rule indicated above is
met. It can also be appreciated that both solutions appear to be very similar to Hohmann
transfer orbits. This is no coincidence; when considering the two-dimensional problem, the
Hohmann transfer orbit can be proven to be the optimal solution. In three dimensions,
the starting and arrival orbits are no longer co-planar and therefore slight variations occur.
Furthermore, neither the Earth or Mars’ orbits are circular, nor their lines of apsides are
aligned. Even if this was the case, Δ\ = 180◦ implies, in general, a polar heliocentric orbit,
which requires a rather large �3. This is due to r1 and r2 lying in di�erent planes.

Figure 3.5 Transfer orbit of Type 1 from Earth to Mars, and its two-dimensional projection.

Note that on these figures, the axes are expressed in canonical units with respect to the
Sun. In orbital mechanics, canonical units are defined in terms of an object’s reference orbit
(in our case, the Earth’s orbit around the Sun). For instance, the unit of distance (UD�)
corresponds to the Earth’s mean distance to the Sun (1 astronomical unit). By using these,
many calculations can be simplified (as it can be appreciated in Appendix B).



48 Chapter 3. Basic orbital mechanics’ tools used in Lambert’s problem

Figure 3.6 Transfer orbit of Type 2 from Earth to Mars, and its two-dimensional projection.



4 Programming with Python

By no means is the purpose of this chapter to be an exhaustive beginners guide to Python
programming. Only the basics and the strictly necessary knowledge to code the algo-

rithm for the solution of Lambert’s problem are reviewed.

As all the students enrolled in the course Orbital Mechanics and Aerospace Vehicles are familiar
withMatlab syntax, the approach followed will focus on comparing both languages, to take
advantage of the students’ existing knowledge.

4.1 Introduction

Python is a powerful programming language which has many di�erent applications. Ranging
from the creation of web applications to handling big data or performing complex mathemat-
ics, the options are almost limitless. In this project, we focus on computational science and
engineering. Perhaps one of the most important advantages of programming with Python is
the great number of existing libraries available —for scientific computation, it is crucial to
make use of numerical libraries such as NumPy, SciPy and the plotting package Matplotlib.

All major editors that are used for programming (such as Atom, Vim, Sublime Text, etc.)
provide Python modes. For beginners, however, working within an Integrated Development
Environment (IDE) may result more intuitive. IDEs provide an useful range of tools, such as
a display showing the variables created by the user or allowing to execute the code in debug
mode (step by step). Furthermore, the students are already familiarized withMatlab’s IDE.
For this project, Spyder seems a sensible choice as it provides a similar graphic user interface
and is easy to pick up. Additionally, Spyder is included by default in the Anaconda distribu-
tion. Anaconda is a free and open-source Python distribution for scientific computing, that
aims to simplify package management and deployment. It also incorporates some of the
most popular Python libraries (or packages), including those which will be used throughout
the laboratory class.

Our aim is to keep the process of learning Python simple. Therefore, during the laboratory
class our focus will be on the actual programming part, and we will simplify the tedious
process of installing a Python distribution, an IDE and all the di�erent packages by using
Anaconda, which to this day is installed in most computers of the University of Seville’s ETSI
(Superior Technical School of Engineering).

49



50 Chapter 4. Programming with Python

4.2 Basics

Python was designed for readability, and has some similarities to the English language with
influence from mathematics. It uses new lines to complete a command, as opposed to other
programming languages which often use semicolons or parentheses. Additionally, Python
relies on indentation, using whitespace, to define the scope of loops or functions. Other
programming languages often use curly-brackets for this purpose.

4.2.1 Working with Spyder

In Fig. 4.1, a typical configuration of Spyder’s main window is shown. It can be split into
three main modules: editor, variable explorer and console. In the editor, selected parts of the
code can be executed and the debug mode is available. The variable explorer, as its name
implies, shows the variables created by the user, indicating their type, size and value. On
the other hand, the interactive console provides programmers with a quick way to execute
commands and try out or test code without creating a file.

Figure 4.1 Typical configuration of the main window in Spyder 3.3.6.

Additionally, it implements a file explorer and a “help” functionality. Overall, Spyder is
very similar in many aspects to Matlab’s IDE, and will flatten Python’s learning curve for
the students by providing a familiar working environment.

4.2.2 Importing modules and/or packages

Python is an interpreted language —it executes instructions directly, without previously com-
piling the code into machine-language instructions. The interpreter executes every line in
sequential order, from top to bottom. If several commands are given in the same line (sepa-



4.2 Basics 51

rated by a semicolon), then these are processed from left to right. Therefore, the first lines
of a Python script (a file with the extension “.py” containing code written in Python) must
contain the modules and/or packages (a collection of modules) that are intended to be used
throughout the file. Importing a module or package is straightforward:

import numpy

The names within the numpy package must be accessed through the name numpy. For exam-
ple: numpy.sin. However, the name by which the module or package is known locally can
be di�erent from its “o�cial” name. For instance, writing

import numpy as np

changes the package name to something more manageable. Furthermore, writing

from numpy import sin

will only import the sin function from the numpy package. It is possible to import more than
one function from a given module or package in one go:

from numpy import sin, cos

4.2.3 Basic operations

Basic operations such as addition (+), subtraction (-), multiplication (*), division (/) and
exponentiation (** and not ^ as in Matlab) work as expected. Parentheses can be used for
grouping.

We can enter individual commands at the interactive console which are immediately evalu-
ated and carried out by the Python interpreter. The primary prompt (usually three greater-than
signs >>>) signals that Python is waiting for input from us:

>>>

We can now enter commands, for example 2**3, followed by the Enter key :

>>> 2**3
ans = 8

Once we press the Enter key, Python will evaluate the given command and display the result
in the next line.

4.2.4 Data types and indexing

In python, data can be expressed in di�erent ways. Numbers can be defined as integers,
floating point numbers, etc. and sequences can be expressed in di�erent forms. Strings, lists
and tuples are the three basic types of sequences.



52 Chapter 4. Programming with Python

A string can declared using simple quotes:

>>> a = 'Hello world'

A list is a sequence of objects of any type, for example integers, declared using square
brackets:

>>> a = [1, 2, 3]

Di�erent types of objects can be combined within a single list:

>>> a = [1, 2.2, 'three']

Tuples are very similar in behaviour to lists, and are declared using simple parentheses:

>>> a = (1, 2, 'three')

Tuples and strings are “immutable” (which means we cannot change individual elements
within the tuple or individual character within a string once created) whereas lists are “mu-
table”.

Table 4.1 Some useful sequence operations.

a[i] returns 8-th element of a
a[i:j] return elements 8 up to 9 −1
len(a) returns number of elements in sequence
min(a) returns smallest value in sequence
max(a) returns largest value in sequence
a + b concatenates a and b

Sequences share the operations indicated in Table 4.1, among some others which are not
reviewed here. It is important to note that Python uses zero-based indexing, that is, the first
element has an index 0, the second has index 1, and so on. This is in contrast to Matlab’s
one-based indexing, where the first element has index 1.

The use of indices in slicing also di�ers from Matlab’s approach. In Matlab, stating
a(1:2) returns the first and second elements from the vector a. However, stating a[1:2]
in Python only returns the second element. The best way to remember how slices work in
Python is to think of the indices as pointing between elements:

+-----+-----+-----+-----+-----+
| 'H' | 'e' | 'l' | 'l' | 'o' |
+-----+-----+-----+-----+-----+
0 1 2 3 4 5

Additionally, a[:i] would return all the elements up to the 8-th one, while a[i:] would
return all the elements between the 8-th and the last one. In other words, if we declare a as



4.2 Basics 53

>>> a = [1, 2, 3, 4, 5]

writing

>>> b = a[:3] + a[3:]
>>> print(b)
b = [1, 2, 3, 4, 5]

returns a list b identical to a (while in Matlab this wouldn’t be the case). The print()
function prints the given object to the console.

Keep in mind that only the essentials are being reviewed here. The underlying details of
each data type could fill an entire volume. For more information, refer to the approachable
beginner’s guide to Python by Hans Fangohr [12] or to the Python documentation [13].

4.2.5 Defining and using functions

Functions allow us to group a number of statements into a logical block. We communicate
with a function through a clearly defined interface, providing certain parameters to the
function, and receiving some information back.

We can group functions together into a Python module (a module is simply a file containing
Python functions and statements), and in this way create our own libraries of functionality.

To introduce the generic format of functions lets address a simple example. Suppose we
need a function that computes the multiplication of two variables. The way of defining this
function in Python would be:

def multiply(a,b):
'''This function multiplies a times b'''
result = a*b # this is a comment
return result

# this is not part of the function

and we would call it by simply writing

>>> multiply(2,3)
ans = 6

which returns the expected value a=6.

A function cannot be called before its declaration (the Python interpreter has to first come
across the def line in order to recognize the function and allow it to be called). Functions
can also take and/or return an arbitrary number of arguments. Moreover, it is good practice
to provide a brief description of the function just below its declaration. This receives the
name of docstring (documentation string), and can be declared using triple quotes.



54 Chapter 4. Programming with Python

The indentation after the declaration of the function is required and defines its scope. The
same applies to for-loops and if-else statements. Additionally, there is no need to specify an
end command to these blocks (while it is necessary in Matlab); returning to the previous
indentation level is enough.

Anonymous functions

Anonymous functions, also known as lambda functions, are functions that are defined with-
out a name. Consider a lambda function which computes the square of a given variable. In
Python it has the following syntax:

>>> (lambda x: x*x)(10)
ans = 100

Although lambda functions are intended to be defined without a name, they provide a
quick way to declare a function without using the def keyword:

>>> square = lambda x: x*x
>>> square(10)
ans = 100

Lambda functions can also take multiple arguments (although they can only return one).
For example, the function multiply defined previously using def could be alternatively
declared as:

>>> multiply = lambda a,b: a*b
>>> multiply(2,3)
ans = 6

Matlab implements similar functionality with its function handles, defined through the
@ symbol.

4.2.6 For-loops and if-else statements

For-loops

The for-loop allows to iterate over a sequence, as in the following example:

>>> for i in [1, 2, 3, 4]: # the colon is always required
... print(i)
...
1
2
3
4



4.2 Basics 55

The secondary prompt, by default three dots (...), prompts for the next command in con-
tinuation lines. Because this is a multi-line statement, the Enter key must be pressed a
second time to tell the interpreter that we are finished with it.

We must be careful when assigning values to growing variables (variables increasing in
size with each iteration) inside for-loops. In contrast toMatlab approach, Python does not
allow to address elements which have not been created previously. For example, in Matlab
we could state the following:

>> a = 1 # Matlab's primary prompt consists of two greater-than signs
>> a(4) = 2
>> print(a)
a = [1, 0, 0, 2]

and automatically, the vector a would increase its size to accommodate a fourth element
equal to 2 (while filling the other newly created spaces with zeros). To accomplish this in
Python, we would first have to define a as a list (a mutable sequence) of size 4 to pre-allocate
“space” for new re-assignations:

>>> a = [0]*4 # manually creating a list of zeros
>>> print(a)
a = [0, 0, 0, 0]
>>> a[0] = 1
>>> a[3] = 2
>>> print(a)
a = [1, 0, 0, 2]

Lists of zeros will be the chosen method to pre-allocate space within this project, as to
keep certain similarity with Matlab’s approach.

If-else statements

On the other hand, the if statement allows conditional execution of code, for example:

>>> a = 2
>>> if a > 0:
... print('hello')
...
hello

The if statement can also have an else branch which is executed if the condition is
wrong:

a = 2
if a > 0:

print('a is positive')
else:

print('a is non-positive')



56 Chapter 4. Programming with Python

Finally, the elif key word (read as “else-if”) allows checking for several (exclusive) possi-
bilities:

a = 2
if a > 0:

print('a is positive')
elif a < 0:

print('a is negative')
else

print('a is zero')

Table 4.2 Typical conditional expressions and logical operators.

> is greater than >= is greater than or equal to and logical and
< is lesser than <= is lesser than or equal to or logical or
== is equal to != is not equal to not logical not

4.3 Numerical Python (NumPy)

The NumPy package provides access to a new data structure called array (similar to Mat-
lab’s) which allow e�cient vector and matrix operations. It also provides fundamental
mathematical functions (sin(), cos(), log(), etc.), physical constants (pi, e, etc.) and a
number of linear algebra operations.

An array appears to be very similar to a list, but an array can keep only elements of the
same type (whereas a list can mix di�erent kinds of objects).

Vectors (1D arrays)

The data structure we will need most often is a vector (a one-dimensional array). We can
convert a list into an array using numpy.array:

>>> import numpy as np # np is the standard abbreviation for numpy
>>> a = np.array([1, 2, 3, 4])
>>> print(a)
[1 2 3 4]

Alternatively, arrays can be generated through other NumPy functions:

• numpy.arange(start, stop, step) returns evenly spaced values within the half-
open interval [start, stop):

>>> a = np.arange(1,6,2) # if not indicated, the default step size is 1
>>> print(a)
[1 3 5]



4.3 Numerical Python (NumPy) 57

>>> b = np.arange(3) # if only one argument is given, start=0 by default
>>> print(b)
[0 1 2]

• numpy.linspace(start, stop, num) is similar to numpy.arange but uses a given
number of samples instead of the step size. Additionally, the [start, stop] interval
is considered to be closed by default (this can be changed —these functions have
additional optional input parameters which are not showed here):

>>> a = np.linspace(1,2,5) # if not indicated, num=50 by default
>>> print(a)
[1 1.25 1.5 1.75 2]

• numpy.zeros(size) creates an array of zeros:

>>> a = np.zeros(4)
>>> print(a)
[0. 0. 0. 0.] # the elements are floating point numbers by default

Further information on these functions (and many more) can be found in the NumPy
documentation [14].

Once the array is established, we can set and retrieve individual values in the same way
we did with lists:

>>> a = np.zeros(4)
>>> a[1] = 3
>>> print(a)
[0. 3. 0. 0.]
>>> a[0]
ans = 3.0

and slicing also works similarly:

>>> print(a[0:3])
[0. 3. 0.]

We can perform calculations on every element in the array with a single statement:

>>> a = np.arange(3)
>>> print(a + 2)
[2 3 4]
>>> print(a**2)
[0 1 4]

To perform an element-wise operation of two vectors in Matlab, we would need to place
a dot before the operator (which results in the so-called dot operators).



58 Chapter 4. Programming with Python

Matrices (2D arrays)

The nature of two-dimensional arrays is very similar to that of 1D ones. Here are various
ways to create a 2D array:

• By converting a list of lists into an array:

>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> print(a)
[[1 2 3]
[4 5 6]]

• Using the numpy.zeros(size) method:

>>> a = np.zeros([2,3])
>>> print(a)
[[0. 0. 0.]
[0. 0. 0.]]

• Using the function numpy.meshgrid(x_range, y_range), which generates a pair of
2D coordinate arrays for the evaluation of 2D scalar/vector fields over 2D grids, given
the one-dimensional coordinate arrays x_range, y_range:

>>> x_range = np.array([1, 2, 3, 4])
>>> y_range = np.array([0, 4, 8])
>>> X, Y = np.meshgrid(x_range, y_range)
>>> print(X)
[[1 2 3 4]
[1 2 3 4] -|---------> (x axis)
[1 2 3 4]] |

>>> print(Y) |
[[0 0 0 0] |
[4 4 4 4] v (y axis)
[8 8 8 8]]

Note how multiple simultaneous assignations (to X and Y) have been addressed through
a comma separator.

The size of a matrix can be obtained like this:

>>> a = np.array([[1, 2], [ 3, 4], [5, 6]])
>>> a.shape
ans = (3, 2) # a has 3 rows and 2 columns

and individual elements can be accessed and set using the following syntax:



4.4 Visualizing Data 59

>>> a = np.array([[1, 2], [ 3, 4], [5, 6]])
>>> a[2,0] # element in the third row and first column
ans = 5
>>> print(a[:,2])
[1 2] # 1D array

In this example we also appreciate two important characteristics of matrix slicing. First,
a single colon (:) without starting or ending indices indicates that the whole row/column
is being selected. Secondly, when the sliced array is either vertical (part of a column) or
horizontal (part of a row), it is automatically transformed into a 1D vector. These do not
take into account whether the orientation is vertical or horizontal (while Matlab does).

4.4 Visualizing Data

In this section we succinctly review Matplotlib, which is a plotting library for Python and its
numerical mathematics extension NumPy. Matplotlib allows us to generate high quality line
plots, histograms, bar chats, scatter plots, 3D plots, etc., with just a few lines of code.

Plotting nearly always needs arrays of numerical data, and it is the reason that the numpy
package is used a lot —it provides fast and memory e�cient array handling for Python.

4.4.1 Plotting y=f(x)

For this project our focus will be on the module matplotlib.pyplot, which provides a
Matlab-like plotting framework. It is a collection of command style functions which make
changes to a figure. This state-driven interface is more convenient to use for easy plots,
although it is generally less flexible than the object-oriented Matplotlib interface.

Many of the examples in the Matplotlib documentation follow the convention of importing
matplotlib.pyplot as plt. Generating simple line plots with pyplot is very quick:

# example 1
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi,np.pi,100)
y = np.sin(x)

plt.plot(x,y)

which produces the output shown in Fig. 4.2. For every x, y pair of arguments, there is an
optional third argument which is the format string that indicates the color and line type of
the plot. The letters and symbols of the format string are taken from Matlab, and the color
string can be concatenated with a line style string. The default format string is 'b-', which
generates a solid blue line.



60 Chapter 4. Programming with Python

Figure 4.2 The output of example 1

Mimicking Matlab’s interface, Matplotlib also provides an interactive window where we
can zoom, pan or edit the plot’s basic attributes.

Figure 4.3 Matplotlib’s interactive window.



4.4 Visualizing Data 61

4.4.2 Plotting more than one curve

By calling the plt.plot() command repeatedly, more than one curve can be drawn in the
same graph. Alternatively, multiple x, y pairs can be introduced in one single command (just
as in Matlab):

plt.plot(x1,y1,x2,y2)

On the other hand, to display plots in separate figures we must create them by using the
plt.figure() command. In the previous examples this had not been necessary because
plt.plot() internally calls gca (get current axes), which then calls gcf (get current figure),
which returns the current (last used) figure. If there is no current figure it automatically calls
plt.figure() and returns the newly created figure.

For instance, a way to display two simple plots in two separate figures is:

plt.figure()
plt.plot(x1,y1)
plt.figure()
plt.plot(x2,y2)

To avoid confusing the students, a new figure will always be created before using the
plt.plot() command.

4.4.3 Implicit functions and contour plots

Recall from Chapter 2 the two equations from Lambert’s problem. To plot Lambert’s equa-
tions we first need to express them as implicit functions, defined by equations of the type
� (G,H) = 0. To plot implicit functions, a contour plot is the most suitable tool. These can be
generated in Python using the command plt.contour():

# example 2
x_range = np.linspace(-10,10,200)
y_range = np.linspace(-10,10,200)
X, Y = np.meshgrid(x_range, y_range)

F = X**2 + Y**2

plt.figure()
plt.contour(X,Y,F,[1, 4, 9]) # plots contours at F=1, F=4 and F=9

This code plots three circles of radius 1, 2 and 3, although an arbitrary number of contour
lines of the function F(X,Y) could be generated.



62 Chapter 4. Programming with Python

4.4.4 3D plots

Unfortunately, 3D plots are not supported within pyplot. Therefore, some object-oriented
programming (although quite simple) is required. For our purposes, the simplest way of
plotting 3D data is to import the sub-module mplot3D from the module mpl_toolkits:

from mpl_toolkits import mplot3d

Then, 3D axes can be created through the command plt.axes(projection='3d'), which
generates an Axes3D object. Then, plots can be added to the Axes3D. This approach is
object-oriented because instead of writing plt.* and letting matplotlib.pyplot guess to
what figure we are referring to, we are responsible to refer the Axes3D object (which in turn
is associated with a Figure object).

During the laboratory class we will use 3D plots to visualize the orbits of the di�erent
planets and the transfer orbit between them (the solution to Lambert’s problem). Plotting a
simple 3D curve is straightforward:

# example 3
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

x = np.linspace(0,30,300)
y = np.sin(x)
z = np.cos(x)

plt.figure()
ax = plt.axes(projection='3d') # an Axes3D object is created
ax.plot3D(x,y,z) # a plot is added to the Axes3D

which produces the output shown in Fig. 4.4. To plot single points (which can represent
planets), the command plt.scatter3D(x,y,z) is used.

It is worth mentioning that the 3D plot window interactive capabilities are limited with
respect to the 2D version. For instance, panning is not available and zooming can only be
achieved by holding the mouse’s right button, although this only zooms the central portion of
the graph. Additionally, accessing the figure options window can result in unwanted shifting
of the plot within the figure window (the interface is somewhat buggy). Therefore, it is
reasonable to avoid using the interactive interface in 3D plots.

4.4.5 Setting and/or editing a plot’s attributes

A plot’s attributes can be set and/or edited using commands instead of the interactive win-
dow. The syntax used di�ers between 2D plots created with matplotlib.pyplot and 3D
plots created with regular (object-oriented) Matplotlib commands.



4.4 Visualizing Data 63

2D plots

• Set the title: plt.title() with a string as an input1.

• Label the axes: plt.xlabel(), plt.ylabel() with a string as an input.

• Set custom limits of the axes: plt.xlim(), plt.ylim() with input [min, max].

• Set the scaling of both axis to be equal (useful to correctly visualize the eccentricity
and general shape of an orbit): plt.gca().set_aspect('equal').

Note that the command plt.gca().set_* (object-oriented, as it acts on the axes —in
this case the current axes) can also be used to set the title, axes and limits of a 2D plot.

Figure 4.4 The output of example 3.

3D plots

• Set the title: Axes.set_title() with a string as an input.

• Label the axes: Axes.set_xlabel(), Axes.set_ylabel(), Axes.set_zlabel() with
a string as an input.

• Set custom limits of the axes: Axes.set_xlim(), Axes.set_ylim(), Axes.set_zlim()
with input [min, max].

These commands need to be referred to an Axes or Axes3D object.

1 It is possible to have LATEX formatting in Matplotlib graphs (for titles, labels, etc.). This is accomplished by
adding an r before the actual Python string (r'$ \alpha $ is a greek letter'). This makes the string a
raw string literal, which accepts a backslash as a valid string literal instead of considering it as the start of an
escape sequence.



64 Chapter 4. Programming with Python

4.4.6 Saving the figure to a file

By clicking the save button of the interactive window, a medium resolution (100 dpi) image in
PNG format is saved to the selected directory. However, it is possible to save images in higher
resolution (higher dpi) PNG files, or even as vector graphics. The command plt.savefig()
saves the current figure (the last one created) to the working directory (shown at the top bar
in Spyder):

import numpy as np
import matplotlib.pyplot as plt

plt.figure()
plt.plot([1, 2, 3], [1, 4, 9])

plt.savefig("name.png", dpi=300, bbox_inches='tight') # raster image
plt.savefig("name.pdf", bbox_inches='tight') # vector image

Usually a 300 dpi PNG image is good enough for most printed or web publications, and
the PDF format is commonly used for vector graphics (although other popular formats such
as SVG or EPS are also supported). By default, plt.savefig() leaves wide white margins
around the actual graph. This can be addressed by adding bbox_inches='tight', which
tightly adjusts the margins.

4.5 Python, NumPy and Matplotlib for MATLAB users

In this section a brief summary of the key di�erences between Python and Matlab syntax
is provided. The purpose of this comparison is to create a concise cheat sheet with the most
frequent commands and expressions, to aid the student in the otherwise tedious task of
searching and remembering this information. Part of this content is based on the helpful
table of NumPy-Matlab equivalents by The SciPy community [15].

4.5.1 General purpose equivalents

Table 4.3 Slicing and indexing.

Matlab Python Notes

a(2,5) a[1,4]
Access element in second row,
fifth column

a(2,:) a[1,:] Entire second row of a

a(1:5,:) a[0:5,:] First five rows of a



4.5 Python, NumPy and Matplotlib for MATLAB users 65

1 2 3 4 5 <-- indexing
+-----+-----+-----+-----+-----+

Matlab | 'H' | 'e' | 'l' | 'l' | 'o' |
+-----+-----+-----+-----+-----+

1 2 3 4 5 <-- slicing

0 1 2 3 4 <-- indexing
+-----+-----+-----+-----+-----+

Python | 'H' | 'e' | 'l' | 'l' | 'o' |
+-----+-----+-----+-----+-----+
0 1 2 3 4 5 <-- slicing

Table 4.4 Basic commands.

Matlab Python Notes

help func help(func)
Get help on the
function func

a && b
a || b

a and b
a or b

Logical operators

~= !=
Conditional
expressions

^ ** Basic operators

[x, y] = 2output_fun() x, y = 2output_fun() Multiple assignments

disp(a) print(a) Display a result

; (semicolon) (nothing) Terminate a statement

% # Comment

for i=[1 2 3]
disp(i)

end

for i in [1, 2, 3]:
print(i) For-loops

if a==0
disp('a is zero')

elseif a<0
disp('a is negative')

else
disp('a is positive')

end

if a==0:
print('a is zero')

elif a<0:
print('a is negative')

else:
print('a is positive')

If-else statements

function [x, y] = pm(a,b)
x = a + b;
y = a - b;

end

def = pm(a,b):
x = a + b
y = a - b
return [x, y]

Regular functions

mult = @(a,b) a*b mult = lambda a,b: a*b Anonymous functions



66 Chapter 4. Programming with Python

4.5.2 NumPy equivalents

Before using the NumPy package, remember to execute the following command in Python:

import numpy as np

The table below gives some rough equivalents for some common Matlab expressions.
For more detail read the built-in documentation on the NumPy functions.

Table 4.5 Linear algebra equivalents.

Matlab Python Notes

size(a) shape(a) or a.shape Get the size of an array

size(a,n) shape(a)[n-1] or a.shape[n-1]
Get the number of elements
of the =-th dimension of
array a

[1 2 3] np.array([1, 2, 3]) Create vectors

[1 2 3; 4 5 6] np.array([[1, 2, 3],[4, 5, 6]]) Create matrices

a.*b
a.\b
a.^b

a*b
a\b
a**b

Element-wise operations

2:10
0:9

np.arange(2,11)
np.arange(9)

Create an increasing vector

zeros(3,4)
ones(3,4)

np.zeros([3,4])
np.ones([3,4])

Array full of zeros or ones

linspace(1,3,4) np.linspace(1,3,4)
Four equally spaced samples
between 1 and 3, inclusive

max(a) a.max() Maximum element of a

max(a) a.max(0)
Maximum element of each
column of matrix a

max(a,[],2) a.max(1)
Maximum element of each
row of matrix a

4.5.3 Matplotlib equivalents

Before using the Matplotlib package, remember to execute the following command in Python:

import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d



4.5 Python, NumPy and Matplotlib for MATLAB users 67

2D Plots

Plotting a simple 2D line plot:

Matlab

theta = linspace(-pi,pi,100);
f1 = sin(theta);
f2 = sin(theta);

figure
plot(theta,f1,theta,f2)
title('Trigonometric functions')
xlabel('$\theta$', 'interpreter',...
'latex')
ylim([-1,1])

Python

theta = np.linspace(-np.pi,np.pi,100)
f1 = np.sin(theta)
f2 = np.sin(theta)

plt.figure()
plt.plot(theta,f1,theta,f2)
plt.title('Trigonometric functions')
plt.xlabel(r'$\theta$')

plt.ylim([-1,1])

Plotting dots:

Matlab

x = [0 2 4]
y = [5 4 3]

figure
scatter(x,y)

Python

x = np.array([0, 2, 4])
y = np.array([5, 4, 3])

plt.figure()
plt.scatter(x,y)

3D Plots

Plotting a 3D curve:

Matlab

x = linspace(0,2*pi,100);
y = sin(x);
z = sin(x);

figure

plot3(x,y,z)
title('Helix')
xlabel('Longitudinal axis')
ylim([-1,1])
zlim([-1,1])

Python

x = linspace(0,2*np.pi,100)
y = np.sin(x)
z = np.sin(x)

plt.figure()
ax = plt.axes(projection='3d')
ax.plot3D(x,y,z)
ax.set_title('Helix')
ax.set_xlabel('Longitudinal axis')
ax.set_ylim([-1,1])
ax.set_zlim([-1,1])

Plotting dots:

Matlab

scatter3(x,y,z)

Python

ax.scatter3d(x,y,z)



68 Chapter 4. Programming with Python

Plotting the contour line at / (-,. ) = 0:

Matlab

x = linspace(-pi,pi,100);
y = linspace(0,2*pi,100);
[X, Y] = meshgrid(x,y);

Z = sin(X) + cos(Y)

figure
contour(X,Y,Z,[0 0])

Python

x = linspace(-np.pi,np.pi,100);
y = linspace(0,2*np.pi,100);
X, Y = meshgrid(x,y);

Z = sin(X) + cos(Y)

plt.figure()
plt.contour(X,Y,Z,0)

Saving a figure to a file in Python

To obtain a raster image (.png):

plt.savefig("name.png", bbox_inches='tight', dpi=300)

and to obtain a vector image (.pdf, .eps, .svg, etc.):

plt.savefig("name.pdf", bbox_inches='tight')



5 Development of a laboratory
class on Lambert’s problem

Throughout Chapter 2, Lambert’s equations have been thoroughly reviewed for all pos-
sible cases (elliptic, parabolic and hyperbolic transfer orbits). Additionally, a few

essential auxiliary algorithms have been introduced in Chapter 3, and a comprehensive in-
troduction to Python has been made in Chapter 4. Once the theoretical framework has been
laid out, we can proceed to tackle the development of a Python-based orbital mechanics
laboratory class.

During this chapter, both the structure and contents of the laboratory class are addressed.
Within this context, a straight-forward Lambert algorithm for the elliptic case is developed
and duly justified. Moreover, some insight on Lambert’s equations is given, and we carefully
analyze the graph representing their solution for a wide range of input data. Finally, a
practical application regarding interplanetary missions is presented.

The main deliverable of this project consists of a laboratory report which will serve as
a guideline during the laboratory class. It consists of a series of examples, which include
code that the students may reproduce on their own, interspersed with the required theoretical
contents. The finished document can be found in Appendix A, and throughout this chapter a
detailed review of its main aspects is carried out, showing the multiple results and conclusions
which are to be later obtained by the student.

5.1 Structure of the laboratory report

Besides teaching basic Python and introducing Lambert’s problem, another main objective
pursued by this laboratory class is to include a practical application of the contents presented,
in the context of interplanetary missions. Consequently, the laboratory report is reasonably
split into three main parts:

• Programming with Python

• Lambert’s problem

• Analysis and optimization of interplanetary missions

69



70 Chapter 5. Development of a laboratory class on Lambert’s problem

First, a brief introduction to Python is made so that the students get familiarized with
the language and Spyder, the IDE of choice for this project. Then, two basic examples
with relation to orbital mechanics are carried out to aid the student in the understanding of
Python programming. In the first example, a simple algorithm which computes the orbital
position as a function of time (relative to periapsis passage) is programmed. At this stage,
NumPy is also introduced, along with some basic Python syntax. The goal of the second
example is to plot Mercury’s orbit and introduce Matplotlib.

At the beginning of the second part, Lambert’s equations are derived following the steps
introduced in Sect. 2.4. Then, a third example is included to visualize the equations for
elliptic motion and analyze their solution. Before diving into the analysis and optimization
of interplanetary missions, the algorithm which solves Lambert’s problem is programmed.

The last part consists mainly of two examples regarding spacecraft missions from Earth
to Mars. The first one analyzes the path of the Mars Science Laboratory mission (2011),
and its transfer orbit is plotted. Then, a brief theoretical section introducing pork-chop
plots and the optimization of interplanetary missions through the characteristic energy (�3)
is included, after which a second example on the Mars Reconnaissance Orbiter (2005) is
carried out (proving that its launch date is indeed the optimal solution and minimizes the
total �3 required). Finally, some further insight on the Mars launch opportunity windows
are given, which allow to plan future missions ahead.

At this stage, an (optional) additional problem can be given by the teacher for the students
to finish at home. All the tools required to solve this problem would have been reviewed
during the laboratory class —this provides endless possibilities for the teacher, as these
tools are not only prepared for an Earth-Mars mission, but include generic algorithms and
data from every major planet within the Solar System.

5.2 Part 1: Programming with Python

At the beginning of each part, a brief comment is made to motivate the students and to
describe the tasks the will be completing:

In this section, you will learn the basics of Python programming, which is widely used in
the space industry. The language is similar to MATLAB in many aspects, so you will be doing
complex tasks in just a few minutes!

After reviewing some basic notions on Python, Anaconda and Spyder, the first example
is introduced. Here, boxes with code are placed in between paragraphs to aid the student
in programming the script (just as it is done in this document throughout Chapter 4).

In the second example, some of the auxiliary functions provided through a custommodule,
astrofun.py (whose contents can be found in Appendix B), are used to plot Mercury’s orbit.
This specific orbit has been chosen because it has a relatively large eccentricity (4 = 0.21)
compared to the other Major Planets, and therefore a more elliptic shape can be appreciated.

More details on both Example 1 and Example 2 an be found in the laboratory report,
together with the required code. The results obtained when the script from Example 2 is run
are presented in the following section.



5.2 Part 1: Programming with Python 71

5.2.1 Example 2: Plotting Mercury’s orbit - Results

First, the students are asked to plot the complete orbit by computing Mercury’s orbital period
and choosing two dates spaced accordingly:

Figure 5.1 Mercury’s complete orbit around the Sun.

In Fig. 5.1, a square marker has been plotted to represent the planet’s starting position,
and a circle to represent the ending position. Just as we would expect, these overlap when a
full orbit has been completed. However, the student is prompted to zoom in at this region:

Figure 5.2 Consecutive zooms on the starting/ending region.

which reveals that in reality this is not the case. Recall that the propagator introduced in
Chapter 3 (which is the one implemented in astrofun.py) is linear, and includes the e�ect
of perturbations. These can be of various natures, and their overall impact on a planet’s
orbit translates into rates of change of the di�erent orbital elements. Their e�ect can be
clearly appreciated through this example.



72 Chapter 5. Development of a laboratory class on Lambert’s problem

Next, the students are asked to plot the arc traveled by Mercury in a 30-day month. Here,
the 3D plotting capabilities of Matplotlib are introduced, and two figures are generated:

Figure 5.3 Arc traveled by Mercury in a 30-day month.

It must be noted that the 2D representation does not reflect the true measure of the
real orbit, but is a projection in the -. axis instead. However, its angle of inclination is
approximately 7◦, and therefore the di�erences are small.

5.3 Part 2: Lambert’s problem

Solving Lambert’s problem is crucial to design realistic interplanetary transfers and maneuvers.
We don’t do it by hand because it requires solving two nonlinear equations with two unknowns.
Here we learn how to make our computer do it for us; then you can relax and start designing
your first missions!

At the beginning of this part, Lambert’s equations for elliptic motion are obtained follow-
ing an identical procedure to that in Sect. 2.4. These equations constitute a system of two
equations with two unknowns:

� sin3 U

2
= 2<c +U− V− sinU+ sin V,

sin
V

2
= @ sin

U

2
,

which can be visualized as two curves whose intersection becomes the solution to Lambert’s
problem. To analyze their behaviour, the two curves can be plotted for various values of
@, � and <. A new example is introduced to accomplish this through Python, using Mat-
plotlib. Below, the results which are to be obtained by the student are presented, and further
conclusions are drawn.



5.3 Part 2: Lambert’s problem 73

5.3.1 Example 3: Visualizing Lambert’s equations - Results

To plot Lambert’s equations, both need to be expressed as implicit functions:

�1(U, V) = 2<c +U− V− sinU+ sin V− � sin3 U

2
= 0, (5.1)

�2(U, V) = sin
V

2
− @ sin

U

2
= 0, (5.2)

which can then be plotted through the plt.contour() function:

Figure 5.4 Global view of (5.1) and (5.2).

Notice how �2(U, V) = 0 is in reality an infinite grid-like pattern, and multiple intersections
occur between both curves. The bounds 0 < U < 2c and −c < V < c introduced in Sect. 2.4.2
are required to choose the correct solution. Zooming into the region delimited by these
bounds:

Figure 5.5 (5.1) and (5.2) in the valid region.



74 Chapter 5. Development of a laboratory class on Lambert’s problem

Two intersections can be appreciated. However, the one at U = V = 0 always occurs, and
must be disregarded. Recall that these equations are only valid for elliptic motion. Values
of U near 0 imply 0 → ∞ according to (2.69), approaching a parabolic solution. When
< = 0, (5.1) breaks down for U = 0 and su�ers from a critical loss of significant digits in the
neighborhood of U = 0.

To observe why this happens, students are prompted to plot the equations for @ = −0.5,
< = 0 and a range of � between 10 and 1.6. When � becomes smaller (a shorter time of
flight), a more direct and quick path is required between the starting and arrival positions.
The transfer orbit therefore begins to approach a parabola. In Fig. 5.6, (5.1) has been plotted
at uniform intervals of �. Note how the solution drastically changes for small variations in �
at lower values.

Figure 5.6 Behaviour of (5.1) with equally spaced changes in �.

When a clear intersection between (5.1) and (5.2) occurs, the transfer orbit is elliptic and
the solution is valid. When both curves become tangent at U = V = 0 (@ = −0.5, < = 0 and
� = 1.5), a parabolic transfer orbit is reached, which can’t be solved using these equations.
Hyperbolic transfer orbits appear when none of the previous conditions are met (0 < � < 1.5).

To conclude this example, a graph plotting � against U for selected values of @ and < (
Fig. 5.7) is presented to the students. Here, the conclusions obtained earlier can be clearly
appreciated. When < = 0, for a fixed value of @ there exists a lower bound for �, below
which no solution can be obtained. This graph is very similar to that reviewed in Sect. 2.4.
Even though � has been plotted against U instead of the universal parameter G, the two share
identical characteristics. In Fig. 5.7, only the part associated with elliptic orbits is shown.
Its most striking feature consists in the gaps (unrealizable regions) that have been shaded
in the figure. Another interesting observation is that in the case < ≠ 0 for given values of �
and @, two di�erent elliptic orbits are possible solutions to the problem.



5.3 Part 2: Lambert’s problem 75

Figure 5.7 Plot of � against U for selected values of @ and <.

To visualize the multi-revolution case, the transfer orbits of a generic Earth-Mars mission
with < = 1 can be plotted:

Figure 5.8 Duplicity of solutions for the multi-revolution case.

Observing Fig. 5.7, this is true for < ≠ 0. In view of this duplicity of solutions for the multi-
revolution case, the task of developing a simple algorithm using refined root algorithms such
as fsolve() is more complex, and lays beyond the scope of this project1. However, in the
context of direct transfer orbits with no DSM (Deep Space Maneuvers), single-revolution
orbits tend to be the optimal solution. Therefore, it seems reasonable to limit ourselves to
the case with < = 0, which is considerably easier to solve.

1 Additional remarks regarding the multi-revolution case and its increased di�culty can be found in the paper
by Gooding [2].



76 Chapter 5. Development of a laboratory class on Lambert’s problem

Theoretically, one could find the solution to Lambert’s problem by simply plotting the
equations and finding the intersection, or locating it in the graph from Fig. 5.7. However, to
optimize interplanetary missions it needs to be solved a large number of times, and therefore
a numeric approach is the only feasible option. In the following section, an algorithm to
accurately solve Lambert’s equations for elliptic motion and the single-revolution case is
developed.

5.3.2 Developing a simple algorithm to solve Lambert’s problem

As it has been stated previously, Lambert’s equations can be solved using refined root finding
algorithms such as fsolve(), readily accessible in Python. However, bounds can’t be set
to the variables with fsolve(). Therefore, it might not be able to find the correct solution
among the many others which can be observed in Fig. 5.4.

To find a solution within 0 < U < 2c and −c < V < c, constrained optimization is perhaps
the smartest way to proceed. The least_squares() function is convenient here; equations
can be directly passed to it, and it will minimize the sum of squares of its components. In
other words, it will find the values of U and V which at the same time bring (5.1) and (5.2)
closer to 0 (which is what we are looking for). However, optimization functions such as
least_squares() are not built to solve non-linear systems. They can be tricky to set up and
in some cases become quite unstable.

In this section, we analyze both functions to choose the one with better performance at
this particular set of equations.

Choosing an appropriate initial estimation

Both fsolve() and least_squares() require an initial estimation of the independent vari-
ables (U and V) to begin their iteration processes. A complete discussion on this topic can be
found in Gooding’s papers (including [2]), and involves rather complex heuristics. For this
project, a simpler approach is developed. Three di�erent methods are proposed, with in-
creasing complexity. Through comprehensive testing, the one which provides better overall
results is chosen.

The first method, which we will call Method A, is based on a single initial estimation,
valid for all cases. Choosing the central values U = c and V = 0 seems a reasonable guess, as
they become average values for both variables.

Method B goes one step beyond. Because a graph representing the complete solution
exists (Fig. 5.7), a value of U can be approximated according to �. Then, a corresponding
initial estimate of V can be computed from (5.2). To keep it simple, the complete solution
graph is split into three regions, which can be visualized in Fig. 5.9.

Along the same lines, Method C utilizes the graph in Fig. 5.7 to estimate U and then
obtains V from (5.2). However, instead of only using �, multiple points of the graph are
stored in an array (visualize a matrix where the rows correspond to values of �, and columns
to values of @. The actual numbers stored in the matrix correspond to the values of U solution
to each pair of @ and �). Then, given a pair of values of @ and �, the closest corresponding
value of U found in the array serves as the initial estimate.



5.3 Part 2: Lambert’s problem 77

Figure 5.9 Choice of an initial estimate of U according to �.

Global convergence and accuracy

Now, each function can be tested for a wide range of initial data (@ ∈ [−1,1] , � ∈ [0.1,100]
and of course < = 0). To evaluate their performance, they can be compared against a graphic
method (which is much slower and less e�cient, but provides very accurate results).

The validity of this approach has been tested by comparing a (visually verified) solution
obtained through fsolve() to that provided by the graphic method. The error term for U
(which will be denoted by the Greek letter n , and is not to be confused with the specific
energy reviewed in Chapter 2) turns out to be n ∼ 10−8. This value coincides with the de-
fault tolerance provided by fsolve(), and therefore it is reasonable to consider the graphic
solution to be close enough to the real solution for comparison purposes.

First, the global convergence and accuracy are checked. A solution obtained through either
fsolve() or least_squares() will be considered valid if the error term for U (compared
to the graphic solution) is less than 10−2. The purpose of this analysis is to visually identify
whether the correct solution, or a di�erent intersection point from those shown in Fig. 5.4,
has been chosen.

Figure 5.10 Color code employed to test the convergence.

In addition to the color code illustrated in Fig. 5.10, the notation E0 −→ � is used to
indicate which initial estimation method has been used. E0 represents a vector containing
the initial values of U and V, and in the previous example they would have been obtained
following Method A.



78 Chapter 5. Development of a laboratory class on Lambert’s problem

Figure 5.11 Convergence of fsolve() on a logarithmic scale.

A logarithmic scale has been employed to focus on the region where the solution ap-
proaches an parabola, as it can become quite unstable (a behaviour shown in Fig. 5.6).
However, fsolve() seems to be performing reasonably well here. Not so much around
� ∼ 35, where red strips appear for all cases (and imply inaccurate solutions). On the other
hand:



5.3 Part 2: Lambert’s problem 79

Figure 5.12 Convergence of least_squares() on a logarithmic scale.

The function least_squares() appears to be doing a much better job on locating the
correct solution. This should be expected, as the independent variables have been bounded
and therefore other solutions are automatically discarded. However, when using Method
B to make the initial estimation, a thin red stripe can be seen around � ∼ 5. Recall that
this value of � has been used to split the region in Fig. 5.9, and therefore it appears that
least_squares() somehow struggles when U needs to be decreased from its initial guess
at this particular section.

Additionally, the series expression for � introduced in Sect. 2.4 can be analyzed:

Figure 5.13 Convergence of the series expression for � on a logarithmic scale.

and just as would be expected, the solution converges only when it closely approaches a
parabola. The main advantage of this expression is that it actually provides a solution for
the parabolic case, while this is not possible using Lambert’s equations for elliptic motion.



80 Chapter 5. Development of a laboratory class on Lambert’s problem

From the results shown in Figs. 5.11, 5.12 and 5.13, a few conclusions can be drawn. First,
Method B, although simpler, has proven to perform worse than Method C for both fsolve()
and least_squares() and therefore will be discarded. Moreover, Method A and C provide
similar results when paired to the least_squares() function, and for simplicity Method A
is preferred.

On the other hand, even though least_squares() (using Method A) seems to be provid-
ing good results, only convergence is being analyzed. To determine whether this approach
is valid, additional insight into the precision of these results is required.

Testing the precision

To study the precision of the solutions provided by fsolve() and least_squares() (and
the series expression), they can be compared to those obtained through the graphic method.
The results are then expressed in terms of the error term for U, n , but this time much more
detailed graphs will be generated. A new color code to di�erentiate between di�erent values
of n is introduced in Fig. 5.14.

Figure 5.14 Color code employed to test the precision.

First, the solutions provided by least_squares() (and Method A) are studied, as they
have shown a better overall performance:

Figure 5.15 Precision provided by least_squares() on a logarithmic scale.

Looking at Fig. 5.15, this approach appears to provide reasonable precision (n ∼ 10−7) for
a very wide range of @ and �. However, when moving closer to the parabolic solution, a
considerable loss of significant digits can be appreciated. Zooming into this region:



5.3 Part 2: Lambert’s problem 81

Figure 5.16 Precision provided by least_squares() on a linear scale.

We find that only for solutions very close to the parabolic case, least_squares() begins
to fail (a few red dots can be observed), as (5.1) breaks down for U = 0. Comparing this
result with those generated by fsolve():

Figure 5.17 Precision provided by fsolve() on a linear scale.



82 Chapter 5. Development of a laboratory class on Lambert’s problem

Which proves that least_squares() is capable of solving Lambert’s equations for elliptic
motion with appropriate precision, similar to that provided by a dedicated root finding algo-
rithm such as fsolve(). Moreover, least_squares() can be paired with Method A, which
is very simple to code. In contrast, fsolve() must be used in conjunction with Method C
to provide accurate results.

In Sect. 2.5, it was stated that for the cases in which the resulting orbit approached a
parabola (that is, for U near 0), an additional piece of code (based on the series expression
for �) may be provided to increase the precision and ensure convergence. However, the
results shown in Fig. 5.17 seem to be accurate enough, except for really small values of U.
To evaluate whether an additional piece of code is reasonable, let us analyze the precision
provided by the series expression:

Figure 5.18 Precision provided by the series expression for � on a linear scale.

Recall that for the parabolic case, the following relationship holds:

� =
4

3
(1− @3),

and for hyperbolic orbits, � < 4/3(1− @3). Thus, a quick and simple procedure to identify
whether a transfer orbit is elliptic, parabolic or hyperbolic is to calculate � −4/3(1−@3) and
check if it’s a positive value (ellipse), equal to zero (parabola) or a negative value (hyperbola).

In Fig. 5.18, the series expression is apparently providing results with not as much ac-
curacy as we would expect (only reaching n ∼ 10−5, represented by the color blue, when
almost parabolic). However, this can very well be due to the graphic method also breaking
down and/or loosing precision for values of U near 0. To ensure an acceptable precision of
least_squares(), a value lesser than � − 4/3(1− @3) = 0.05 will be considered to imply a
transfer orbit too close to a parabola and therefore a result with questionable validity (which
would be discarded).

Given that the final objective of this laboratory class is the analysis and optimization of
interplanetary missions, hyperbolic and parabolic solutions will usually be neglected. This
is because they constitute higher energy transfer orbits, which are generally not the optimal
solution. Moreover, that � − 4/3(1− @3) < 0.05 is quite uncommon, as very short times of
flight are required.



5.4 Part 3: Analysis and optimization of interplanetary missions 83

Therefore, a decision not to include the series expression has been made. Besides not
really being necessary for the optimization of interplanetary missions, it would add some
further complexity to the already quite complex laboratory class.

5.4 Part 3: Analysis and optimization of interplanetary missions

Finally, here we use Python to solve Lambert’s problem and go to Mars. We see how our
numbers match those produced by NASA’s engineers!

In this third and final part, all the contents presented previously are put into practice. First,
an example regarding the visualization of the Mars Science Laboratory mission is introduced.
Launched by NASA on November 26, 2011, it successfully landed Curiosity, a Mars rover,
on August 6, 2012. To plot its transfer orbit, the algorithm discussed in the previous section,
which solves Lambert’s problem for elliptic motion and the single-revolution case, needs to
be programmed:

1 '''Lambert solver (only valid for m = 0 and elliptic motion)'''
2 def Lambert(q, J):
3 def F(v): # where v is an array containing alpha (a) and beta (b)
4 a, b = v # a = v[0] and b = v[1]
5 F1 = J*(np.sin(a/2))**3 - (a - b - np.sin(a) + np.sin(b))
6 F2 = np.sin(b/2) - q*np.sin(a/2)
7 return [F1, F2]
8 alpha_beta = least_squares(F, [np.pi, 0], bounds=([1e-5,-np.pi],

[2*np.pi, np.pi])).x↩→

9 return alpha_beta

The function least_squares(fun, x0, bounds) takes in the following parameters:

• fun: Function(s) to be solved.

• x0: Initial guess on independent variables.

• bounds: In the format ([a_start, b_start], [a_end, b_end])

and outputs a result structure with multiple fields. To access the actual solution, .x is ap-
pended to the call.

Then, the starting and arrival positions are obtained at C1 and C2 respectively, after which
the parameters @ and � are obtained through the function params(). Calling Lambert(),
a solution U, V to this particular problem is found. This solution is then used to obtain
the orbital elements of the transfer orbit at C1 through elements(). Further details on the
auxiliary functions params() and elements() can be found in Appendix B.

5.4.1 Example 4: Analyzing the MSL mission - Results

In this section, the results and conclusions which are to be obtained by the students through
Example 4 are presented.



84 Chapter 5. Development of a laboratory class on Lambert’s problem

To plot the planet’s orbits, a pair of functions created in Example 2, PlotOrbit2D() and
PlotOrbit3D(), can been used. To plot the transfer orbit, PlotSol2D() and PlotSol3D()
are to be called instead. These are included within astrofun.py, and are very similar to
the previous pair but with slight variations (now the ephemerides are not used, and instead
the orbital elements are directly passed as an input argument).

Both a three-dimensional graph and its two-dimensional projection are to be generated by
the student:

Figure 5.19 Visualization of the Mars Science Laboratory mission.

The solution appears to be very similar to a Hohmann transfer orbit. This is no coinci-
dence; as stated in Sect. 3.5, when considering the two-dimensional problem, the Hohmann
transfer orbit can be proven to be the optimal solution. In three dimensions, the starting
and arrival orbits are no longer co-planar and therefore slight variations occur. Furthermore,
neither the Earth or Mars’ orbits are circular, nor their lines of apsides are aligned.

The engineers at NASA try to choose launch and arrival dates which provide the optimal
solution, and real world transfer orbits may traverse slightly more, or slightly less, than 180◦

around the Sun. Sure enough, the MSL mission describes what’s called a Type 1 (Δ\ < 180◦)
Hohmann transfer orbit.

At this stage, a brief review of the theoretical background on the optimization of inter-
planetary missions is made. Here, the concept of characteristic energy (denoted �3) and
pork-chop plots are introduced. Then, a final example is presented to the students, regard-
ing the optimization of NASA’s Mars Reconnaissance Orbiter mission.

5.4.2 Example 5: Optimizing NASA’s MRO mission - Results

The Mars Reconnaissance Orbiter (MRO) is a spacecraft designed to study the geology and
climate of Mars, provide reconnaissance of future landing sites, and relay data from surface
missions back to Earth. It was launched in the year 2005 and will continue to operate through
the late 2020s, far beyond its intended design life.



5.4 Part 3: Analysis and optimization of interplanetary missions 85

Through this example, students obtain by themselves a pork-chop plot similar to that
represented in Fig. 5.20 (already reviewed in Sect. 3.5), which shows the 2005 Mars launch
opportunity (�3 | launch). Then, an optimal launch date is calculated and some additional
insight o�ered.

Figure 5.20 Representative pork-chop plot for the 2005 Mars launch opportunity. A given
blue contour represents a solution with a constant �3. [11]

Although this pork-chop plot does not provide the true optimal dates, which would be
obtained by plotting �3 | total, it is still of great interest. To match a launcher with a mission,
�3 | launcher must be greater than �3 | launch. In this particular case, �3 = 30 km2/s2 has been
selected as an upper limit, given by the maximum �3 that can be provided by the desired
launcher.

To generate a contour plot, a grid in Julian days must be created. Computing the launch
and arrival �3 at every every pair of dates involves calling a few functions every time, and
is a very time-consuming process. For instance, creating a 100 by 100 grid implies a total of
10000 discretization points, which roughly translates into a full minute of computing time.
For the purposes of the laboratory class, however, this proves to be enough resolution.



86 Chapter 5. Development of a laboratory class on Lambert’s problem

Once the scalar fields of �3 | launch and �3 | arrival have been calculated, they can be plotted
separately or added together to generate the pork-chop plot of �3 | total. First, �3 | launch is
plotted to compare the result with Fig. 5.21:

Figure 5.21 Self-made representative pork-chop plot for the 2005 Mars launch opportunity.

The resulting pork-chop plot is clearly identical to the one generated by NASA. In a way,
this proves the validity of the algorithms and procedures which have been created for this
project and are being applied here.

A three-dimensional representation of the scalar field of �3 | launch (or �3 | total) can also be
generated through a surface plot. In Fig. 5.22, for clarity, �3 | launch has been clipped to a
maximum value of 300 km2/s2 (originally, at some points it can reach values of around 3000
km2/s2, before turning into parabolic or hyperbolic solutions). Additionally, the surface plot
has been displayed along its top view (with the same orientation as the pork-chop plot in
Fig. 5.20).

It is interesting to observe the overall shape of the surface, and perhaps its most striking
feature consists on the narrow region where the characteristic energy takes extremely high
values. This is due to Δ\ becoming ∼ 180◦, which implies, in general, a polar heliocentric
orbit (that requires a rather large �3) as r1 and r2 lie on di�erent planes.



5.4 Part 3: Analysis and optimization of interplanetary missions 87

Figure 5.22 Three-dimensional representation of �3 | launch.

To calculate the true optimal date, students are prompted to generate a pork-chop plot of
�3 | total:

Figure 5.23 Pork-chop plot for the 2005 Earth-to-Mars total �3 required.



88 Chapter 5. Development of a laboratory class on Lambert’s problem

This new contour plot turns out to be very similar to the previous one. The optimal
solution can be found applying np.min() to the total characteristic energy’s scalar field
(which in the Laboratory class will be stored within a matrix named C3). However, this
approach does not provide a way to di�erentiate between Type 1 and Type 2 solutions, or
compute both minimums separately. Therefore, a perhaps more rudimentary procedure needs
to be implemented. On one hand, a pair of for-loops can be created to access every element
from the matrix C3, which contains the values of the total characteristic energy.

On the other hand, recall that Type 1 and Type 2 orbits resemble a Hohmann transfer orbit
(Δ\ = 180◦), the former being slightly shorter (Δ\ < 180◦) and the latter slightly longer (Δ\ >
180◦). To di�erentiate between both solutions, a simple rule can be developed. Consider
the hypothetical period of a Hohmann transfer orbit solution to the 2D problem:

0� =
0Earth + 0Mars

2
, )� = 2c

√
03
�

`�
.

Then, a transfer orbit will be of Type 1 if its time of flight is less than )�/2, or of Type
2 otherwise. The line C2 = C1 +)�/2 has been plotted in Fig. 5.23. Even though it does
not overlap with the Δ\ ∼ 180◦ region mentioned earlier (whose expression cannot be easily
obtained for a generic mission), this method proves to be quite reliable, and separates both
minimums at any given range of dates.

Through the pair of for-loops (which can be found in the laboratory report), besides ob-
taining the �3 of each solution, the launch and arrival dates can also be conveniently stored.
The optimal launch and arrival dates turn out to be August 17, 2005 and March 15, 2006.
That is, a short time of flight of about seven months, which implies a Type 1 orbit.

In reality, the MRO was launched on August 12, 2005 and reached Mars on March 10,
2006. Although not identical, the optimal dates which have been obtained are very close to
the actual launch and arrival dates (only 5 days o�). The discrepancies can very well be due
to other factors such as bad weather at the optimal launch date or restraints of other nature,
and surely due to the multiple simplifications which have been made to tackle the problem
(including the concept of spheres of influence1 and the patched conics approximation).

However, this outcome proves that most of these simplifications are indeed appropriate,
and provide surprisingly accurate results. In a real-life scenario, more complex multiple-body
simulations would be carried out to validate and refine the final solution.

5.4.3 Additional insight on the Mars launch opportunity windows

In the previous example, only the 2005 Mars launch opportunity has been analyzed. How-
ever, in the context of future interplanetary missions, it is interesting to consider whether
spacecraft can be launched at any desired year.

As it has been studied, the feasibility of either a Type 1 or Type 2 transfer orbit depends
primarily on the relative position between Earth and Mars —how long does it take for these
planets to be in a similar relative position? The answer to this question corresponds with
the synodic period.

1 It must be noted that the time spent by the spacecraft in escaping Earth’s million-kilometer SOI, which can be
substantial, has not been taken into account.



5.4 Part 3: Analysis and optimization of interplanetary missions 89

If the orbital periods of two bodies around a third one (e.g. the Sun) are called )1 and )2,
so that )1 < )2, their synodic period )B is given by:

1

)B
=

1

)1
− 1

)2

The synodic period of Mars, relative to Earth, turns out to be approximately of 779.9
days or 2.135 years1. Therefore, a launch opportunity should be expected roughly every
two years. Since 2005, the number of missions to Mars carried out every year have been
represented in Fig. 5.24.

Figure 5.24 Number of missions to Mars carried out every year since 2005.

Just as it has been predicted, a trend can be clearly appreciated —spacecraft are launched
approximately every two years.

Furthermore, the characteristic energies required for future missions can be calculated, in
order to choose an optimal launch year. For instance, during the decade of the 2020s, the
optimal (minimum) �3 | total can be computed for both Type 1 and Type 2 solutions:

Figure 5.25 Optimal �3 | total of Type 1 and Type 2 transfer orbits during the 2020s.

1 In practice, a more accurate synodic period (obtained empirically) turns out to be of 775.5 days.



90 Chapter 5. Development of a laboratory class on Lambert’s problem

Observing Fig. 5.25, the best year at first sight seems to be 2026, although many more
factors need to be taken into account when designing a real mission. Additionally, notice
how the overall optimal �3 | total can be achieved through transfer orbits of either type.



6 Conclusions and future work

6.1 Conclusions

The concepts developed along this project have been those strictly necessary to approach
the various subjects treated and fulfill our final purpose, which is to design a two-hour lab-
oratory class for the students enrolled in the Orbital Mechanics and Space Vehicles course,
imparted by Rafael Vázquez Valenzuela at the University of Seville. In this regard, a com-
prehensive analysis of Lambert’s problem and the basics of Python programming have been
covered. Additionally, an appropriate laboratory class, along its accompanying laboratory
report (which can be found in Appendix A), have been developed. In the following lines,
some further thoughts are presented.

Clearly, the main limitation in the design of the laboratory class has been its two-hour time
restriction. This intended duration has significantly shaped the amount and complexity of
the contents introduced, and has led to a substantial simplification of Lambert’s problem
(which has only be solved for elliptic motion). However, this approach has proven to be well
suited for basic analysis and design of interplanetary missions.

Regarding the introduction to Python, an attempt has been made to cover the basic knowl-
edge required to code the various algorithms present throughout the laboratory class. How-
ever, students who are interested in learning more about the language are advised to read
Chapter 4 from this document, and the fantastic guide by H. Fangohr [12]. Intermediate
knowledge of Matlab has been assumed, as it is taught during the first years of the Bach-
elor in Aerospace Engineering. If students had a previous background in Python, the lab-
oratory class could have been approached in a di�erent manner. Perhaps a greater focus
would have been allowed on the practical application of Lambert’s problem, in the context
of interplanetary missions. More on this idea is addressed in the next section, dealing with
future work.

Overall, the results has been very satisfactory. The first part of the laboratory class serves
as a great introductory chapter for students lacking any previous knowledge in Python pro-
gramming. Moreover, regarding the Earth to Mars missions analyzed within the laboratory
class, the obtained solutions closely resemble those obtained by the NASA. In a way, this
proves the validity of the algorithms and procedures which have been developed for this
project. To conclude this project, the laboratory report has been provided to a group of
students, obtaining very positive feedback.

91



92 Chapter 6. Conclusions and future work

6.2 Future work

The main subject of this project, which is Lambert’s problem, has been approached in a
rigorous manner. However, even though an universal algorithm valid for elliptic, hyperbolic
and parabolic transfers is addressed in Sect. 2.4, it has not been implemented in Python.
Only a simpler, more limited version for the elliptic case has been developed. For future
work, programming the universal algorithm (and perhaps exploring more recent and e�cient
approaches than the one addressed in this project, adapted from Lancaster et al. [1]) could
be interesting, as hyperbolic and parabolic trajectories tend to show up in the analysis of
more complex interplanetary missions.

Furthermore, the precision of the resulting algorithm, although appropriate for the pur-
poses of the laboratory class, is low compared to other existing algorithms. An e�ort to
increase it should be made, and possibly an extension of the analysis presented in Sect. 5.3.2,
with more robust techniques for error detection and increased testing, would be advisable.

Throughout the laboratory class, only direct transfer orbits have been reviewed. However,
in reality more elaborate techniques are used to design and optimize interplanetary missions.
For instance, multiple-revolution orbits are frequently utilized in combination with gravity
assisted and deep space maneuvers (GAM and DSM respectively). On one hand, a more
robust Lambert solver to deal with the multi-revolution case should be developed. On the
other hand, an additional laboratory class (a Part 2, so to say) could be introduced to deal
with these concepts, emphasizing their practical application and providing the students with
additional tools to program more elaborate code.

Moreover, every year multiple students are involved in projects (TFGs) regarding orbital
mechanics, which focus on the design and optimization of interplanetary missions. The
work developed throughout this document (particularly the numerous auxiliary algorithms
included in Appendix B), could be made accessible to them so they can invest their e�orts in
the actual designing and optimizing of the mission, instead of trying to code them themselves
(which takes a surprisingly large amount of time).

Lastly, it should be noted that the laboratory report will surely be subject to numerous
changes in the future. An e�ort to update the latter examples to more recent events, and
the commands and tools used in the Python tutorial to the latest version of the language
should be made. Additionally, in the event of Python being included within the Bachelor in
Aerospace Engineering’s study plan, the laboratory report would most definitely need to be
restructured.



Bibliography

[1] E. R. Lancaster and R. C. Blanchard. A Uni�ed Form of Lambert’s Theorem. National
Aeronautics and Space Administration, Washington, 1969.

[2] R. H. Gooding. A Procedure for the Solution of Lambert’s Orbital Boundary-Value Problem.
Celestial Mechanics and Dynamical Astronomy 48, 145–165, Hampshire, 1990.

[3] C. F. Gauss. Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic
Sections. Dover Publications, New York, 1963.

[4] Rafael Vázquez Valenzuela. Orbital Mechanics and Space Vehicles, Class Notes (ETSI Seville).
Available at: http://aero.us.es/astro/desc.html (Accessed: March 2020).

[5] R. H. Battin. An Introduction to the Mathematics and Methods of Astrodynamics. AAIA,
New York, 1999.

[6] H. D. Curtis. Orbital Mechanics for Engineering Students. Elsevier Butterworth-Heinemann,
Oxford, 2005.

[7] I. Newton (translated by A. Motte). The Mathematical Principles of Natural Philosophy.
University of Oxford, Oxford, 1729.

[8] J. E. Prussing. Geometrical Interpretation of the Angles U and V in Lamberts Problem. Journal
of Guidance, Control and Dynamics, Vol.2, No. 5, 442–443, Illinois, 1979.

[9] G. S. Gedeon. Lambertian Mechanics, Proceedings of the XIIth International Astronautical
Congress. Academic Press Inc., New York, 1963.

[10] E. M. Standish. Keplerian Elements for Approximate Positions of the Major Planets. NASA
Jet Propulsion Laboratory, Caltech, 2006.

[11] "Porkchop" is the First Menu Item on a Trip to Mars. NASA Jet Propulsion Laboratory, Avail-
able at: http://mars.jpl.nasa.gov/spotlight/porkchopAll.html (Accessed: March 2020).

[12] H. Fangohr. Python for Computational Science and Engineering. University of Southampton,
Southampton, 2015.

93



94 Chapter 6. Bibliography

[13] Python 3.7 Documentation. Python Software Foundation, Available at:
https://docs.python.org/3.7/ (Accessed: May 2020).

[14] NumPy 1.18 Documentation. The SciPy community, Available at:
https://numpy.org/doc/stable/ (Accessed: May 2020).

[15] NumPy for Matlab users. The SciPy community, Available at:
https://numpy.org/doc/stable/user/numpy-for-matlab-users.html (Accessed: June 2020).



Appendix A

Laboratory report

95



ORBITAL MECHANICS AND
SPACECRAFT

Laboratory Class
Programming with Python. Lambert’s Problem.

Analysis and Optimization of Interplanetary Missions.

To perform the analysis and optimization of an interplanetary mission (or generally, of
any transfer between two generic orbits) the need to solve Lambert’s Problem arises. Some-
times referred to as the orbital boundary problem, it is concerned with the determination of
an orbit from two position vectors and the time of flight. The goal of this laboratory class
is to provide guidelines for coding in Python an algorithm that allows Lambert’s problem to
be solved numerically.

1 Programming with Python

In this section, you will learn the basics of Python programming, which is widely used in the
space industry. The language is similar to MATLAB in many aspects, so you will be doing
complex tasks in just a few minutes!

Python is a powerful programming language which has many di�erent and interesting
applications. Perhaps one of its most important advantages is the great number of existing
libraries available —for scientific computation, it is crucial to make use of numerical libraries
such as NumPy, SciPy and the plotting package Matplotlib. It was designed for readability,
and has some similarities to the English language with influence from mathematics. It uses
new lines to complete a command, as opposed to other programming languages which often
use semicolons or parentheses. Additionally, Python relies on indentation to de�ne the
scope of loops or functions.

All major editors that are used for programming (such as Atom, Vim, Sublime Text, etc.)
provide Python modes. For beginners, however, working within an Integrated Development
Environment (IDE) may result more intuitive. IDEs provide an useful range of tools, such
as a display showing the variables created by the user or allowing to execute the code in
debug mode (step by step). Furthermore, this provides a smoother learning curve for those
familiarized with Matlab’s IDE. For this laboratory class, Spyder seems a sensible choice
as it provides a similar graphic user interface and is easy to pick up. Additionally, Spyder
is included by default in the Anaconda distribution (which is installed in most computers of
the University of Seville’s ETSI).

1



Anaconda is a free and open-source Python distribution for scientific computing, that
aims to simplify package management and deployment. It also incorporates some of the
most popular Python libraries (or packages), including those which will be used throughout
this laboratory class. Anaconda can be downloaded from: https://www.anaconda.com/
products/individual.

There are two versions of the Python language being used nowadays: Python 2 and
Python 3. The changes in Python 3 were introduced to address shortcomings in the design of
the language that were identified since Python’s inception. Therefore, the contents presented
throughout this laboratory class are programmed using the latter version.

1.1 Getting started

By default, Spyder’s main window consists of three main modules: editor, variable explorer
and (IPython) console. In the editor, selected parts of the code can be executed and the
debug mode is available. The variable explorer, as its name implies, shows the variables
created by the user, indicating their type, size and value. On the other hand, the interactive
console provides programmers with a quick way to execute commands and try out or test
code without creating a file.

First, create a new file by clicking the New �le icon or pressing ctrl+N. Python is an in-
terpreted language —it executes instructions directly, without previously compiling the code
into machine-language instructions. The interpreter executes every line in sequential order,
from top to bottom. Therefore, the first lines of a Python script (a file with the extension
“ .py ” containing code written in Python) must contain the modules and/or packages (a
collection of modules) that are intended to be used throughout the file. Importing a module
or package is straightforward:

import numpy

The names within the numpy package must be accessed through the name numpy . For

example: numpy.sin . However, the name by which the module or package is known locally
can be di�erent from its “o�cial” name. For instance, writing

import numpy as np

changes the package name to something more manageable. Furthermore, writing

from numpy import sin

will only import the sin function from the numpy package (which can then be called
directly, without writing numpy. ). It is possible to import more than one function:

from numpy import sin, cos

A newly created file contains a docstring indicating the author and current date, in addi-
tion to the command # -*- coding: utf-8 -*- . This default template is only optional,
and therefore everything can be deleted.

2

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual


1.2 Example 1 - Orbital position as a function of time

Programming a simple algorithm which computes the orbital position as a function of the
time relative to periapsis passage (the time at which an orbiting body moves through the
periapsis of the orbit) provides a good starting point for getting familiarized with Python.

To develop a numerical algorithm, the NumPy package (https://numpy.org/) is re-
quired. It provides access to a data structure called array (similar to Matlab’s) which allow
e�cient vector and matrix operations. It also provides fundamental mathematical functions
( sin() , cos() , log() , etc.), physical constants ( pi , e , etc.) and a number of linear
algebra operations.

In addition to the NumPy package, a root finder is required to solve Kepler’s equation:

1 import numpy as np # np is the standard abbreviation for numpy
2 from scipy.optimize import fsolve

Then, the initial data can be introduced, including those orbital elements which define the
orbit’s shape (the eccentricity, 4) and size (the parameter ? in this example):

3 ''' Data (in the Sun's canonical units)'''
4 Delta_t_days = 100.0 # [days] Time relative to periapsis passage
5 Delta_t = Delta_t_days/58.1324 # [UT] (1 UT = 58.1324 days)
6 e = 0.0167 # Earth's orbit eccentricity
7 p = 0.999 # [UD] Earth's orbit p parameter (a = 1 UD)

Throughout this laboratory class, the Sun’s canonical units will be used:

1 UD� = 1 AU, 1 UV� = 29.7847 km/s, 1 UT� = 58.1324 days

Basic operations such as addition ( + ), subtraction ( - ), multiplication ( * ), division
( / ) and exponentiation ( ** and not ^ as in Matlab) work as expected. Parentheses can
be used for grouping. To perform an element-wise operation of two arrays, there is no need
to place a dot before the operator (as it would be done using Matlab).

Single-line comments start with the hash # character, and they are automatically termi-
nated by the end of line. However, when a string (enclosed by single ' or double " quo-
tation marks) is just written down, with no additional operations applied, and not assigned
to a variable, it is basically ignored by the interpreter. Therefore, they can be employed as
a sort of comment. This isn’t that common, or semantically correct, but it is allowed. Triple
quotes ''' allow a string to span multiple lines, but throughout this practical class they
will be used primarily to emphasize headings (as they allow regular single quotes ' within
the string).

Next, a function which computes the orbital position as a function of the time relative to
periapsis passage (ΔC) is defined:

8 '''Function which computes the orbital position'''
9 def OrbitalPosition(Delta_t, p, e):

10 mu = 1 # [UD*UV^2]

3

https://numpy.org/


11
12 if e<1: # Elliptic orbit
13 a = p/(1-e**2) # [UD]
14 M = Delta_t*np.sqrt(mu/a**3)
15 E = fsolve(lambda E: E-e*np.sin(E)-M, M)
16 theta = 2*np.arctan(np.sqrt((1+e)/(1-e))*np.tan(E/2))
17 # np.arctan() outputs a value between -pi and pi
18
19 elif e==1: # Parabolic orbit
20 B = 3*Delta_t*np.sqrt(mu/p**3)
21 z = (B+np.sqrt(B**2+1))**(1/3)
22 theta = 2*np.arctan(z-1/z)
23
24 else: # Hyperbolic orbit
25 a = p/(1-e**2)
26 N = Delta_t*np.sqrt(mu/(-a)**3)
27 H = fsolve(lambda H: e*np.sinh(H)-H-N, N)
28 theta = 2*np.arctan(np.sqrt((1+e)/(e-1))*np.tanh(H/2))
29
30 return theta

The indentation after the declaration of the function is required and defines its scope. The
same applies to for-loops and if-else statements. Additionally, there is no need to specify an
end command to these blocks (while it is necessary in Matlab); returning to the previous
indentation level is enough.

For the elliptic case, fsolve returns the roots of Kepler’s equation (� − 4 sin � −" = 0)
using " as a starting estimate. This equation has been defined through an anonymous func-
tion, also known as lambda function (e.g. f = lambda x: x**x ). Anonymous functions
provide similar functionality as Matlab’s function handles, defined through the @ symbol.

A function cannot be called before its declaration (the Python interpreter has to first
come across the def line in order to recognize the function and allow it to be called).
Functions can also take and/or return an arbitrary number of arguments. To conclude this
example, the previous function is called to obtain the orbital position at the time ΔC (relative
to periapsis passage):

31 '''Calling the function'''
32 theta_rad = OrbitalPosition(Delta_t, p, e) # [rad]
33 theta_deg = theta_rad*180/np.pi # [º]
34 print('theta =', theta_deg)

Once the code is completed, click the Run �le icon (or press F5) to execute the script. The
variables assigned outside the function appear at the variable explorer module (just at they
would inMatlab). These variables can be erased by clicking the Remove all variables (rubber-
like) icon or writing %reset -f in the IPython console. Additionally, the clear command
clears the console window, while plt.close('all') closes all open figures. These are anal-

ogous to Matlab’s clear , clc and close all respectively.

4



Note: By default, variables with all-uppercase names are not shown at the variable ex-
plorer. To fix this, click the top right Options (gear-shaped) icon and make sure the Exclude
all-uppercase references option is not selected.

1.3 Example 2 - Plotting Mercury’s orbit

In this second example another essential package is reviewed, Matplotlib (https://matplotlib.
org/), which is a plotting library for Python and its numerical mathematics extension
NumPy. It enables the generation of high quality line plots, scatter plots, 3D plots, etc.,
with just a few lines of code, and its module matplotlib.pyplot provides a Matlab-like
plotting framework.

To plot Mercury’s orbit, its planetary ephemeris and an orbit propagator are required.
The function eph(planet_number, JD) , included in the astrofun.py module, computes
the orbital elements of a Major Planet’s orbit at a given Julian day. To calculate the Julian
day of a date expressed in DD/MM/YYYY format, the function julian(D, M, Y) can be
used. Additionally, a function that transforms the orbital elements into position and velocity
vectors ( posvel(elements) )is provided.

Before getting started, go to Tools > Preferences (or press Ctrl+Alt+Shift+P) and
then IPython console > Graphics > Graphics backend. Once there, the default option
(Inline) needs to be changed to Automatic. This will generate figures in separate windows,
allowing the user to interact with them. To apply this change, Spyder will need to be restarted
(even though it doesn’t ask to). Before doing so, the previous script must be saved so that
no information is lost.

Figure 1: Change of settings.

Now lets proceed with the second example. First, a new file must be created. Then,
delete the default template and include the following lines of code:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits import mplot3d
4 from astrofun import julian, eph, posvel

5

https://matplotlib.org/
https://matplotlib.org/


Note: when importing functions from a file a.py to another file b.py , both need to be
in the same directory.

It is smart to define a function which plots the orbit of a generic planet, given launch and
arrival dates. This way, if later during the laboratory class other orbits need to be plotted,
it will just be a matter of importing said function (just as it has been done with those from
astrofun.py here). To begin, a function which plots a 2D projection of the orbit can be
created:

5 def PlotOrbit2D(planet_num, JD1, JD2, color, ends=False):
6 pts = 500 # Number of discretization points
7 r_vec = np.zeros([pts, 3]) # Initializing the array
8 i = 0
9 for JD in np.linspace(JD1, JD2, pts):

10 elements = eph(planet_num, JD)
11 r, v = posvel(elements) # A multiple assignment
12 r_vec[i,:] = r
13 i+=1 # Increases i by 1 in every iteration
14 plt.plot(r_vec[:,0], r_vec[:,1], color)
15 plt.scatter(0, 0, s=180, c='gold') # s=size, c=color
16 if ends: # if ends==True
17 plt.plot(r_vec[0,0], r_vec[0,1], 's', c=color)
18 plt.plot(r_vec[-1,0], r_vec[-1,1], 'o', c=color)
19 plt.gca().set_aspect('equal', adjustable='box')
20 plt.xlabel(r'$X$ [UD$_\odot$]') # \odot is the Sun's symbol
21 plt.ylabel(r'$Y$ [UD$_\odot$]')

A color string and whether to plot the planet at the launch (square marker) and arrival (cir-
cle marker) dates have been considered as input arguments. By default, the variable ends
is set to False (doesn’t plot markers).

Many commands included in NumPy andMatplotlib are very similar toMatlab’s. For in-
stance, the functions np.zeros(shape) and np.linspace(start, stop, num) are iden-
tical to its Matlab equivalents. However, there are some key di�erences between the two
languages. It is important to note that Python uses zero-based indexing, that is, the first
element has an index 0, the second has index 1, and so on. This is in contrast to Matlab’s
one-based indexing, where the first element has index 1.

The use of indices in slicing also di�ers from Matlab’s approach. In Matlab, stating
a(1:2) returns the first and second elements from the vector a . However, stating a[1:2]
in Python only returns the second element. The best way to remember how slices work in
Python is to think of the indices as pointing between elements:

indexing --> 0 1 2 3 4
+-----+-----+-----+-----+-----+
| 'H' | 'e' | 'l' | 'l' | 'o' |
+-----+-----+-----+-----+-----+
0 1 2 3 4 5 <-- slicing

6



In the previous function, a for-loop is required to obtain the planet’s position at various in-
stants of time between the dates JD1 and JD2 . Through the command r_vec[i,:] = r ,
the three coordinates of the radius vector are assigned to the corresponding row of r_vec .
Note that Python (in contrast to Matlab) doesn’t allow to address elements which have
not been created previously. Therefore, r_vec needs to be initialized before entering the
for-loop (in this case through the function np.zeros() ).

The actual plotting is straight-forward. For 2D line plots and scatter plots, the functions
plt.plot() and plt.scatter() are identical to its Matlab equivalents. The line style,
marker symbol, and color can also be set the same way. For a 2D representation of the orbit,
only the X ( r_vec[:,0] ) and Y ( r_vec[:,1] ) components of the radius vector are being
plotted.

The command plt.gca().set_aspect('equal', adjustable='box') sets the scale
of both axis to be equal to show the true shape of the orbit. Adding an r before a string
allows LATEX formatting in Matplotlib graphs (for titles, labels, etc.).

To plot 3D data, the sub-module mplot3D from the module mpl_toolkits needs to be

imported. 3D plots are not supported within pyplot , and therefore some object-oriented
programming (although quite simple) is required. 3D axes can be created through the com-
mand plt.axes(projection='3d') , which generates an Axes3D object. Then, plots can

be added to the Axes3D. This slightly di�ers from Matlab’s and matplotlib.pyplot ’s
state-driven interface.

A function which plots a 3D orbit can be similarly defined:

22 def PlotOrbit3D(planet_num, JD1, JD2, color, ends=False):
23 r_vec = np.zeros([pts, 3])
24 i, pts = 0, 500 # How multiple simultaneous assignments are done
25 for JD in np.linspace(JD1, JD2, pts):
26 r_vec[i,:] = posvel(eph(planet_num, JD))[0]
27 i+=1
28 ax = plt.gca()
29 ax.plot3D(r_vec[:,0], r_vec[:,1], r_vec[:,2], color)
30 ax.scatter3D(0, 0, 0, s=150, c='gold')
31 if ends:
32 ax.scatter3D(r_vec[0,0], r_vec[0,1], r_vec[0,2], c=color,

marker='s')↩→

33 ax.scatter3D(r_vec[-1,0], r_vec[-1,1], r_vec[-1,2], c=color)
34 lim = 1.2*eph(planet_num, JD)[0]
35 ax.auto_scale_xyz([-lim,lim], [-lim,lim], [-0.2,0.2])
36 ax.set_xlabel(r'$X$ [UD$_\odot$]')
37 ax.set_ylabel(r'$Y$ [UD$_\odot$]')
38 ax.set_zlabel(r'$Z$ [UD$_\odot$]')

The arrow symbol in line 32 only indicates that the line has been continued below so it can
fit in the box. In your script, just write the whole command in one single line.

7



In this case, the plots are being added to an Axes3D object called ax . Through the
command plt.gca() (get current axes), ax becomes the current axes (which will have to

be created before calling the function). The command ax.auto_scale_xyz() scales the
axes according to the limits introduced. To encompass the complete orbit, the limits for the
horizontal plane are set to ±1.2 times its semi-major axis ( a = eph(planet_num, JD)[0] ).

Lastly, a pair of dates are selected and the orbit can be plotted in 2D and 3D. Lets plot
a 2D complete orbit first:

39 if __name__ == '__main__': # only executed if this file is run
40
41 JD1 = julian(1,1,2021)
42 T = 2*np.pi*np.sqrt(eph(1, JD1)[0]**3/1) # [UT] Mercury's period
43 T_days = T*58.1324 # [days]
44 JD2 = JD1 + T_days
45
46 '''Complete orbit'''
47 plt.figure() # This command creates a new figure
48 PlotOrbit2D(1, JD1, JD2, 'k', True) # plots the complete orbit

The special variable __name__ is only equal to '__main__' when the actual file is being
run directly. The functions PlotOrbit2D() and PlotOrbit3D() will be required later,
and to import them, Python internally runs the entire file where they are located. To avoid
executing these lines of code (which are only relevant to this example), we include them
inside an if-statement which is only entered if __name__ == '__main__' .

Before clicking Run �le, save the file at the same directory were astrofun.py can be
found. Then, run the script and a new window should appear. Mimicking Matlab ’s inter-
face, Matplotlib also provides an interactive interface which allows to zoom, pan or edit the
plot’s basic attributes.

Now, analyze the orbit. What can be observed if the ends (the markers) are zoomed
in enough? Hint: A linear propagator is being used, and the rates of change of the orbital
elements due to perturbations are being taken into account. Zoom in a few times using the
magnifying glass icon to appreciate this e�ect.

Next, lets plot the arc traveled by Mercury in a 30-day month. To show multiple plots
on di�erent windows, new figures must be created (by default, the equivalent to Matlab’s
hold option is set to on ). Additionally, for the 3D plot an Axes3D object named ax must
be created:

49 JD3 = JD1 + 30 # a 30-day month from JD1
50
51 '''2D Figure'''
52 plt.figure()
53 PlotOrbit2D(1, JD1, JD2, 'k')
54 PlotOrbit2D(1, JD1, JD3, 'r', True)
55 # The starting and ending points of the traveled arc are being

plotted↩→

8



56 '''3D Figure'''
57 plt.figure()
58 ax = plt.axes(projection='3d')
59 PlotOrbit3D(1, JD1, JD2, 'k')
60 PlotOrbit3D(1, JD1, JD3, 'r', True)

To generate the plots, click Run �le once again.

Further information about any function can be obtained by typing help(func) into the
console, searching the packages’ documentation:

• NumPy documentation: https://numpy.org/doc/stable/

• Matplotlib documentation: https://matplotlib.org/3.2.1/contents.html

or else in Python’s documentation (https://docs.python.org/3.7/). Additionally, in the
last pages of this laboratory report, a comparison betweenMatlab and Python’s syn-
tax of the most frequent commands and expressions can be found.

9

https://numpy.org/doc/stable/
https://matplotlib.org/3.2.1/contents.html
 https://docs.python.org/3.7/


2 Lambert’s problem

Solving Lambert’s problem is crucial to design realistic interplanetary transfers and maneuvers.
We don’t do it by hand because it requires solving two nonlinear equations with two unknowns.
Here we learn how to make our computer do it for us; then you can relax and start designing
your first missions!

Consider an orbiting body located at distances A1 and A2 from the center of attraction
at times C1 and C2 respectively. Let 2 be the distance and Δ\ the transfer angle between the
positions of the orbiting body at the two times, where 0 ≤ Δ\ ≤ 2c.

Figure 2: A diagram of the two-body orbital boundary problem.

Lambert’s problem is that of finding the semi-major axis (or some related quantity) of the
orbit, given C1, A1, C2, A2 and Δ\. When Lambert’s problem has been solved, other quantities
associated with the orbit are easily found.

2.1 The classical form of Lambert’s equations

With origin at the center of attraction, we have, for elliptic motion,

A1 = 0(1 − 4 cos �1), (1)

A2 = 0(1 − 4 cos �2), (2)

=ΔC1 = �1 − 4 sin �1, (3)

=ΔC2 = �2 − 4 sin �2, (4)

where = is the mean motion and � the eccentric anomaly. In the perifocal frame of reference,
r1 and r2 are expressed as

r1 = 0(cos �1 − 4) eG + 0
√
1 − 42 sin �1 eH ,

r2 = 0(cos �2 − 4) eG + 0
√
1 − 42 sin �2 eH .

(5)

Using the law of cosines, we can express 2 in terms of A1, A2 and Δ\:

22 = A21 + A22 − 2A1A2 cosΔ\, (6)

which is to say
22 = A21 + A22 − 2r1 · r2. (7)

10



Substituting (5) in (7), we have

22 = 02(cos �2 − cos �1)2 + 02(1 − 42) (sin �2 − sin �1)2,

= 402
(
1 − 42 cos2 �1 + �2

2

)
sin2

�2 − �1

2
. (8)

Adding (1) and (2),

A1 + A2 = 20

(
1 − 4 cos �1 + �2

2
cos

�2 − �1

2

)
. (9)

Subtracting (3) from (4),

=(C2 − C1) = (�2 − �1) − 24 cos
�1 + �2

2
sin

�2 − �1

2
. (10)

(8), (9) and (10) determine the three unknowns 0, (�2 − �1) and 4 cos[(�1 + �2)/2]. To
simplify these equations it is customary to define two new parameters, U and V. Let

cos
U + V
2

= 4 cos
�1 + �2

2
, 0 ≤ U + V < 2c, (11)

and
U − V = �2 − �1 − 2<c, 0 ≤ U − V < 2c, (12)

where < is the number of complete revolutions made by the orbiting body between times C1
and C2. (8), (9) and (10) then become

2

20
= sin

U + V
2

sin
U − V
2

, (13)

A1 + A2
20

= 1 − cos U + V
2

cos
U − V
2

, (14)

=(C1 − C2) = 2<c + U − V − cos U + V
2

sin
U − V
2

. (15)

With appropriate trigonometric identities, (13) and (14) can be expressed as

cos V − cosU = 2

0
,

cos V + cosU = 2 − A1 + A2
0

.

Solving these two equations, yields

cosU = 1 − B
0
= 1 + 2*, (16)

cos V = 1 + 2 *, (17)

where we have defined

B =
A1 + A2 + 2

2
, * = − B

20
, and  = 1 − 2

B
. (18)

11



Since cosU = 1 − 2 sin2(U/2), (16) can be changed to

* = − sin2 U
2
, 0 ≤ U < 2c, (19)

and similarly, (17) becomes

 * = − sin2 V
2
, −c ≤ V < c. (20)

Note that the limits for U and V come from the two inequalities for (11) and (12).

The parameter  can be alternatively expressed as

 =
B − 2
B

=
A1 + A2 − 2

2B
=
(A1 + A2)2 − 22

4B2
,

and introducing (6), we have

 =
A1A2(1 + cosΔ\)

2B2
=
A1A2

B2
cos2

Δ\

2
.

Now, substituting (19) in (20),

sin
V

2
= @ sin

U

2
, −c ≤ V < c, (21)

where

@ = ±
√
 =

√
A1A2

B
cos

Δ\

2
. (22)

Note that the sign of @ is taken care of by the angle Δ\:

1 ≥ @ ≥ 0 for Δ\ ≤ c,
0 ≥ @ ≥ −1 for Δ\ ≥ c.

(23)

We now have an equation relating U and V as a function of @, which is known. There-
fore, we need another equation relating these two parameters to find their values. We can
introduce * into (15), since

=(C2 − C1) =
√
`

03
(C2 − C1) = � (−*)

3
2 ,

where

� =

√
8`

B3
(C2 − C1). (24)

Consequently,

� = (−*)− 3
2

[
2<c + U − V − cos U + V

2
sin

U − V
2

]
, (25)

which can also be written as

� = (−*)− 3
2 [2<c + U − V − (sinU − sin V)] . (26)

Substituting (19) into (26), we obtain

� sin3
U

2
= 2<c + U − V − sinU + sin V. (27)

12



(21) and (27) with 0 ≤ U < 2c are Lambert’s equations for elliptic motion. Given @, �
and <, they are to be solved for U and V. Then, 0 can be obtained from (19) and it is a
simple matter to find all other quantities associated with the orbit.

This solution is only valid for the elliptic case. However, an universal solution valid for
elliptic, hyperbolic and parabolic transfers (although more elaborated) can also be obtained.
For curious readers, an interesting and relatively simple approach can be found in Lancaster
et al.1.

The astrofun.py module includes two relevant functions. The function params(data)

computes @ and � from Lambert’s problem initial data, and elements(alpha_beta, data)
calculates the orbital elements of the transfer orbit (given the problem’s solution U, V and
initial data). Both functions assume direct motion (that is, in the same direction as the Sun
rotates).

2.2 Example 3: Visualizing Lambert’s equations for elliptic motion

� sin3
U

2
= 2<c + U − V − sinU + sin V,

sin
V

2
= @ sin

U

2
.

These constitute a system of two equations with two unknowns, which can be visualized as
two curves whose intersection becomes the solution to Lambert’s problem. To analyze their
behaviour, the two curves can be plotted for di�erent values of @, � and <.

To accomplish this, both equations need to be expressed as implicit functions:

�1(U, V) = 2<c + U − V − sinU + sin V − � sin3 U
2
= 0, (28)

�2(U, V) = sin
V

2
− @ sin U

2
= 0, (29)

which can then be plotted through the plt.contour() function, just as it would be done
using Matlab:

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 q, J, m = 0.8, 4, 0
5
6 a_range = np.linspace(-6*np.pi, 6*np.pi, 1000)
7 b_range = np.linspace(-6*np.pi, 6*np.pi, 1000)
8 A, B = np.meshgrid(a_range, b_range)
9

10 F1 = 2*m*np.pi + A - B - np.sin(A) + np.sin(B) - J*(np.sin(A/2))**3
11 F2 = np.sin(B/2) - q*np.sin(A/2)

1E. R. Lancaster and R. C. Blanchard, A Uni�ed Form of Lambert’s Theorem, National Aeronautics and Space
Administration, Washington, 1969.

13



12 plt.figure()
13 plt.contour(A, B, F1, 0, colors='r') # Plots the contour line at F1 = 0
14 plt.contour(A, B, F2, 0, colors='k')
15 plt.xlabel(r'$\alpha$')
16 plt.ylabel(r'$\beta$')

By clicking Run �le, the figure containing both curves shows up. Observe how �2(U, V) = 0 is
in reality an infinite grid-like pattern, and multiple intersections occur between both curves.
Modify the values of @ ∈ [−1, 1] , � ∈ (0,∞] and < ∈ ℕ and observe how the curves change.
The bounds 0 < U < 2c and −c < V < c are required to choose the correct solution. By
adding the following lines:

17 plt.xlim([0, 2*np.pi])
18 plt.ylim([-np.pi, np.pi])

this can be clearly appreciated. The intersection at U = V = 0 always occurs, and must be
disregarded.

Recall that these equations are only valid for elliptic motion. Values of U near 0 imply
0 →∞ according to (19), approaching a parabolic solution. When < = 0, (28) breaks down
for U = 0 and su�ers from a critical loss of significant digits in the neighborhood of U = 0.

To observe why this happens, plot the equations for @ = −0.5, < = 0 and a range of �
between 10 and 1.6. When � becomes smaller (a shorter time of flight), a more direct and
quick path is required between the starting and arrival positions. The transfer orbit therefore
begins to approach a parabola. In Figure 3, (28) has been plotted at uniform intervals of �.
Note how the solution drastically changes for small variations in � at lower values.

Figure 3: Behaviour of (28) with equally spaced changes in �.

14



When a clear intersection between (28) and (29) occurs, the transfer orbit is elliptic and
the solution is valid. When both curves become tangent at U = V = 0 (execute the previous
code with @ = −0.5, < = 0 and � = 1.5), a parabolic transfer orbit is reached, which can’t be
solved using these equations. Hyperbolic transfer orbits appear when none of the previous
conditions are met (try 0 < � < 1.5).

Figure 4: Plot of � against U for selected values of @ and <.

In Figure 4, the complete set of solutions (values of U) for a range of � and selected values
of @ and < has been plotted. The conclusions obtained earlier can be clearly appreciated in
this graph. When < = 0, for a fixed value of @ there exists a lower bound for �, below which
no solution can be obtained. Note that for the cases with multiple revolutions (< ≠ 0) two
di�erent solutions exist. Additionally, unrealizable regions (no existing solution) have been
shaded in the figure.

Figure 5: Duplicity of solutions for the multi-revolution case.

15



Theoretically, one could solve Lambert’s problem by simply plotting the equations and
finding the intersection, or locating it in the graph from Figure 4. However, to optimize
interplanetary missions it needs to be solved an elevated number of times, and therefore a
numeric approach is the only viable option. In the following section, an algorithm to accu-
rately solve Lambert’s equations is developed.

2.3 Programming a simple algorithm for the elliptic case

Lambert’s equations can be solved using refined root finding algorithms such as fsolve() ,
readily accessible in Python. However, bounds can’t be set to the variables with fsolve() .
To find a solution within 0 < U < 2c and −c < V < c, constrained optimization is the
easiest way to proceed. The least_squares() function is convenient here; equations can
be directly passed to it, and it will minimize the sum of squares of its components. In other
words, it will find the values of U and V which at the same time bring (28) and (29) closer
to 0 (which is what we are looking for).

Create a new file, delete the template and then write the following preamble:

1 import numpy as np
2 from scipy.optimize import least_squares
3 import matplotlib.pyplot as plt
4 from mpl_toolkits import mplot3d
5 from astrofun import julian, eph, posvel, params, elements, PlotSol2D,

PlotSol3D↩→

6 from example2 import PlotOrbit2D, PlotOrbit3D
7 # Instead of example2, write the name of the file you have created

This will be the base file for later work. Besides importing the functions included in the
module astrofun.py , import as well the functions PlotOrbit2D() and PlotOrbit3D()
which were created earlier in Section 1.3. Remember to save this file at the same directory
were the others are.

Next, a function which solves Lambert’s equations when < = 0 (allowing < ≠ 0 compli-
cates matters and for our purposes is not required) can be defined:

8 '''Lambert solver (only valid for m = 0 and elliptic motion)'''
9 def Lambert(q, J):

10 def F(z): # where z is an array containing alpha (a) and beta (b)
11 a, b = z # a = z[0] and b = z[1]
12 F1 = J*(np.sin(a/2))**3 - (a - b - np.sin(a) + np.sin(b))
13 F2 = np.sin(b/2) - q*np.sin(a/2)
14 return [F1, F2]
15 alpha_beta = least_squares(F, [np.pi, 0], bounds=([1e-5,-np.pi],

[2*np.pi, np.pi])).x↩→

16 return alpha_beta

The function least_squares(fun, x0, bounds) takes in the following parameters:

• fun : Function(s) to be solved.

16



• x0 : Initial guess on independent variables.

• bounds : In the format ([a_start, b_start], [a_end, b_end])

and outputs a result structure with multiple fields. To access the actual solution, .x is
appended to the call.

17



3 Analysis and optimization of interplanetary missions

Finally, here we use Python to solve Lambert’s problem and go to Mars. We see how our
numbers match those produced by NASA’s engineers!

3.1 Example 4: Analyzing the MSL mission

Now, a real solution to Lambert’s problem can be plotted. Consider theMars Science Labora-
tory mission, launched by NASA on November 26, 2011, which successfully landed Curiosity,
a Mars rover, on August 6, 2012. Continuing the previous script:

17 '''Solving the problem'''
18 JD1 = julian(26,11,2011) # launch date
19 JD2 = julian(6,8,2012) # arrival date
20
21 elem_Earth1 = eph(3, JD1)
22 elem_Mars2 = eph(4, JD2)
23 r_Earth1 = posvel(elem_Earth1)[0] # starting position
24 r_Mars2 = posvel(elem_Mars2)[0] # arrival position
25
26 dataL = [r_Earth1, r_Mars2, JD2-JD1]
27 q, J = params(dataL)
28 alpha_beta = Lambert(q, J)
29 elem_trans1 = elements(alpha_beta, dataL) # At JD1
30
31 T_Earth = 2*np.pi*np.sqrt(elem_Earth1[0]**3/1)*58.1324 # [days]
32 T_Mars = 2*np.pi*np.sqrt(elem_Mars2[0]**3/1)*58.1324 # [days]
33 T_trans = 2*np.pi*np.sqrt(elem_trans1[0]**3/1)*58.1324 # [days]
34 # The period doesnt't perceptibly vary between JD1 and JD2

The procedure required to solve Lambert’s problem is straight-forward. First, the starting
and arrival positions are obtained at C1 and C2 respectively (lines 18-25). Next, the parame-
ters @ and � are obtained through the function params() . Calling Lambert() , a solution
U, V to this particular problem is found. This solution is then used to obtain the orbital
elements of the transfer orbit at C1 through elements() .

Plotting the various orbits is simple:

35 '''2D Figure'''
36 plt.figure()
37 plt.title('MSL mission')
38 # COMPLETE ORBITS
39 PlotOrbit2D(3, JD1, JD1+T_Earth, 'k') # Earth
40 PlotOrbit2D(4, JD1, JD1+T_Mars, 'k') # Mars
41 PlotSol2D(elem_trans1, JD1, JD1+T_trans, 'k') # Transfer orbit
42 # PATH'S TRAVELED
43 PlotOrbit2D(3, JD1, JD2, 'b', True)
44 PlotOrbit2D(4, JD1, JD2, 'r', True)
45 PlotSol2D(elem_trans1, JD1, JD2, 'g')

18



46 '''3D Figure'''
47 plt.figure()
48 ax = plt.axes(projection='3d')
49 ax.set_title('MSL mission')
50 # COMPLETE ORBITS
51 PlotOrbit3D(3, JD1, JD1+T_Earth, 'k') # Earth
52 PlotOrbit3D(4, JD1, JD1+T_Mars, 'k') # Mars
53 PlotSol3D(elem_trans1, JD1, JD1+T_trans, 'k') # Transfer orbit
54 # PATH'S TRAVELED
55 PlotOrbit3D(3, JD1, JD2, 'b', True)
56 PlotOrbit3D(4, JD1, JD2, 'r', True)
57 PlotSol3D(elem_trans1, JD1, JD2, 'g')

For plotting the transfer orbit, functions PlotSol2D() and PlotSol3D() have been used.
These are defined in a very similar way to PlotOrbit2D() and PlotOrbit3D() , with slight
variations (now the ephemerides are not used, and instead the orbital elements are directly
passed as an input argument).

By clicking Run �le, two new windows appear containing both figures. Note that the
solution appears to be very similar to a Hohmann transfer orbit. This is no coincidence;
when considering the two-dimensional problem, the Hohmann transfer orbit can be proven
to be the optimal solution. In three dimensions, the starting and arrival orbits are no longer
co-planar and therefore slight variations occur. Furthermore, neither the Earth or Mars’ or-
bits are circular, nor their lines of apsides are aligned.

The engineers at NASA try to choose launch and arrival dates which provide the optimal
solution, and real world transfer orbits may traverse slightly more, or slightly less, than 180◦

around the Sun. Sure enough, the MSL mission describes what’s called a Type 1 (Δ\ < 180◦)
Hohmann transfer orbit.

3.2 Characteristic energy and pork-chop plots

Figure 6: Geocentric phase in the patched conic approximation.

19



As it has been reviewed in class, through the concept of sphere of influence (SOI) and the
method of patched conic approximation, trajectory calculations are greatly simplified. In
Figure 6, the Earth is represented by a blue dot. The impulse ΔV1 is given to the spacecraft
at the parking orbit to set it onto an hyperbolic trajectory. This allows it to escape Earth’s
SOI with a velocity V∞1 along one of the hyperbola’s asymptotes, which is a good approxi-
mation considering that the Earth’s SOI is close to 2 million km in diameter (while parking
orbits range within 100 ∼ 300 km of altitude).

When the spacecraft reaches the Earth’s SOI, we switch from a geocentric frame of ref-
erence to a heliocentric one. V∞1 and the Earth’s velocity V⊕ can be added to obtain V1,
the velocity which the spacecraft has at the starting point of the transfer orbit.

Hyperbolic excess velocity, V∞, represents the excess specific kinetic energy over that
which is required to simply escape from the center of attraction. Its square is denoted �3

(�3 = +
2
∞), and is known as the characteristic energy. �3 is a measure of the energy required

for an interplanetary mission, and it allows for the comparison of di�erent trajectories in
energetic terms.

The function v1v2() included in astrofun.py takes the same input arguments as

elements() and directly computes the velocity vectors V1 and V2. Additionally, through
the functions eph() and posvel() , the starting and arrival planets’ velocity vectors can
be obtained. Considering an Earth to Mars mission, it follows that

�3 | launch = +2
∞1 = ‖V1 −V⊕‖2

�3 | arrival = +2
∞2 =

V2 −V♂
2

And the total characteristic energy, �3 | total = �3 | launch + �3 | arrival, can be easily calculated.

Figure 7: Planetocentric phase in the patched conic approximation.

The tool traditionally used to choose the launch and arrival dates for a one-way impul-
sive mission is the pork-chop1 plot. The classical pork-chop plot uses as a cost function the
characteristic energy �3, and expresses it as a function of possible launch and arrival dates.
A given contour, called a pork-chop curve, represents constant �3, and at the center of these
pork-chop curves we find the optimal transfer orbit (the one with minimum �3).

1This name comes from the distinctive shape of the plot, resembling grilled pork meat.

20



Figure 8: Representative pork-chop plot for the 2005 Mars launch opportunity. A given blue
contour represents a solution with a constant �3, and the red lines represent trips with the
same time of flight1.

More than one optimal solution may exist for a given range of dates. In Figure 8 a pork-
chop plot for the 2005 Mars launch opportunity is represented (�3 | launch). On the horizontal
axis, di�erent launch dates are considered. On the vertical axis, we find possible arrival dates.

Although this pork-chop plot doesn’t provide the true optimal dates, which would be
obtained by plotting �3 | total, it is still of great interest. To match a launcher with a mission,
�3 | launcher must be greater than �3 | launch.

Here, the pork-chop curves are represented up to �3 = 30 km2/s2, which is an upper limit
given by the maximum �3 that can be provided by the launcher. We can clearly di�erentiate
two separate regions on this pork-chop plot. In the lower part of the graph we find transfer
orbits of Type 1, which imply short times of flight of about seven months. In the upper part,
we find transfer orbits of Type 2, which can take up to two years. The decision whether to
choose Type 1 or Type 2 transfer orbits depends on multiple factors; the �3 required, the
suitability of both the launch and arrival dates, the time of flight, etc.

1"Porkchop" is the First Menu Item on a Trip to Mars, NASA Jet Propulsion Laboratory, Available at: http:
//mars.jpl.nasa.gov/spotlight/porkchopAll.html

21

http://mars.jpl.nasa.gov/spotlight/porkchopAll.html
http://mars.jpl.nasa.gov/spotlight/porkchopAll.html


3.3 Example 5: Optimizing NASA’s MRO mission

The Mars Reconnaissance Orbiter (MRO) is a spacecraft designed to study the geology and
climate of Mars, provide reconnaissance of future landing sites, and relay data from surface
missions back to Earth. It was launched in the year 2005 and will continue to operate through
the late 2020s, far beyond its intended design life.

In this example, a similar plot to that in Figure 8 will be obtained, and an optimal launch
date calculated. To do this, create yet another new file, delete the template, and write the
following preamble:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from astrofun import julian, gregorian, eph, posvel, params, L, v1v2

The function L() found inside astrofun.py is identical to Lambert() , the Lambert
solver created previously —recall that when importing functions from another file, Python
runs the entire script (and unless the lines outside the function(s) are included within an
if __name__ == '__main__': statement, these are executed). Therefore, this approach
is more convenient.

To generate a contour plot, a grid in Julian days must be created first:

4 '''Selecting the plot's limits (those in Figure 8)'''
5 JD1_start = julian(20,6,2005)
6 JD1_stop = julian(7,11,2005)
7
8 JD2_start = julian(1,12,2005)
9 JD2_stop = julian(24,2,2007)

10
11 JD1_num, JD2_num = 100, 100 # Discretization points of each axis
12
13 JD1_range = np.linspace(JD1_start, JD1_stop, JD1_num)
14 JD2_range = np.linspace(JD2_start, JD2_stop, JD2_num)
15 X, Y = np.meshgrid(JD1_range, JD2_range)

Computing the launch and arrival �3 at every every pair of dates involves calling a few
functions every time, and is a very time-consuming process. For instance, creating a 100 by
100 grid implies a total of 10000 discretization points, which roughly translates into a full
minute of computing time.

After initializing two arrays for �3 | launch and �3 | arrival and setting the iteration parame-
ters to zero,

16 '''Calculating the characteristic energies'''
17 C3_launch = np.zeros([JD2_num, JD1_num])
18 C3_arrival = np.zeros([JD2_num, JD1_num])
19 i, j = 0, 0 # Indices

22



two for-loops must be created to perform a complete sweep through the grid:

20 for JD1 in JD1_range:
21 for JD2 in JD2_range:
22 elem_Earth1 = eph(3, JD1)
23 elem_Mars2 = eph(4, JD2)
24
25 r_Earth1, V_Earth1 = posvel(elem_Earth1)
26 r_Mars2, V_Mars2 = posvel(elem_Mars2)
27
28 dataL = [r_Earth1, r_Mars2, JD2-JD1]
29 q, J = params(dataL)
30 if J-4/3*(1-q**3)<0.05:
31 # Too close to a parabola or no longer elliptic
32 C3_launch[i, j] = None
33 C3_arrival[i, j] = None # Translates into NaN
34 else:
35 alpha_beta = L(q, J)
36 V1_vec, V2_vec = v1v2(alpha_beta, dataL)
37
38 C3_launch[i, j] = np.linalg.norm(V1_vec-V_Earth1)**2
39 C3_arrival[i, j] = np.linalg.norm(V2_vec-V_Mars2)**2
40 # In canonical units [UV^2]
41 i+=1
42 i=0
43 j+=1
44
45 C3_L = C3_launch*887.128 # [km^2/s^2] SI units
46 C3_A = C3_arrival*887.128 # [km^2/s^2]
47 C3 = C3_L + C3_A # [km^2/s^2]

It must be noted that not every point in the pork-chop plot may correspond to an elliptic
transfer orbit (although parabolic and hyperbolic orbits require higher amounts of energy,
and therefore will never be the optimal solution). For the parabolic case, the following
relationship holds:

� =
4

3
(1 − @3),

and for hyperbolic orbits, � < 4/3(1 − @3). Thus, a quick and simple procedure to identify
whether a transfer orbit is elliptic, parabolic or hyperbolic is to calculate � − 4/3(1− @3) and
check if it’s a positive value (ellipse), equal to zero (parabola) or a negative value (hyperbola).

For our purposes, a value lesser than 0.05 will imply a transfer orbit too close to a
parabola and therefore a result with poor precision (as the equations used are only valid
for elliptic motion). In the previous code, an if-statement regarding this behaviour is im-
plemented. If � − 4/3(1 − @3) < 0.05, through np.inf a floating point representation of
(positive) infinity will be assigned to the characteristic energies of that particular transfer
orbit. np.inf is not equivalent to a NaN (Not A Number) value, and can be used inside
conditional expressions (as it simply represents a very big number).

23



Once the scalar fields of �3 | launch and �3 | arrival have been calculated, they can be plotted
separately or added together to generate the pork-chop plot of �3 | total:

48 '''Generating the pork-chop plots'''
49 # LAUNCH C3
50 plt.figure()
51 plt.title(r'MRO mission ($C_{3,L}$)')
52 P1 = plt.contour(X, Y, C3_L, [15.5, 16, 16.5, 17, 18, 20, 22.5, 25, 30])
53 # Labeling the contour lines and axes
54 plt.clabel(P1, fontsize=7, inline=True, fmt='%1.1f') # Labels
55 plt.xlabel('Launch date (Julian day)')
56 plt.ylabel('Arrival date (Julian day)')
57
58 # TOTAL C3
59 plt.figure()
60 plt.title(r'MRO mission ($C_3$)')
61 P2 = plt.contour(X, Y, C3, [24.5, 26, 28, 31, 35, 40, 47])
62 plt.clabel(P2, fontsize=7, inline=True, fmt='%1.1f')
63 plt.xlabel('Launch date (Julian day)')
64 plt.ylabel('Arrival date (Julian day)')

Now run the file and observe both figures. The first contour plot shows the pork-chop curves
for �3 | launch, which are indeed identical to those displayed in Figure 8. The second one
represents �3 | total and clearly reveals two di�erentiated relative minimums (Type 1 and Type
2 transfer orbits).

The optimal solution can be found using np.min(C3) . However, this approach doesn’t
provide a way to di�erentiate between Type 1 and Type 2 solutions, or compute both min-
imums separately. Therefore, a perhaps more rudimentary procedure needs to be imple-
mented. On one hand, a pair of for-loops can be created to access every element from the
matrix C3 , which contains the values of the total characteristic energy.

On the other hand, recall that Type 1 and Type 2 orbits resemble a Hohmann transfer
orbit (Δ\ = 180◦), the former being slightly shorter (Δ\ < 180◦) and the latter slightly
longer (Δ\ > 180◦). To di�erentiate between both solutions, a simple rule can be developed.
Consider the hypothetical period of a Hohmann transfer orbit solution to the 2D problem:

0� =
0Earth + 0Mars

2
, )� = 2c

√
03
�

`�
.

Then, a transfer orbit will be of Type 1 if its time of flight is less than )�/2, or of Type 2
otherwise:

56 '''Computing the optimal dates and C3'''
57 a_H = (eph(3, JD1)[0] + eph(4, JD1)[0])/2 # [UD]
58 T_H = 2*np.pi*np.sqrt(a_H**3/1)*58.1324 # [days]
59
60 C3_T1, C3_T2 = np.inf, np.inf # To enter the if-statement
61 for j in range(JD1_num):
62 for i in range(JD2_num):

24



63 tf = JD2_range[i] - JD1_range[j]
64 if tf < T_H/2:
65 if C3[i,j] < C3_T1:
66 C3_T1 = C3[i,j]
67 JD1_T1 = JD1_range[j]
68 JD2_T1 = JD2_range[i]
69 else:
70 if C3[i,j] < C3_T2:
71 C3_T2 = C3[i,j]
72 JD1_T2 = JD1_range[j]
73 JD2_T2 = JD2_range[i]

Besides obtaining the �3 of each solution, the launch and arrival dates can also be con-
veniently stored. To print the resulting values, add:

74 print('Type 1 transfer orbit:', gregorian(JD1_T1), '-->',
gregorian(JD2_T1), 'with C3 =', C3_T1, 'km^2/s^2')↩→

75 print('Type 2 transfer orbit:', gregorian(JD1_T2), '-->',
gregorian(JD2_T2), 'with C3 =', C3_T2, 'km^2/s^2')↩→

where the function gregorian() (imported from astrofun.py ) has been used to convert
the Julian days to dates in the Gregorian calendar (using DD/MM/YYYY format).

The MRO was launched on August 12, 2005 and reached Mars on March 10,
2006. Does this correspond to a Type 1 or a Type 2 transfer orbit?

Although not identical, the optimal dates which have been obtained are very close to the
actual launch and arrival dates (only 5 days o�). The discrepancies can very well be due to
other factors such as bad weather at the optimal launch date, and surely due to the multiple
simplifications which have been made to tackle the problem. However, this outcome proves
that most of these simplifications are indeed appropriate, and provide surprisingly accurate
results.

3.4 Planning ahead

In the previous example, only the 2005 Mars launch opportunity has been analyzed. How-
ever, in the context of future interplanetary missions, it is interesting to consider whether
spacecraft can be launched at any desired year.

As it has been studied, the feasibility of either a Type 1 or Type 2 transfer orbit depends
primarily on the relative position between Earth and Mars —how long does it take for these
planets to be in a similar relative position? The answer to this question corresponds with
the synodic period. If the orbital periods of two bodies around a third one (e.g. the Sun) are
called )1 and )2, so that )1 < )2, their synodic period )B is given by:

1

)B
=

1

)1
− 1

)2

25



The synodic period of Mars, relative to Earth, turns out to be approximately of 779.9 days
or 2.135 years (prove this to yourself). Therefore, a launch opportunity should be expected
roughly every two years. Since 2005, the number of missions to Mars carried out every year
have been represented in Figure 9.

Figure 9: Number of missions to Mars carried out every year since 2005.

Just as it has been predicted, a trend can be clearly appreciated—spacecraft are launched
approximately every two years.

Furthermore, the characteristic energies required for future missions can be calculated,
in order to choose an optimal launch year. For instance, during the decade of the 2020s, the
optimal (minimum) �3 | total can be computed for both Type 1 and Type 2 solutions:

Figure 10: Optimal �3 | total of Type 1 and Type 2 transfer orbits during the 2020s.

Observing Figure 10, the best year at first sight seems to be 2026, although many more
factors need to be taken into account when designing a real mission. Additionally, notice
how the overall optimal �3 | total can be achieved through transfer orbits of either type.

26



4 Python, NumPy and Matplotlib for MATLAB users

In this section a brief summary of the key di�erences between Python and Matlab syntax
is provided. The purpose of this comparison is to create a concise cheat sheet with the most
frequent commands and expressions, to aid the student in the otherwise tedious task of
searching and remembering this information.

4.1 General purpose equivalents

Matlab Python Notes

help func help(func)
Get help on the
function func

a && b
a || b

a and b
a or b

Logical operators

~= !=
Conditional
expressions

^ ** Basic operators

[x, y] = 2output_fun() x, y = 2output_fun() Multiple assignments

disp(a) print(a) Display a result

; (semicolon) (nothing) Terminate a statement

% # Comment

for i=[1 2 3]
disp(i)

end

for i in [1, 2, 3]:
print(i) For-loops

if a==0
disp('a is zero')

elseif a<0
disp('a is negative')

else
disp('a is positive')

end

if a==0:
print('a is zero')

elif a<0:
print('a is negative')

else:
print('a is positive')

If-else statements

function [x, y] = pm(a,b)
x = a + b;
y = a - b;

end

def = pm(a,b):
x = a + b
y = a - b
return [x, y]

Regular functions

mult = @(a,b) a*b mult = lambda a,b: a*b Anonymous functions

a(2,5) a[1,4]
Access element in second
row, fifth column

a(2,:) a[1,:] Entire second row of a

a(1:5,:) a[0:5,:] First five rows of a

27



4.2 NumPy equivalents

Before using the NumPy package, remember to execute the following command in Python:

import numpy as np

The table below gives some rough equivalents for some common Matlab expressions.
For more detail read the built-in documentation on the NumPy functions.

Matlab Python Notes

size(a) shape(a) or a.shape Get the size of an array

size(a,n) shape(a)[n-1] or a.shape[n-1]
Get the number of elements
of the =-th dimension of
array a

[1 2 3] np.array([1, 2, 3]) Create vectors

[1 2 3; 4 5 6] np.array([[1, 2, 3],[4, 5, 6]]) Create matrices

a.*b
a.\b
a.^b

a*b
a\b
a**b

Element-wise operations

2:10
0:9

np.arange(2,11)
np.arange(9)

Create an increasing vector

zeros(3,4)
ones(3,4)

np.zeros([3,4])
np.ones([3,4])

Array full of zeros or ones

linspace(1,3,4) np.linspace(1,3,4)
Four equally spaced samples
between 1 and 3, inclusive

max(a) a.max() Maximum element of a

max(a) a.max(0)
Maximum element of each
column of matrix a

max(a,[],2) a.max(1)
Maximum element of each
row of matrix a

Table 1: Linear algebra equivalents.

4.3 Matplotlib equivalents

Before using the Matplotlib package, remember to execute the following command in Python:

import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

28



2D Plots

Plotting a simple 2D line plot:

Matlab

theta = linspace(-pi,pi,100);
f1 = sin(theta);
f2 = sin(theta);

figure
plot(theta,f1,theta,f2)
title('Trigonometric functions')
xlabel('$\theta$', 'interpreter',...
'latex')
ylim([-1,1])

Python

theta = np.linspace(-np.pi,np.pi,100)
f1 = np.sin(theta)
f2 = np.sin(theta)

plt.figure()
plt.plot(theta,f1,theta,f2)
plt.title('Trigonometric functions')
plt.xlabel(r'$\theta$')

plt.ylim([-1,1])

Plotting dots:

Matlab

x = [0 2 4]
y = [5 4 3]

figure
scatter(x,y)

Python

x = np.array([0, 2, 4])
y = np.array([5, 4, 3])

plt.figure()
plt.scatter(x,y)

3D Plots

Plotting a 3D curve:

Matlab

x = linspace(0,2*pi,100);
y = sin(x);
z = sin(x);

figure

plot3(x,y,z)
title('Helix')
xlabel('Longitudinal axis')
ylim([-1,1])
zlim([-1,1])

Python

x = linspace(0,2*np.pi,100)
y = np.sin(x)
z = np.sin(x)

plt.figure()
ax = plt.axes(projection='3d')
ax.plot3D(x,y,z)
ax.set_title('Helix')
ax.set_xlabel('Longitudinal axis')
ax.set_ylim([-1,1])
ax.set_zlim([-1,1])

Plotting dots:

Matlab

scatter3(x,y,z)

Python

ax.scatter3d(x,y,z)

29



Plotting the contour line at / (-,. ) = 0:

Matlab

x = linspace(-pi,pi,100);
y = linspace(0,2*pi,100);
[X, Y] = meshgrid(x,y);

Z = sin(X) + cos(Y)

figure
contour(X,Y,Z,[0 0])

Python

x = linspace(-np.pi,np.pi,100);
y = linspace(0,2*np.pi,100);
X, Y = meshgrid(x,y);

Z = sin(X) + cos(Y)

plt.figure()
plt.contour(X,Y,Z,0)

Saving a figure to a file in Python

To obtain a raster image (.png):

plt.savefig("name.png", bbox_inches='tight', dpi=300)

and to obtain a vector image (.pdf, .eps, .svg, etc.):

plt.savefig("name.pdf", bbox_inches='tight')

30





Appendix B

Auxiliary Python algorithms

B.1 Julian day calculation

The function julian(D, M, Y) computes the Julian day of a date given in DD/MM/YYYY
format. The calculation is made at 00:00 UT.

Input(s)
D: Day.
M: Month.
M: Year.

Output(s) JD: Julian day.

1 def julian(D, M, Y):
2 JD = 367*Y - np.floor(7/4*(Y+np.floor((M+9)/12))) +

np.floor(275*M/9) + D + 1721013.5↩→

3 return JD # scalar

127



128 Chapter B. Auxiliary Python algorithms

B.2 Julian day to Gregorian calendar date

The function gregorian(JD) computes a date in DD/MM/YYYY format (gregorian calen-
dar) from its Julian day (the inverse of what julian(D, M, Y) does).

Input(s) JD: Julian day.

Output(s)
D: Day.
M: Month.
M: Year.

1 def gregorian(JD):
2 f = int(JD + 1401 + 3*(4*JD+274277)/4/146097 - 38)
3 e = int(4*f + 3)
4 g = int((e % 1461)/4)
5 h = int(5*g + 2)
6 D = int((h % 153)/5 + 1)
7 M = int((h/153+2) % 12 + 1)
8 Y = int(e/1461 - 4716 + (14-M)/12)
9 return [D, M, Y]



B.3 Planetary ephemerides 129

B.3 Planetary ephemerides

The function eph(planet_number, JD) computes the orbital elements of a major planet’s
orbit at a given Julian day.

Input(s)
planet_number: following the convention indicated in the code below.
JD: Julian day.

Output(s) [a, e, i, RAAN, w, t_tau_days]: A list containing the orbital elements.

1 def eph(planet_number, JD):
2 mu = 1 # [UD*UV^2] in the Sun's canonical units
3

4 # rows: Mercury (1), Venus (2), EM Bary(3), Mars(4), Jupiter(5),
Saturn(6), Uranus(7), Neptune(8), Pluto(9)↩→

5 # columns: a[AU], e[], i[deg], RAAN[deg], wbar[deg], L[deg]
6

7 elements0 = np.array([
8 [ 3.87099270e-01, 2.05635930e-01, 7.00497902e+00,

4.83307659e+01, 7.74577963e+01, 2.52250324e+02],↩→

9 [ 7.23335660e-01, 6.77672000e-03, 3.39467605e+00,
7.66798426e+01, 1.31602467e+02, 1.81979099e+02],↩→

10 [ 1.00000261e+00, 1.67112300e-02, -1.53100000e-05,
0.00000000e+00, 1.02937682e+02, 1.00464572e+02],↩→

11 [ 1.52371034e+00, 9.33941000e-02, 1.84969142e+00,
4.95595389e+01, -2.39436296e+01, -4.55343205e+00],↩→

12 [ 5.20288700e+00, 4.83862400e-02, 1.30439695e+00,
1.00473909e+02, 1.47284798e+01, 3.43964405e+01],↩→

13 [ 9.53667594e+00, 5.38617900e-02, 2.48599187e+00,
1.13662424e+02, 9.25988783e+01, 4.99542442e+01],↩→

14 [ 1.91891646e+01, 4.72574400e-02, 7.72637830e-01,
7.40169250e+01, 1.70954276e+02, 3.13238105e+02],↩→

15 [ 3.00699228e+01, 8.59048000e-03, 1.77004347e+00,
1.31784226e+02, 4.49647623e+01, 5.51200297e+01],↩→

16 [ 3.94821168e+01, 2.48827300e-01, 1.71400121e+01,
1.10303937e+02, 2.24068916e+02, 2.38929038e+02]])↩→

17

18 rates = np.array([
19 [ 3.70000000e-07, 1.90600000e-05, -5.94749000e-03,

-1.25340810e-01, 1.60476890e-01, 1.49472674e+05],↩→

20 [ 3.90000000e-06, -4.10700000e-05, -7.88900000e-04,
-2.77694180e-01, 2.68329000e-03, 5.85178154e+04],↩→

21 [ 5.62000000e-06, -4.39200000e-05, -1.29466800e-02,
0.00000000e+00, 3.23273640e-01, 3.59993724e+04],↩→

22 [ 1.84700000e-05, 7.88200000e-05, -8.13131000e-03,
-2.92573430e-01, 4.44410880e-01, 1.91403027e+04],↩→

23 [-1.16070000e-04, -1.32530000e-04, -1.83714000e-03,
2.04691060e-01, 2.12526680e-01, 3.03474613e+03],↩→



130 Chapter B. Auxiliary Python algorithms

24 [-1.25060000e-03, -5.09910000e-04, 1.93609000e-03,
-2.88677940e-01, -4.18972160e-01, 1.22249362e+03],↩→

25 [-1.96176000e-03, -4.39700000e-05, -2.42939000e-03,
4.24058900e-02, 4.08052810e-01, 4.28482028e+02],↩→

26 [ 2.62910000e-04, 5.10500000e-05, 3.53720000e-04,
-5.08664000e-03, -3.22414640e-01, 2.18459453e+02],↩→

27 [-3.15960000e-04, 5.17000000e-05, 4.81800000e-05,
-1.18348200e-02, -4.06294200e-02, 1.45207805e+02]])↩→

28

29 # Computation of the orbital elements
30 a, e, i_deg, RAAN_deg, wbar_deg, L_deg =

elements0[planet_number-1,:] +
rates[planet_number-1,:]*(JD-2451545.0)/36525

↩→

↩→

31 i, RAAN, wbar, L = np.pi/180*np.array([i_deg, RAAN_deg, wbar_deg,
L_deg]) # convert the angles to radians↩→

32

33 w = (wbar - RAAN)
34 M = (L - wbar) % (2*np.pi)
35 # % (2*np.pi) yields M between 0 and 2pi
36

37 if M>np.pi:
38 M = M-2*np.pi # to obtain M between -pi and pi
39

40 # Time since periapsis passage (t-tau)
41 t_tau = M/np.sqrt(mu/a**3) # [UT] in the Sun's canonical units
42 t_tau_days = t_tau*58.1324 # [days]
43

44 return [a, e, i, RAAN, w, t_tau_days] # list of scalars



B.4 Determining r and v through the orbital elements 131

B.4 Determining r and v through the orbital elements

The function posvel(elements) computes the position and velocity vectors from the orbital
elements. The results are given in the Sun’s canonical units:

1 UD� = 1 AU, 1 UV� = 29.7847 km/s, 1 UT� = 58.1324 days

Input(s)
elements: A list containing the following orbital elements:

[a, e, i, RAAN, w, t_tau_days].

Output(s)
r_vec_ecl: Radius vector of the body in heliocentric ecliptic coordinates.
v_vec_ecl: Velocity vector of the body in heliocentric ecliptic coordinates.

1 def posvel(elements):
2 a, e, i, RAAN, w, t_tau_days = elements
3

4 mu = 1 # [UD*UV^2]
5 t_tau = t_tau_days/58.1324 # [UT]
6

7 M = t_tau*np.sqrt(mu/a**3)
8 E = fsolve(lambda E: E-e*np.sin(E)-M, np.pi) # between -pi and pi
9

10 # Position and velocity vectors in perifocal coordinates
11 r_vec_perif = np.array([a*(np.cos(E)-e),

a*np.sqrt(1-e**2)*np.sin(E)])↩→

12 r = np.linalg.norm(r_vec_perif) # modulus of the position vector
13

14 v_vec_perif = np.array([-np.sqrt(mu*a)/r*np.sin(E),
np.sqrt(mu*a*(1-e**2))/r*np.cos(E)])↩→

15

16 # Conversion to heliocentric ecliptic coordinates (J2000)
17 R =
18 np.array([[np.cos(w)*np.cos(RAAN)-np.sin(w)*np.sin(RAAN)*np.cos(i),

-np.sin(w)*np.cos(RAAN)-np.cos(w)*np.sin(RAAN)*np.cos(i)],↩→

19 [np.cos(w)*np.sin(RAAN)+np.sin(w)*np.cos(RAAN)*np.cos(i),
-np.sin(w)*np.sin(RAAN)+np.cos(w)*np.cos(RAAN)*np.cos(i)],↩→

20 [np.sin(w)*np.sin(i), np.cos(w)*np.sin(i)]])
21

22 r_vec_ecl = np.matmul(R, r_vec_perif).flatten()
23 v_vec_ecl = np.matmul(R, v_vec_perif).flatten()
24 # .flatten() converts vectors to 1D - e.g. (3,)
25

26 return [r_vec_ecl, v_vec_ecl] # list of 1D vectors



132 Chapter B. Auxiliary Python algorithms

B.5 Computing the q and J parameters

The function params(data) computes q and J from Lambert’s problem data, assuming direct
motion.

Input(s)

data: [r1_vec, r2_vec, tf_days], a list where:
→ r1_vec: Radius vector of the starting planet at C1 in h.e.c.a

→ r1_vec: Radius vector of the arrival planet at C2 in h.e.c.
→ tf_days: Flight time in days (C 5 = C2− C1)

Output(s) [q, J]: A list containing the parameters @ and �.

a Heliocentric ecliptic coordinates.

1 def params(data):
2 r1_vec, r2_vec, tf_days = data
3

4 mu = 1 # [UD*UV^2]
5 tf = tf_days/58.1324 # [UT] (1 UT = 58.1324 days)
6

7 r1, r2 = np.linalg.norm(r1_vec), np.linalg.norm(r2_vec)
8 Dtheta_small =

np.arccos(np.clip(np.dot(r1_vec,r2_vec)/r1/r2,-1.0,1.0))↩→

9 # np.clip to avoid rounding errors
10 if np.cross(r1_vec,r2_vec)[2]>0:
11 # if r1xr2 is pointing in the positive Z direction
12 Dtheta = Dtheta_small
13 else:
14 Dtheta = 2*np.pi - Dtheta_small
15 c = np.sqrt(r1**2 + r2**2 - 2*np.dot(r1_vec, r2_vec)) # [UD]
16 s = (r1 + r2 + c)/2 # [UD]
17

18 q = np.sqrt(r1*r2)/s*np.cos(Dtheta/2)
19 J = np.sqrt(8*mu/s**3)*tf
20

21 return [q, J] # list of scalars



B.6 Determining an orbit through U and V 133

B.6 Determining an orbit through U and V

The function elements(alpha_beta, data) computes the orbital elements of the transfer
orbit solution to Lambert’s problem, assuming direct motion.

Input(s)

alpha_beta: [alpha, beta], the solution to Lambert’s equations.
data: [r1_vec, r2_vec, tf_days], a list where:
→ r1_vec: Radius vector of the starting planet at C1 in h.e.c.a

→ r1_vec: Radius vector of the arrival planet at C2 in h.e.c.
→ tf_days: Flight time in days (C 5 = C2− C1).

m: Indicates the number of complete revolutions (< = 0 by default).

Output(s)
elements: A list containing the following orbital elements:

[a, e, i, RAAN, w, t_tau_days].

a Heliocentric ecliptic coordinates.

1 def elements(alpha_beta, data, m=0):
2 alpha, beta = alpha_beta
3 r1_vec, r2_vec, tf_days = data
4 mu = 1 # [UD*UV^2]
5 tf = tf_days/58.1324 # [UT] (1 UT = 58.1324 days)
6

7 r1, r2 = np.linalg.norm(r1_vec), np.linalg.norm(r2_vec)
8 Dtheta_small =

np.arccos(np.clip(np.dot(r1_vec,r2_vec)/r1/r2,-1.0,1.0))↩→

9 # np.clip to avoid rounding errors
10 if np.cross(r1_vec,r2_vec)[2]>0:
11 # if r1xr2 is pointing in the positive Z direction
12 Dtheta = Dtheta_small
13 else:
14 Dtheta = 2*np.pi - Dtheta_small
15 c = np.sqrt(r1**2 + r2**2 - 2*np.dot(r1_vec, r2_vec)) # [UD]
16 s = (r1 + r2 + c)/2 # [UD]
17

18 a = s/(2*np.sin(alpha/2)**2) # semi-major axis [UD]
19 n = np.sqrt(mu/a**3) # [UT^-1]
20

21 E2_E1 = 2*np.pi*m + alpha - beta # (E1-E2)
22

23 r1dot = (n*tf - E2_E1 +
(1 - r1/a)*np.sin(E2_E1))/(r1/np.sqrt(mu*a)*(1 - np.cos(E2_E1)))↩→

24 # r2dot = (-n*tf + E2_E1 +
(1 - r2/a)*np.sin(-E2_E1))/(r2/np.sqrt(mu*a)*(1 -
np.cos(-E2_E1)))

↩→

↩→

25

26 v1 = np.sqrt(2*mu/r1 - mu/a)
27 # v2 = np.sqrt(2*mu/r2 - mu/a)



134 Chapter B. Auxiliary Python algorithms

28 v1_theta = np.sqrt(v1**2 - r1dot**2)
29 # v2_theta = np.sqrt(v2**2 - r2dot**2)
30 # or v_theta = np.sqrt(mu*a*(1-e**2))/r alternatively
31

32 v1_vec = (r1dot - v1_theta/np.tan(Dtheta))/r1*r1_vec +
v1_theta/np.sin(Dtheta)/r2*r2_vec↩→

33 # v2_vec = -v2_theta/np.sin(Dtheta)/r1*r1_vec + (r2dot +
v2_theta/np.tan(Dtheta))/r2*r2_vec↩→

34

35 h_vec = np.cross(r1_vec, v1_vec)
36 h = np.linalg.norm(h_vec)
37

38 e_vec = np.cross(v1_vec, h_vec)/mu - r1_vec/r1
39 e = np.linalg.norm(e_vec)
40

41 n_vec = np.cross(np.array([0, 0, 1]),
h_vec)/np.linalg.norm(np.cross(np.array([0, 0, 1]), h_vec))↩→

42

43 i = np.arccos(h_vec[2]/h) % np.pi # between 0 and pi
44

45 RAAN = np.arctan2(n_vec[1], n_vec[0])
46 # arctan2 returns a value between -pi and pi
47

48 if e_vec[2]>0:
49 # e_vec above the reference plane, and therefore 0 < w < pi
50 w = np.arccos(np.clip(np.dot(n_vec, e_vec)/e, -1.0, 1.0))
51 else: # -pi < w < 0
52 w = - np.arccos(np.clip(np.dot(n_vec, e_vec)/e, -1.0, 1.0))
53

54 if r1dot>0: # 0 < theta1 < pi
55 theta1 = np.arccos((a*(1 - e**2) - r1)/e/r1)
56 else: # -pi < theta1 < 0
57 theta1 = - np.arccos((a*(1 - e**2) - r1)/e/r1)
58 E1 = 2*np.arctan(np.sqrt((1-e)/(1+e))*np.tan(theta1/2))
59 # between -pi and pi
60 M1 = E1 - e*np.sin(E1) # between -pi and pi
61 t1_tau = M1/n # [UT] time since periapsis passage (if negative,

|t1_tau| is time until periapsis passage)↩→

62 t1_tau_days = t1_tau*58.1324 # [days]
63

64 # if r2dot>0:
65 # theta2 = np.arccos((a*(1 - e**2) - r2)/e/r2)
66 # else:
67 # theta2 = - np.arccos((a*(1 - e**2) - r2)/e/r2)
68 # E2 = 2*np.arctan(np.sqrt((1-e)/(1+e))*np.tan(theta2/2))
69 # M2 = E2 - e*np.sin(E2)
70 # t2_tau = M2/n
71

72 return [a, e, i, RAAN, w, t1_tau_days] # list of scalars



B.7 Computing the starting and arrival velocity vectors 135

B.7 Computing the starting and arrival velocity vectors

The function v1v2(alpha_beta, data) computes the starting and arrival velocity vectors
within the transfer orbit (V1 and V2, defined in Sect. 3.3), required to calculate the total
�3. This function is very similar to elements(alpha_beta, data), and also assumes direct
motion.

Input(s)

alpha_beta: [alpha, beta], the solution to Lambert’s equations.
data: [r1_vec, r2_vec, tf_days], a list where:
→ r1_vec: Radius vector of the starting planet at C1 in h.e.c.a

→ r1_vec: Radius vector of the arrival planet at C2 in h.e.c.
→ tf_days: Flight time in days (C 5 = C2− C1).

m: Indicates the number of complete revolutions (< = 0 by default).

Output(s)
v1_vec: Starting velocity vector (within the transfer orbit) in h.e.c.
v2_vec: Arrival velocity vector (within the transfer orbit) in h.e.c.

a Heliocentric ecliptic coordinates.

1 def elements(alpha_beta, data, m=0):
2 alpha, beta = alpha_beta
3 r1_vec, r2_vec, tf_days = data
4 mu = 1 # [UD*UV^2]
5 tf = tf_days/58.1324 # [UT] (1 UT = 58.1324 days)
6

7 r1, r2 = np.linalg.norm(r1_vec), np.linalg.norm(r2_vec)
8 Dtheta_small =

np.arccos(np.clip(np.dot(r1_vec,r2_vec)/r1/r2,-1.0,1.0))↩→

9 # np.clip to avoid rounding errors
10 if np.cross(r1_vec,r2_vec)[2]>0:
11 # if r1xr2 is pointing in the positive Z direction
12 Dtheta = Dtheta_small
13 else:
14 Dtheta = 2*np.pi - Dtheta_small
15 c = np.sqrt(r1**2 + r2**2 - 2*np.dot(r1_vec, r2_vec)) # [UD]
16 s = (r1 + r2 + c)/2 # [UD]
17 a = s/(2*np.sin(alpha/2)**2) # semi-major axis [UD]
18 n = np.sqrt(mu/a**3) # [UT^-1]
19

20 E2_E1 = 2*np.pi*m + alpha - beta # (E1-E2)
21

22 r1dot = (n*tf - E2_E1 +
(1 - r1/a)*np.sin(E2_E1))/(r1/np.sqrt(mu*a)*(1 - np.cos(E2_E1)))↩→

23 r2dot = (-n*tf + E2_E1 +
(1 - r2/a)*np.sin(-E2_E1))/(r2/np.sqrt(mu*a)*(1-np.cos(-E2_E1)))↩→

24

25 v1 = np.sqrt(2*mu/r1 - mu/a)
26 v2 = np.sqrt(2*mu/r2 - mu/a)



136 Chapter B. Auxiliary Python algorithms

27 v1_theta = np.sqrt(v1**2 - r1dot**2)
28 v2_theta = np.sqrt(v2**2 - r2dot**2)
29

30 v1_vec = (r1dot - v1_theta/np.tan(Dtheta))/r1*r1_vec +
v1_theta/np.sin(Dtheta)/r2*r2_vec↩→

31 v2_vec = -v2_theta/np.sin(Dtheta)/r1*r1_vec + (r2dot +
v2_theta/np.tan(Dtheta))/r2*r2_vec↩→

32

33 return [v1_vec, v2_vec] # list of vectors



B.8 Solving Lambert’s equations for elliptic motion 137

B.8 Solving Lambert’s equations for elliptic motion

The function L(q, J, m=0, LongPath=False) solves Lambert’s equations for elliptic mo-
tion. For the multi-revolution case (< ≠ 0) this algorithm is not very reliable, and the results
must be taken with extreme caution.

Input(s)

q: Lambert’s problem adimensional parameter @.
J: Lambert’s problem adimensional parameter �.
m: Indicates the number of complete revolutions (< = 0 by default).
LongPath: If False (option by default), indicates that the longer path (larger

transfer orbit) has been chosen in the multi-revolution case.

Output(s) alpha_beta: [alpha, beta], the solution to Lambert’s equations.

1 def L(q, J, m=0, LongPath=False):
2 def f(z):
3 a, b = z
4 f1 = J*(np.sin(a/2))**3 - (2*m*np.pi+a-b-np.sin(a)+np.sin(b))
5 f2 = np.sin(b/2) - q*np.sin(a/2)
6 return [f1,f2]
7

8 # For m!=0 this algorithm is not very robust, and should be avoided
9 if m==0:

10 alpha_beta = least_squares(f, [np.pi, 0], bounds =
([1e-5,-np.pi], [2*np.pi, np.pi])).x↩→

11 else:
12 if LongPath:
13 alpha_beta = least_squares(f, [0.1, 0], bounds =

([1e-5,-np.pi], [np.pi, np.pi])).x↩→

14 else:
15 alpha_beta = least_squares(f, [6, 0], bounds =

([2.6,-np.pi], [2*np.pi, np.pi])).x↩→

16

17 return alpha_beta # numpy array



138 Chapter B. Auxiliary Python algorithms

B.9 Plotting a 2D representation of the transfer orbit

The function PlotSol2D(elem_trans1, JD1, JD2, color, ends=False) plots a 2D fig-
ure of the transfer orbit containing the arc traveled from C1 to C2.

Input(s)

elem_trans1: A list containing the following orbital elements from the
transfer orbit at C1: [a, e, i, RAAN, w, t1_tau_days]

JD1: C1 in Julian Days.
JD2: Arbitrary date in Julian days, JD2>JD1.
color: String indicating the desired plotting color.
ends: If True, two markers at the starting and ending points of the curve are

plotted.

Output(s) Two dimensional figure containing the arc traveled from C1 to C2.

1 def PlotSol2D(elem_trans1, JD1, JD2, color, ends=False):
2 pts = 500 # Number of discretization points
3 r_vec = np.zeros([pts, 3]) # Initializing the array
4 i = 0
5 for JD in np.linspace(JD1, JD2, pts):
6 t_tau_trans = elem_trans1[5] + JD - JD1
7 elem_trans = elem_trans1[:5] + [t_tau_trans]
8 r_vec[i,:] = posvel(elem_trans)[0]
9 i+=1

10

11 plt.plot(r_vec[:,0], r_vec[:,1], color)
12 plt.scatter(0, 0, s=180, c='gold') # s=thickness, c=color
13 if ends: # if ends==True
14 plt.plot(r_vec[0,0], r_vec[0,1], 's', c=color)
15 plt.plot(r_vec[-1,0], r_vec[-1,1], 'o', c=color)
16

17 plt.gca().set_aspect('equal', adjustable='box')
18 plt.xlabel(r'$X$ [UD$_\odot$]') # \odot is the Sun's symbol
19 plt.ylabel(r'$Y$ [UD$_\odot$]')



B.10 Plotting a 3D representation of the transfer orbit 139

B.10 Plotting a 3D representation of the transfer orbit

The function PlotSol3D(elem_trans1, JD1, JD2, color, ends=False) plots a 3D fig-
ure of the transfer orbit containing the arc traveled from C1 to C2.

Input(s)

elem_trans1: A list containing the following orbital elements from the
transfer orbit at C1: [a, e, i, RAAN, w, t1_tau_days]

JD1: C1 in Julian Days.
JD2: Arbitrary date in Julian days, JD2>JD1.
color: String indicating the desired plotting color.
ends: If True, two markers at the starting and ending points of the curve are

plotted.

Output(s) Three dimensional figure containing the arc traveled from C1 to C2.

1 def PlotSol2D(elem_trans1, JD1, JD2, color, ends=False):
2 pts = 500
3 r_vec = np.zeros([pts, 3])
4 i = 0
5 for JD in np.linspace(JD1, JD2, pts):
6 t_tau_trans = elem_trans1[5] + JD - JD1
7 elem_trans = elem_trans1[:5] + [t_tau_trans]
8 r_vec[i,:] = posvel(elem_trans)[0]
9 i+=1

10

11 ax = plt.gca()
12 ax.plot3D(r_vec[:,0], r_vec[:,1], r_vec[:,2], color)
13 ax.scatter3D(0, 0, 0, s=150, c='gold')
14 if ends:
15 ax.scatter3D(r_vec[0,0], r_vec[0,1], r_vec[0,2], c=color,

marker='s')↩→

16 ax.scatter3D(r_vec[-1,0], r_vec[-1,1], r_vec[-1,2], c=color)
17

18 lim = 1.2*elem_trans1[0]
19 ax.auto_scale_xyz([-lim,lim], [-lim,lim], [-0.2,0.2])
20 ax.set_xlabel(r'$X$ [UD$_\odot$]')
21 ax.set_ylabel(r'$Y$ [UD$_\odot$]')
22 ax.set_zlabel(r'$Z$ [UD$_\odot$]')


	Resumen
	Abstract
	Introduction
	Lambert's Problem
	Learning Python
	Scope of this project
	Document structure
	Structure of the laboratory class


	Lambert's Problem
	Basic orbital mechanics
	The equation of motion and conserved quantities
	Kepler's laws
	Orbital elements and coordinate systems
	The perifocal frame

	Geometric properties of conic trajectories
	Elliptical and circular trajectories (0e< 1)
	A comment on the energetic properties of conic trajectories
	Parabolic trajectories (e=1)
	Hyperbolic trajectories (e>1)
	Eccentric and hyperbolic anomalies
	Geometric representation of E and H

	Orbital position as a function of time
	Barker's equation
	Kepler's equation

	Solving Lambert's problem
	The classical form of Lambert's equations
	The  and  parameters
	A unified form of Lambert's equations

	Conclusions

	Basic orbital mechanics' tools used in Lambert's problem
	Planetary ephemerides and orbit propagators
	Determining r and v through the orbital elements
	Spheres of influence and patched conic approximation
	Determining an orbit through ,  and the initial data of Lambert's problem
	Pork-chop plots

	Programming with Python
	Introduction
	Basics
	Working with Spyder
	Importing modules and/or packages
	Basic operations
	Data types and indexing
	Defining and using functions
	For-loops and if-else statements

	Numerical Python (NumPy)
	Visualizing Data
	Plotting y=f(x)
	Plotting more than one curve
	Implicit functions and contour plots
	3D plots
	Setting and/or editing a plot's attributes
	Saving the figure to a file

	Python, NumPy and Matplotlib for Matlab users
	General purpose equivalents
	NumPy equivalents
	Matplotlib equivalents


	Development of a laboratory class on Lambert's problem
	Structure of the laboratory report
	Part 1: Programming with Python
	Example 2: Plotting Mercury's orbit - Results

	Part 2: Lambert's problem
	Example 3: Visualizing Lambert's equations - Results
	Developing a simple algorithm to solve Lambert's problem

	Part 3: Analysis and optimization of interplanetary missions
	Example 4: Analyzing the MSL mission - Results
	Example 5: Optimizing NASA’s MRO mission - Results
	Additional insight on the Mars launch opportunity windows


	Conclusions and future work
	Conclusions
	Future work

	Appendix Laboratory report
	Programming with Python
	Getting started
	Example 1 - Orbital position as a function of time
	Example 2 - Plotting Mercury's orbit

	Lambert's problem
	The classical form of Lambert's equations
	Example 3: Visualizing Lambert's equations for elliptic motion
	Programming a simple algorithm for the elliptic case

	Analysis and optimization of interplanetary missions
	Example 4: Analyzing the MSL mission
	Characteristic energy and pork-chop plots
	Example 5: Optimizing NASA's MRO mission
	Planning ahead

	Python, NumPy and Matplotlib for Matlab users
	General purpose equivalents
	NumPy equivalents
	Matplotlib equivalents

	Appendix Auxiliary Python algorithms
	Julian day calculation
	Julian day to Gregorian calendar date
	Planetary ephemerides
	Determining r and v through the orbital elements
	Computing the q and J parameters
	Determining an orbit through  and 
	Computing the starting and arrival velocity vectors
	Solving Lambert's equations for elliptic motion
	Plotting a 2D representation of the transfer orbit
	Plotting a 3D representation of the transfer orbit


