
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 149, Number 1, January 2021, Pages 143–161
https://doi.org/10.1090/proc/15131

Article electronically published on June 11, 2020

ON INITIAL AND TERMINAL VALUE PROBLEMS
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Abstract. In this paper, we consider fractional nonclassical diffusion equa-
tions under two forms: initial value problem and terminal value problem. For
an initial value problem, we study local existence, uniqueness, and continuous
dependence of the mild solution. We also present a result on unique continua-
tion and a blow-up alternative for mild solutions of fractional pseudo-parabolic
equations. For the terminal value problem, we show the well-posedness of our
problem in the case 0 < α ≤ 1 and show the ill-posedness in the sense of
Hadamard in the case α > 1. Then, under the a priori assumption on the
exact solution belonging to a Gevrey space, we propose the Fourier trun-
cation method for stabilizing the ill-posed problem. A stability estimate of
logarithmic-type in Lq norm is first established.

1. Introduction

In this paper, we consider the following nonlinear nonclassical diffusion equation
(called pseudo-parabolic equation):{

ut − kΔut + (−Δ)αu = G(u) in (0, T ]× Ω,
u(t, x) = 0 on (0, T ]× ∂Ω,

(1)

where k > 0, and Ω ⊂ R
d, (d ≥ 1) is a bounded domain with smooth boundary

∂Ω, the operator (−Δ)α is the fractional Laplacian with α ∈ (0, 1)∪ (1,∞). Let us
divide the nonclassical diffusion equation into two different problems as follows:

• Initial value problem: This problem consists of finding u(x, t) for 0 < t ≤ T
from the initial state

(2) u(x, 0) = u0(x), x ∈ Ω.

• Terminal value problem: This problem is related to recovering u(x, t) for
0 ≤ t ≤ T from the terminal value data (or final state)

(3) u(x, T ) = uT (x), x ∈ Ω.
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144 N. H. TUAN AND T. CARABALLO

Nonclassical diffusion equations (or pseudo-parabolic equations) are character-
ized by the occurrence of a time derivative appearing in the highest order term,
which describes various important physical processes. It can be regarded as a
Sobolev-type equation or a Sobolev-Galpern-type equation. Pseudo-parabolic equa-
tions have many applications in science and technology, especially in physical phe-
nomena such as seepage of homogeneous fluids through a fissured rock, aggregation
of populations, etc.; see, e.g., [7] and its references. If α = 1, then the fractional
operator (−Δ)α becomes the standard Laplace operator. In this special case, the
nonclassical diffusion equation has been studied in [2,4–8,11,14,19–21] with various
directions and motivations. Until now, the results on fractional pseudo-parabolic
equations are limited and can be mentioned in just a few papers, for example,
[7, 22, 28, 29]. Since the fractional operator (−Δ)α appearing in the main equation
is nonlocal and can be regarded as the infinitesimal generator of Levy stable diffu-
sion processes, many scientists believed that it described some physical phenomena
more exactly than integral differential equations. As in [7], equation (1) is of the
regularity-gain-type for α > 1, and of the regularity-loss-type for 0 < α < 1. Our
new results and main contributions in this paper are described as follows:

• For the initial value problem (1)-(2), our main goal is the study of existence,
uniqueness, continuous dependence, unique continuation of solutions, and
a blow-up alternative under critical nonlinearity of source function G. As
we know, nonlinear PDEs with critical nonlinearities are an interesting
topic. This is mentioned in [3, 15] and the references therein. Studying
the initial value problem for (1)-(2) in the critical case is also a challenging
problem. We note that the work on global existence, blow-up criterion, and
continuation of solutions for PDEs has recently attracted many authors,
for example, T. Issa and W. Chen [16–18], T. Caraballo et al. [19], A. N.
Carvalho et al. [15, 26], B. de Andrade et al. [23–25] and the references
therein.

• For the terminal value problem for pseudo-parabolic equation (1)-(3), to
the best of our knowledge, there are not any results about it. Our work is
the first study in this direction which is divided into various cases. Under
the case 0 < α ≤ 1, we state well-posedness of the terminal value problem.
However, the property of the solution in the case α > 1 is very different from
one in the case 0 < α ≤ 1. The well-posedness of problems (1)-(3) with α >
1 is not guaranteed because of the ill-posedness of the backward problem
in the sense of Hadamard [13]. An “ill-posed problem” (not well-posed
problem) is a problem that either has no solutions in the desired class, or
has many (two or more) solutions, or the solution procedure is unstable (i.e.,
arbitrarily small errors in the measurement data may lead to indefinitely
large errors in the solutions). Our main goal in this paper is to provide some
regularized solutions that are called regularized solutions for approximating
u(x, t), 0 ≤ t < T. In this paper, we do not investigate the existence and
uniqueness of the solution of the backward problem (1)-(3) with α > 1 . It
is also a challenging and open problem, and should be the topic for another
paper. In this paper, we assume that the backward problem (1)-(3) has a
unique solution u (called a sought solution) that belongs to an appropriate
space. So our main purpose in this case is to consider a regularized problem
for finding an approximate solution. Furthermore, error estimates with

Licensed to Universidad de Sevilla. Prepared on Mon Feb  1 08:25:37 EST 2021 for download from IP 150.214.182.24.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINAL VALUE PROBLEM 145

the speed of convergence between the regularized solution and the sought
solution under some a priori assumptions on the sought solution are also
our primary purpose.

• This is a first study for the backward problem for PDEs when the noisy
data ϕε ∈ Lp(Ω) for 1 ≤ p < 2. Since Lp(Ω) ↪→ L2(Ω), we know that if
ϕε ∈ Lp(Ω) for p ≥ 2, then it belongs to L2(Ω). So, the analysis for the
noisy data belongs to Lp(Ω) for p ≥ 2 is trivial and similar to the L2(Ω)
setting. However, in some physical practice, in oder to approximate uT , we
only obtain the noisy data ϕε which only belongs to class Lp(Ω) for p < 2.
This means that we only get the noisy level ε which is the upper bound of the
error ‖ϕε − uT ‖Lp(Ω). Section 3 is the first result for a regularized solution

and the convergence analysis in Lp norms. The case of L2 is much easier
than the other ones since one can use the Parseval equality in obtaining
stability estimates. The technique in the Lp estimate here is more complex
than the L2 estimate, since we do not have the Parseval equality. Our new
technique in this section is based on applying some Sobolev embedding.
This is a new and strong point of this paper. We also emphasize that
our method in the current paper can be applied for various PDEs such as
parabolic equations, elliptic equations, etc.

The paper is organized as follows. In Section 1, we introduce our problem and the
motivation for our study. In Section 2, we state and prove a local well-posedness
and the regularity result for (1)-(2). The existence of a unique continuation and a
blow-up alternative for the mild solution of the abstract problems (1)-(2) are also
mentioned in Section 2. In Section 3, we establish a regularized solution using a
truncation method as in [9, 10, 12] and show the well-posedness of our problem.
We also mention our results concerning the error estimate in the Lp norm of the
regularized solution and the sought solution.

Let us consider the operator A = −Δ on V := H1
0(Ω)∩H2(Ω), and assume that

the operator A has the eigenvalues λj such that 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . .
which approach ∞ as j goes to ∞. The corresponding eigenfunctions are denoted
by ej ∈ V. Now, let us define fractional powers of A and its domain. For all
s ≥ 0, we define by As the following operator Asv :=

∑∞
j=1〈v, ej〉λs

jej , v ∈
D(As) = {v ∈ L2(Ω) :

∑∞
j=1 |〈v, ej〉|

2
λ2s
j < ∞}. The domain D(As) is a Banach

space equipped with the norm ‖v‖D(As) :=
(∑∞

j=1 |〈v, ej〉|
2 λ2s

j

) 1
2 , v ∈ D(As).

The definition of the negative fractional power A−s with s > 0 can be found in
H. Brezis [1]. Its domain D(A−s) is a Hilbert space endowed with the dual inner
product 〈., .〉−s,s taken between D(A−s) and D(As). This generates the norm

‖v‖D(A−s) =
(∑∞

j=1 | 〈v, ej〉−s,s |2λ
−2s
j

) 1
2 . Let L∞(0, T ;Gα,k(Ω)) (see [27]) be the

following space:
(4)

L∞(0, T ;Gα,k(Ω)) :=
{
v∈L∞(0, T ;L2(Ω)), sup

0≤t≤T
exp

(
2tk−1λα−1

j

)
〈v, ej〉2 < ∞

}
for any α > 1.
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146 N. H. TUAN AND T. CARABALLO

2. Well-posedness of initial value problems (1)-(2)

In this section, we study the well-posedness of problems (1)-(2). Our main
purposes are to ensure sufficient conditions for existence and uniqueness of mild
solutions to (1)-(2), analyze the possible continuation of this solution to a maxi-
mal interval of existence, and consider the problem of continuous dependence with
respect to initial data. Let us set

Sα,k(t)w =

∞∑
j=1

exp
(
−tλα

j (1 + kλj)
−1

)
〈w, ej〉 ej , Bα,k(t)w

=
∞∑
j=1

exp
(
−tλα

j (1 + kλj)
−1

)
1 + kλj

〈w, ej〉 ej .

Then from [7], we deduce the mild solution of the following initial value problem:

u(t) = Sα,k(t)u
0 +

∫ t

0

Bα,k(t− s)G(u(s))ds.(5)

In this section, for simplicity, we only study problems (1)-(2) with the case 0 <
α ≤ 1. The case α > 1 may be more complex but we omit it here since it can be
considered by a similar argument.

2.1. Local well-posedness and regularity. In this subsection, we consider the
following function with the critical nonlinearity form G : D(Aη) −→ D(Aν), ν <
η < ν + α and satisfy the following:⎧⎨⎩‖G(v)−G(w)‖D(Aν) ≤ K

(
1 + ‖v‖p−1

D(Aη) + ‖w‖p−1
D(Aη)

)
‖v − w‖D(Aη),

‖G(v)‖D(Aν) ≤ K
(
‖v‖pD(Aη) + 1

)(6)

for p > 1, K > 0, and v, w ∈ D(Aη) .

Lemma 2.1. Let any w0 ∈ D(Aη) and u ∈ C
(
[0, T0], D(Aη)

)
such that

sup
0≤t≤T0

‖u(t)− w0‖D(Aη) ≤ M.

If ν < η < ν + α, then∥∥∥∥∥
∫ t

0

Bα,k(t− s)G(u(s))ds

∥∥∥∥∥
D(Aη)

≤ K
[(

‖w0‖D(Aη) +M
)p

+ 1
]
t
α+ν−η

α .(7)

Proof. We have∥∥∥∥∥
∫ t

0

Bα,k(t− s)G(u(s))ds

∥∥∥∥∥
D(Aη)

≤
∫ t

0

∥∥∥Bα,k(t− s)G(u(s))
∥∥∥
D(Aη)

ds

≤
∫ t

0

( ∞∑
j=1

λ2η
j

(1 + kλj)2
exp

(
−2(t− s)λα

j (1 + kλj)
−1

) 〈
G(u(s)), ej

〉2
) 1

2

ds.
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Using the inequality e−y ≤ Mβy
−β for any β > 0 and Mβ > 0 is a positive constant,

we derive the estimate

exp
(
−2(t− s)λα

j (1 + kλj)
−1

)
≤ |Mβ |2

(
1 + kλ1

)2β

λ−2αβ
j (t− s)−2β,

which implies that∥∥∥∥∥
∫ t

0

Bα,k(t− s)G(u(s))ds

∥∥∥∥∥
D(Aη)

≤ Mβ

(
1 + kλ1

)β−1
∫ t

0

(t− s)−β
∥∥∥G(u(s))

∥∥∥
D(Aη−αβ)

ds

≤ Mβ

(
1 + kλ1

)β−1
∫ t

0

(t− s)−β
∥∥∥G(u(s))

∥∥∥
D(Aν)

ds

≤ KMβ

(
1 + kλ1

)β−1
∫ t

0

(t− s)−β
(∥∥u(s)∥∥p

D(Aη)
+ 1

)
ds

≤ K
[(

‖w0‖D(Aη) +M
)p

+ 1
] ∫ t

0

(t− s)−βds

= K
[(

‖w0‖D(Aη) +M
)p

+ 1
]
t
α+ν−η

α .(8)

where we have used β = η−ν
α < 1, and set K =

KαMβ

(
1+kλ1

)β−1

α+ν−η . �

Theorem 2.2. Let G satisfy (6). Then there exists T0 > 0 such that problem (1)
has a unique mild solution u ∈ C

(
(0, T0);Hη(Ω)

)
.

Proof. Let any 0 < M < 1 and R = (M + ‖w0‖D(Aη))
p−1. Let us choose T0 such

that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
T01−β ≤ 1−β

2KMβ

(
1+kλ1

)β−1(
1+2R

) ,
T0kλα−1

1

∥∥w0

∥∥
D(Aη)

+K

[(
‖w0‖D(Aη) +M

)p

+ 1

]
T 1−β
0

1−β ≤ M.

(9)

Using the inequality 1− e−y ≤ y and noting that α ≤ 1, we have∥∥∥Sα,k(t)w0 − w0

∥∥∥2

D(Aη)
=

∞∑
j=1

λ2η
j

[
1− exp

(
−tλα

j (1 + kλj)
−1

) ]2〈
w0, ej

〉2

L2(Ω)

≤
∞∑
j=1

λ2η
j

[ tλα
j

1 + kλj

]2〈
w0, ej

〉2

L2(Ω)
≤ t2k2λ2α−2

1

∥∥w0

∥∥2

D(Aη)
.(10)

Let us define the following set:

F =

{
u ∈ C

(
[0, T0];D(Aη)

)
, sup

0≤t≤T0

‖u(t)− w0‖D(Aη) ≤ M
}
.

It is not difficult to see that F is a complete space. Let us define the operator
J : F → F as follows:

(11) J u(t) = Sα,k(t)u
0 +

∫ t

0

Bα,k(t− s)G(u(s))ds.
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148 N. H. TUAN AND T. CARABALLO

Let us consider u ∈ F and 0 < t ≤ t+ h ≤ T0. Then,∥∥∥J u(t+ h)− J u(t)
∥∥∥
D(Aη)

≤
∥∥∥(Sα,k(t+ h)− Sα,k(t)

)
u0

∥∥∥
D(Aη)

+

∥∥∥∥∥
∫ t+h

t

Bα,k(t+ h− s)G(u(s))ds

∥∥∥∥∥
D(Aη)

+

∥∥∥∥∥
∫ t

0

(
Bα,k(t+ h− s)− Sα,k(t− s)

)
G(u(s))ds

∥∥∥∥∥
D(Aη)

= N1 +N2 +N3.(12)

Now, we estimate the term N1. Indeed, using the inequality e−a − e−b ≤ |a − b|,
we have

|N1|2 =

∞∑
j=1

λ2η
j

[[
exp

(
−(t+ h)λα

j (1 + kλj)
−1

)
− exp

(
−tλα

j (1 + kλj)
−1

) ]
u0
j

]2

≤ k2λ2α−2
1 h2

∞∑
j=1

λ2η
j |u0

j |2 = k2λ2α−2
1 h2‖u0‖2D(Aη).(13)

Notice that, if u ∈ F , then for any 0 ≤ t ≤ T0

(14) ‖G(u(t))‖D(Aν) ≤ K
(
‖u(t)‖pD(Aη) + 1

)
≤ K

[(
‖w0‖D(Aη) +M

)p

+ 1
]
.

Using (14), the term N2 can be estimated as follows:

N2 ≤
∫ t+h

t

∥∥∥G(u(s))
∥∥∥
D(Aη)

ds

≤ K
[(

‖w0‖D(Aη) +M
)p

+ 1
](∫ t+h

t

(t+ h− s)−βds

)

= K

[(
‖w0‖D(Aη) +M

)p

+ 1

]
h1−β

1− β
,(15)

where we have used the fact that ‖Bα,k(t)v‖D(Aη) ≤ ‖v‖D(Aη). Using again the

inequality e−a − e−b ≤ |a− b|, we deduce that, for any 0 ≤ s ≤ t, h > 0,
(16)
exp

(
−(t+ h− s)λα

j (1 + kλj)
−1

)
− exp

(
−(t− s)λα

j (1 + kλj)
−1

)
1 + kλj

≤ hk−2λα−2
1 .

This inequality leads to the following bound for the term N3:∥∥∥∥∥
∫ t

0

(
Bα,k(t+ h− s)− Bα,k(t− s)

)
G(u(s))ds

∥∥∥∥∥
D(Aη)

≤ k−2λα−2
1 h

∫ t

0

∥∥∥G(u(s))
∥∥∥
D(Aη)

ds

≤ Kk−2λα−2
1

[(
‖w0‖D(Aη) +M

)p

+ 1
]
ht.(17)
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FINAL VALUE PROBLEM 149

Combining some of the preceding estimates, we deduce that if u ∈ F , then J u ∈
C
(
[0, T0];D(Aη)

)
. It follows from (10) that∥∥∥J u(t)− w0

∥∥∥
D(Aη)

≤
∥∥∥Sα,k(t)w0 − w0

∥∥∥
D(Aη)

+
∥∥∥ ∫ t

0

Bα,k(t− s)G(u(s))ds
∥∥∥
D(Aη)

≤ T0kλα−1
1

∥∥w0

∥∥
D(Aη)

+K

[(
‖w0‖D(Aη) +M

)p

+ 1

]
T 1−β
0

1− β
≤ M.(18)

Now let w, v ∈ F . For any t ∈ [0, T0], using (8), we deduce the following estimate:∥∥∥Jw(t)− J v(t)
∥∥∥
D(Aη)

=

∥∥∥∥∥
∫ t

0

Bα,k(t− s)
(
G(w(s))−G(v(s))

)
ds

∥∥∥∥∥
D(Aη)

≤ Mβ

(
1 + kλ1

)β−1
∫ t

0

(t− s)−β
∥∥∥G(w(s))−G(v(s))

∥∥∥
D(Aν)

ds

≤ KMβ

(
1+kλ1

)β−1
∫ t

0

(t− s)−β
(
1+‖w‖p−1

D(Aη)+‖v‖p−1
D(Aη)

)∥∥w − v
∥∥
D(Aη)

ds

≤ KMβ

(
1+kλ1

)β−1
[
1+2

(
M+‖w0‖D(Aη)

)p−1
]∫ t

0

(t− s)−β
∥∥w − v

∥∥
D(Aη)

ds.

In light of (9) and noting that
∫ t

0
(t− s)−βds =

t1−β

1− β
, we find that

sup
0≤t≤T0

∥∥∥Jw(t)− J v(t)
∥∥∥
D(Aη)

≤
KMβ

(
1 + kλ1

)β−1

T01−β

1− β

(
1 + 2R

)
sup

0≤t≤T0

‖w(t)− v(t)‖D(Aη)

≤ 1

2
sup

0≤t≤T0

‖w(t)− v(t)‖D(Aη).(19)

From the Banach fixed point theorem, it turns out that J has a unique fixed point
u ∈ F . �

2.2. Continuation and blow-up alternative. In this subsection, we give conti-
nuity to our study of problems (1)-(2) proving that the mild solution provided by
Theorem 2.2 has a unique continuation to a larger interval of existence.

Definition 2.3. Given a mild solution u ∈ C([0, T0], D(Aη)) to problem (1), it is
said that ũ is a continuation of u in [0, T1] if u ∈ C([0, T1], D(Aη)) is a mild solution
for T1 > T0 and u(t) = ũ(t) for any t ∈ [0, T0].

Theorem 2.4. Let u be a mild solution of problems (1)-(2) on [0, T0]. If G satisfies
(6), then there exist T1 > T0 and a unique continuation ũ of u in [0, T1].
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150 N. H. TUAN AND T. CARABALLO

Proof. Fix 0 < M ≤ 1 and take T1 > T0 such that for t ∈ [T0, T1], we denote
(20)

UM =

{
v ∈ C

(
[0, T1], D(Aη)

)
: ‖v(t)− u(T0)‖D(Aη) ≤ M, v(t) = u(t), t ∈ [0, T0]

}
.

It is easy to see that UM is a complete metric space with the norm of supremum
in D(Aη). Let us define G : UM → UM by

(21) G v(t) = Sα,k(t)u
0 +

∫ t

0

Bα,k(t− s)G(v(s))ds.

If v ∈ UM, then it is obvious to obtain that G v(t) = u(t) for any t ∈ [0, T0]. Let
any t ∈ [T0, T1] and let any v ∈ UM. By some simple computations, we have

G v(t)− u(T0)

=
(
Sα,k(t)− Sα,k(T0)

)
u0

+

∫ T0

0

(
Sα,k(t− s)−Sα,k(T0−s)

)
G(u(s))ds+

∫ t

T0

Bα,k(t− s)G(u(s))ds

= Sα,k(t− T0)u(T0)− u(T0) +
∫ t

T0

Bα,k(t− s)G(v(s))ds,(22)

where we have used the fact that u(T0) = Sα,k(T0)u0 +
∫ T0

0
Sα,k(T0 − s)G(u(s))ds.

In view of (8) and (6),

‖G v(t)− u(T0)‖D(Aη)

≤
∥∥∥Sα,k(t− T0)u(T0)− u(T0)

∥∥∥
D(Aη)

+Mβ

(
1 + kλ1

)β−1
∫ t

T0

(t− s)−β
∥∥∥G(v(s))

∥∥∥
D(Aν)

ds

≤ (T1 − T0)kλα−1
1

∥∥u(T0)∥∥D(Aη)

+KMβ

(
1 + kλ1

)β−1
∫ t

T0

(t− s)−β
(
‖v(s)‖pD(Aη) + 1

)
ds.(23)

Since v ∈ UM, we deduce that ‖v(t)‖D(Aη) ≤ ‖u(T0)‖D(Aη)+M for any t ∈ [T0, T1].
Therefore, we have the following estimate:∫ t

T0

(t− s)−β
(
‖v(s)‖pD(Aη) + 1

)
ds ≤

[(
‖u(T0)‖D(Aη) +M

)p

+ 1

]∫ t

T0

(t− s)−βds

≤
[(

‖u(T0)‖D(Aη) +M
)p

+ 1

]
(T1 − T0)1−β

1− β
.(24)

Let us choose T1 such that⎧⎪⎨⎪⎩
(T1 − T0)kλα−1

1

∥∥u(T0)∥∥D(Aη)
≤ M

2 ,

KMβ

(
1 + kλ1

)β−1
[(

‖u(T0)‖D(Aη) +M
)p

+ 1

]
(T1−T0)

1−β

1−β ≤ M
2 .

(25)

Licensed to Universidad de Sevilla. Prepared on Mon Feb  1 08:25:37 EST 2021 for download from IP 150.214.182.24.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINAL VALUE PROBLEM 151

Take any v, w ∈ UM. We have

‖G v(t)− Gw(t)‖D(Aη)

=
∥∥∥ ∫ t

T0

Bα,k(t− s)
(
G(v(s))−G(w(s))

)
ds

∥∥∥
D(Aη)

≤ Mβ

(
1 + kλ1

)β−1
∫ t

T0

(t− s)−β
∥∥∥G(v(s))−G(w(s))

∥∥∥
D(Aν)

ds

≤ KMβ

(
1 + kλ1

)β−1
∫ t

T0

(t− s)−β
(
1+‖v‖p−1

D(Aη)+‖w‖p−1
D(Aη)

)
‖v − w‖D(Aη)ds.

Since v, w ∈ UM, we deduce 1+ ‖v(t)‖p−1
Hη(Ω)+ ‖w(t)‖p−1

Hη(Ω) ≤ 1+2(‖u(T0)‖Hη(Ω)+

M)p−1 for any t ∈ [T0, T1]. From the preceding estimates,∥∥G v(t)− Gw(t)
∥∥
D(Aη)

≤ KMβ

(
1 + kλ1

)β−1(
1 + 2

(
‖u(T0)‖Hη(Ω) +M

)p−1)
×

∫ t

T0

(t− s)−β‖v − w‖D(Aη)ds

≤ KMβ

(
1 + kλ1

)β−1(
1 + 2

(
‖u(T0)‖Hη(Ω) +M

)p−1)
× (T1 − T0)1−β

1− β
sup

0≤t≤T1

∥∥w(t)− v(t)
∥∥
D(Aη)

.(26)

�
The next theorem is our result on global existence or noncontinuation by blow-

up.

Theorem 2.5. Assume that G satisfies (6). Let u be the mild solution of problem
(1) defined on [0, Tmax), where Tmax is the maximal time of existence of u. Then
we have Tmax = +∞ or lim supt→T −

max
‖u(t)‖D(Aη) = ∞.

Proof. Suppose that Tmax < ∞ and there exists a constant B such that

max
(
‖u0‖D(Aη), sup

0≤t≤T
‖u(t)‖Hη(Ω)

)
≤ B

for any t ∈ [0, Tmax). Let us pick a sequence of positive numbers tn → T −
max; we

consider the sequence {u(tn)} in D(Aη). We will prove that this sequence is a
Cauchy sequence in the space D(Aη). For tm, tn ∈ [0, Tmax) such that tm < tn, we
obtain after some simple caculations

u(tn)− u(tm) =
[
Sα,k(tn)− Sα,k(tm)

]
u0 +

∫ tn

tm

Bα,k(tn − s)G(u(s))ds.(27)

Therefore,

∥∥∥u(tn)− u(tm)
∥∥∥
D(Aη)

≤
∥∥∥[Sα,k(tn)− Sα,k(tm)

]
u0

∥∥∥
D(Aη)︸ ︷︷ ︸

A1

+
∥∥∥∫ tn

tm

Bα,k(tn − s)G(u(s))ds
∥∥∥
D(Aη)︸ ︷︷ ︸

A2

.

(28)
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Step 1 (Estimation of A1.). Using the inequality |e−a − e−b| ≤ |a− b| for any a, b,
we bound the term A1 as follows:

|A1|2 ≤ k−2λ2α−2
1 (tn − tm)2

∞∑
j=1

λ2η
j

〈
u0, ej

〉2
L2(Ω)

.(29)

This implies the following bound:

(30) A1 ≤ k−1λα−1
1 (tn − tm)‖u0‖D(Aη) ≤ k−1λα−1

1 B(tn − tm).

Step 2 (Estimation of A2.). First, using (7), and noting that the integral∫ tn
tm

(tn − s)−βds is convergent, we obtain the following estimate:

A2 ≤ Mβ

(
1 + kλ1

)β−1
∫ tn

tm

(tn − s)−β
∥∥∥G(u(s))

∥∥∥
D(Aν)

ds

≤ KMβ

(
1 + kλ1

)β−1
∫ tn

tm

(tn − s)−β
(
‖u(s)‖pD(Aν) + 1

)
ds

≤ KMβ

(
1 + kλ1

)β−1(
|B|p + 1

)∫ tn

tm

(tn − s)−βds

=
KMβ

(
1 + kλ1

)β−1(
|B|p + 1

)
1− β

(tn − tm)1−β.

From some previous observations, we deduce that

‖u(tn)− u(tm)‖D(Aη) ≤ k−1λα−1
1 B(tn − tm)(31)

+
KMβ

(
1 + kλ1

)β−1(
|B|p + 1

)
1− β

(tn − tm)1−β.

Let ε > 0. Since (tn) is convergent and noting that

k−1λα−1
1 B and

KMβ

(
1 + kλ1

)β−1(
|B|p + 1

)
1− β

are independent of n,m, we can takeN∗ such that the right hand side of (31) is less
than or equal to ε for any n ≥ m ≥ N∗. This implies that the sequence {u(tn)} is
a Cauchy sequence in D(Aη). Hence, {u(tn)} converges to ũ ∈ Hη(Ω) as n → +∞.
Since (tn) is arbitrary, we deduce that limt→T −

max
‖u(t)‖D(Aη) = ‖ũ‖D(Aη). Then,

we can extend u over [0, Tmax] . Therefore, we obtain a contradiction with the
maximality of Tmax. �

3. Terminal value problems (1)-(3)

In this section, we study the terminal value problems (1)-(3) in two cases 0 <
α ≤ 1 and α > 1. When 0 < α ≤ 1, we show existence and regularity of the mild
solution. When α > 1, we show that problems (1)-(3) are not well-posed in the
space Lp. We also give a regularized solution and investigate the error estimate
between the regularized solution and the sought solution in Lp norm.
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Now, we establish a representation formula for the solution of problems (1)-(3).
From (5), we find that

u0 = S−1
α,k(T )

[
uT −

∫ T

0

Pα,k(T − s)G(u(s))ds

]
.

Hence, by replacing the latter equality into (5) and then by a simple computation,

u(t) = Sα,k(t)S−1
α,k(T )

[
uT −

∫ T

0

Bα,k(T − s)G(u(s))ds
]
+

∫ t

0

Bα,k(t− s)G(u(s))ds

= S−1
α,k(T − t)uT −

∫ T

t

B−1
α,k(s− t)G(u(s))ds,

(32)

where we have the following definitions for any 0 ≤ t ≤ T and w ∈ L2(Ω):

S−1
α,k(t)w =

∞∑
j=1

exp
(
tλα

j (1 + kλj)
−1

)
〈w, ej〉 ej , B−1

α,k(t)w

=

∞∑
j=1

exp
(
tλα

j (1 + kλj)
−1

)
1 + kλj

〈w, ej〉 ej .

Lemma 3.1. The following inclusions hold true:

Lp(Ω) ↪→ D(Aσ) if − d
4 < σ ≤ 0, p ≥ 2d

d−4σ ,

D(Aσ) ↪→ Lp(Ω) if 0 ≤ σ < d
4 , p ≤ 2d

d−4σ

⎫⎬⎭ .(33)

3.1. Well-posedness of problems (1)-(3) under the case 0 < α ≤ 1. . We
have the following well-posedness result.

Theorem 3.2. Assume that G satisfies a globally Lipschitz condition, i.e., there
exists a constant K > 0 such that

|G(u)−G(v)| ≤ K|u− v|.

• a) If the final state uT ∈ L2(Ω), then problems (1)-(3) have a unique global
solution u ∈ L∞(0, T ;L2(Ω)).

• b) If the final state uT ∈ Lp(Ω) for 1 ≤ p ≤ 2, then problem (1) has

a unique local solution u ∈ Lq(0, T ;L
2d

d−4γ (Ω)) where 1 ≤ q < α
γ−σ and

max(−α,−d
4 ) < σ ≤ (p−2)d

4p , 0 < γ ≤ min(σ + α, d
4 ).

Proof of part a).

Let us consider the function Yw = S−1
α,k(T − t)uT −

∫ T

t
B−1
α,k(s− t)G(w(s))ds.

Consider also the set

(34) Zp :=
{
w : [0, T ] → L2(Ω),

∥∥∥ exp(−p(T − t))w(., t)
∥∥∥
L2(Ω)

< ∞, 0 ≤ t ≤ T
}
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associated with the norm ‖w‖Zp
:= max0≤t≤T

∥∥∥ exp(−p(T − t))w(., t)
∥∥∥
L2(Ω)

. First,

we deduce that∥∥∥S−1
α,k(T − t)uT

∥∥∥2

L2(Ω)
=

∞∑
j=1

exp
(
2(T − t)λα

j (1 + kλj)
−1

)
〈uT , ej〉2

≤ exp
(
2(T − t)k−1λα−1

1

) ∥∥uT

∥∥2

L2(Ω)
.(35)

Since uT ∈ L2(Ω), we deduce from (35) that S−1
α,k(T − t)uT ∈ Zp for any p > 0. We

continue now to estimate ‖Yw1−Yw2‖Zp,σ
. Indeed, noting exp

(
2(s−t)λα

j (1+kλj)
−1

)
≤ exp

(
2(s− t)k−1λα−1

1

)
for any 0 ≤ t ≤ s ≤ T, we obtain

‖Yw1 − Yw2‖Zp

= max
0≤t≤T

∥∥∥ exp(−p(T − t))

∫ T

t

B−1
α,k(s− t)

(
G(w1(s))−G(w2)(s)

)
ds

∥∥∥
L2(Ω)

≤ K max
0≤t≤T

∫ T

t

∥∥∥ exp(−p(T−t)) exp
(
(s−t)k−1λα−1

1

) (
w1(s)−w2(s)

)∥∥∥
L2(Ω)

ds

≤ K
(∫ T

t

e(t−s)(p−k−1λα−1
1 )ds

)
‖w1 − w2‖Zp

.

(36)

Let us choose p > k−1λα−1
1 . Then the latter inequality implies that

‖Yw1 − Yw2‖Zp
≤ K

p− k−1λα−1
1

‖w1 − w2‖Zp
.

Let us choose p > K + k−1λα−1
1 ; then we deduce that Y is a contractive mapping

in the space Zp. Applying the Banach fixed point theorem, we derive that J has a
fixed point u ∈ L∞(0, T ;L2(Ω)).

Proof of part b). Since uT ∈ Lp(Ω), we find that uT ∈ D(Aσ) for max(−α,−d
4 ) <

σ ≤ (p−2)d
4p . This implies that∥∥∥S−1

α,k(T − t)uT

∥∥∥2

D(Aγ)
=

∞∑
j=1

exp
(
2(T − t)λα

j (1 + kλj)
−1

)
λ2γ−2σ
j λ2σ

j 〈uT , ej〉2

≤
∞∑
j=1

exp
(
2(T − t)λα

j (1 + kλ1)
−1

)
λ2γ−2σ
j λ2σ

j 〈uT , ej〉2 .(37)

On the other hand, using the inequality e−z ≤ Dmz−m for any m > 0, we have for
any t ≥ 0, γ > 0, σ ≤ 0

(38) λγ−σ
j exp

(
−tk−1λα−1

j

)
≤ Dα,γ,σ

(
tλα

j (kλ1)
−1

)−γ+σ
α

λγ−σ
j ≤ Dα,γ,σ,kt

γ−σ
−α .

We note that

λγ−σ
j exp

(
(T − t)λα

j (1 + kλj)
−1

)
≤ λγ−σ

j exp
(
Tk−1λα−1

j

)
exp

(
−tk−1λα−1

j

)
≤ exp

(
Tk−1λα−1

1

)
Dα,γ,σ,k︸ ︷︷ ︸

D

t
γ−σ
−α .(39)
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Using the Sobolev embedding D(Aγ) ↪→ L
2d

d−4γ (Ω), we find that∥∥∥S−1
α,k(T − t)uT

∥∥∥
L

2d
d−4γ (Ω)

(40)

�
∥∥∥S−1

α,k(T − t)uT

∥∥∥
D(Aγ)

≤ Dt
γ−σ
−α ‖uT ‖D(Aσ) � t

γ−σ
−α ‖uT ‖Lp(Ω).

Since σ > −α and γ < σ+α we can choose q such that 1 ≤ q < α
γ−σ . Therefore, we

deduce that S−1
α,k(T − t)uT ∈ Lq(0, T ;L

2d
d−4γ (Ω)). By a similar argument as above,

we find that∥∥∥B−1
α,k(s− t)

(
G(w1(s))−G(w2)(s)

)∥∥∥2

D(Aγ)

=
∞∑
j=1

exp
(
2(s− t)λα

j (1 + kλj)
−1

)
λ2γ
j

(1 + kλj)2
〈G(w1(s))−G(w2)(s), ej〉2

≤
exp

(
2Tk−1λα−1

1

)
D2

α,γ,0,k

(1 + kλ1)2
t−2γ/α

∞∑
j=1

〈G(w1(s))−G(w2)(s), ej〉2 ,(41)

which implies∫ T

t

∥∥∥B−1
α,k(s− t)

(
G(w1(s))−G(w2)(s)

)∥∥∥
D(Aγ)

ds(42)

≤
K exp

(
Tk−1λα−1

1

)
Dα,γ,0,k

(1 + kλ1)
t−γ/α

∫ T

t

‖w1 − w2‖L2(Ω)ds.

This implies that

∥∥∥Yw1(t)− Yw2(t)
∥∥∥q
D(Aγ)

≤

⎛⎝K exp
(
Tk−1λα−1

1

)
Dα,γ,0,k

(1 + kλ1)

⎞⎠q

︸ ︷︷ ︸
L

t−
γq
α

(∫ T

t

‖w1 − w2‖L2(Ω)ds

)q

≤ Lt−
γq
α (T − t)

(∫ T

t

‖w1 − w2‖qL2(Ω)ds

)
≤ LTt−

γq
α ‖w1 − w2‖qLq(0,T ;L2(Ω))

(43)

The latter inequality leads to

‖Yw1 − Yw2‖Lq(0,T ;D(Aγ)) ≤
αT

α−γq
αq

α− γq
(LT ) 1

q ‖w1 − w2‖Lq(0,T ;L2(Ω)).(44)

The Sobolev embeddings Lq(0, T ;D(Aγ)) ↪→ Lq(0, T ;L
2d

d−4γ (Ω)) ↪→ Lq(0, T ;L2(Ω))
imply that

‖Yw1 − Yw2‖
Lq(0,T ;L

2d
d−4γ (Ω))

≤ L1
αT

α−γq
αq

α− γq
(LT ) 1

q ‖w1 − w2‖
Lq(0,T ;L

2d
d−4γ (Ω))

(45)

where L1 depends only on γ, d, q. By choosing T small enough, we deduce that

L1
αT

α−γq
αq

α−γq (LT ) 1
q < 1, which implies that Y is a contracting mapping on the space

Lq(0, T ;L
2d

d−4γ (Ω)). �
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Remark 3.1. Using the techniques in Section 2, we can show the global existence
for a mild solution which is given in part b) of Theorem 3.2.

3.2. Ill-posedness and regularization under the case α > 1. Let us first prove
the following theorem.

Theorem 3.3. Let any ϕε ∈ Lp(Ω). Then the nonlinear integral equation

uε(t) = S−1
α,k(T − t)PNε

ϕε −
∫ T

t

B−1
α,k(s− t)PNε

G(uε(s))ds(46)

has a unique solution in L∞(0, T ;L
2d

d−4γ (Ω)). Moroever, there exists a postive Bε >
0 such that

(47) ‖uε(t)‖
L

2d
d−4γ (Ω)

≤ Bε‖ϕε‖Lp(Ω).

Proof. For any N > 0, let PN be the orthogonal projection onto the eigenspace
span {ej , λj ≤ N}. Set the regularized solution

(48) uε(t) = S−1
α,k(T − t)PNε

ϕε −
∫ T

t

B−1
α,k(s− t)PNε

G(uε(s))ds.

Let v ∈ D(Aν). Then, for any ν′ ≥ ν, we have∥∥∥S−1
α,k(T − t)PNε

w
∥∥∥
D(Aν′)

=

( ∑
λj≤Nε

λ2ν′−2ν
j exp

(
2(T − t)λα

j (1 + kλj)
−1

)
λ2ν
j 〈w, ej〉2

) 1
2

≤ (Nε)
ν′−ν exp

(
(T − t)k−1(Nε)

α−1
)∥∥w∥∥

D(Aν)
.

(49)

By a similar argument as above, we also find that

∥∥∥B−1
α,k(s− t)PNε

w
∥∥∥
D(Aν′)

≤
(Nε)

ν′−ν exp
(
(s− t)k−1(Nε)

α−1
)

1 + kλ1

∥∥w∥∥
D(Aν)

.(50)

For any p > 0, denote by L∞
m (0, T ;L

2d
d−4γ (Ω)) the function space L∞(0, T ;L

2d
d−4γ (Ω))

associated with the norm

‖w‖m := max
0≤t≤T

∥∥∥ exp(−m(T − t))w(., t)
∥∥∥
L

2d
d−4γ (Ω)

, ∀ v ∈ L∞(0, T ;L
2d

d−4γ (Ω)).

Let us define a nonlinear map L∞
m (0, T ;L

2d
d−4γ (Ω)) → L∞

m (0, T ;L
2d

d−4γ (Ω)) by

Jw(t) = S−1
α,k(T − t)PNε

ϕε −
∫ T

t

B−1
α,k(s− t)PNε

G(w(s))ds.

If w = 0, then Jw(t) = S−1
α,k(T − t)PNε

ϕε. Using (63) and letting ν′ = 0, ν = σ < 0,

and noting the Sobolev embedding Lp(Ω) ↪→ D(Aσ),∥∥∥S−1
α,k(T − t)PNε

ϕε

∥∥∥
D(Aγ)

≤ (Nε)
γ−σ exp

(
(T − t)k−1(Nε)

α−1
)
‖ϕε‖D(Aσ)

≤ C1,σ,p,d(Nε)
−σ exp

(
(T − t)k−1(Nε)

α−1
)
‖ϕε‖Lp(Ω)(51)
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where we note that ϕε ∈ Lp(Ω), p ≥ 1. Using the Sobolev embedding D(Aγ) ↪→
L

2d
d−4γ (Ω), we deduce that Jw ∈ L∞

m (0, T ;L
2d

d−4γ (Ω)). From the definition of J and

using Lemma 2.1, we have for any w1, w2 ∈ L∞
m (0, T ;L

2d
d−4γ (Ω)) that∥∥∥ exp(−m(T − t)) (Jw1(t)− Jw2(t))

∥∥∥
L

2d
d−4γ (Ω)

≤ C2,γ,d

∥∥∥ exp(−m(T − t)) (Jw1(t)− Jw2(t))
∥∥∥
D(Aγ)

(52)

where we have used that ‖v‖
L

2d
d−4γ (Ω)

≤ ‖v‖D(Aγ), since the Sobolev embedding

D(Aγ) ↪→ L
2d

d−4γ (Ω). We have∥∥∥ exp(−m(T − t)) (Jw1(t)− Jw2(t))
∥∥∥
D(Aγ)

=

∥∥∥∥e−m(T−t)

∫ T

t

B−1
α,k(s− t)PNε

(G(w1(s))−G(w2(s))) ds

∥∥∥∥
D(Aγ)

≤
∫ T

t

e−m(T−t)

∥∥∥∥B−1
α,k(s− t)PNε

(G(w1(s))−G(w2(s)))

∥∥∥∥
D(Aγ)

ds.(53)

Letting γ > 0 and σ = 0 into (50) and using the globally Lipschitz property of G,
we find that

The right hand side of (53)

≤ (Nε)
γ

1 + kλ1

∫ T

t

e−m(T−t) exp
(
(s− t)k−1(Nε)

α−1
)∥∥G(w1(s))−G(w2(s))

∥∥
L2(Ω)

≤ KC3,d,γ(Nε)
γ

1 + kλ1

∫ T

t

e−m(s−t) exp
(
(s− t)k−1(Nε)

α−1
)
e−m(T−s)

×
∥∥w1(s)− w2(s)

∥∥
L

2d
d−4γ (Ω)

ds

(54)

where we have used the Sobolev embedding L
2d

d−4γ (Ω) ↪→ L2(Ω). This implies that

The left hand side of (52)

≤ KC2,γ,dC3,d,γ(Nε)
γ

1 + kλ1

(∫ T

t

e−m(s−t) exp
(
(s− t)k−1(Nε)

α−1
)
ds

)
‖w1 − w2‖m

≤ KC2,γ,dC3,d,γ(Nε)
γ

1 + kλ1

1

m− k−1(Nε)α−1
‖w1 − w2‖m.

(55)

With a suitable choice for m, the last inequality implies

‖Jw1 − Jw2‖m ≤ 1
2‖w1 − w2‖m, ∀w1, w2 ∈ L∞

m (0, T ;L
2d

d−4γ (Ω)).

Thus, J is contractive on L∞
m (0, T ;L

2d
d−4γ (Ω)). Applying the Banach fixed point

theorem, we obtain that J has a fixed point uε. Now, we will show the regularity
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of uε. Using (51), we obtain

‖uε(t)‖L2(Ω) ≤ C1,σ,p,d(Nε)
−σ exp

(
(T − t)k−1(Nε)

α−1
)
‖ϕε‖Lp(Ω)

+K(1 + kλ1)
−1

∫ T

t

exp
(
(s− t)Nα−1

ε (1 + kNε)
−1

)
‖uε(s)‖L2(Ω)ds.(56)

By applying Gronwall’s inequality,

exp
(
tk−1(Nε)

α−1
)
‖uε(t)‖L2(Ω) ≤ H1H2(ε)C1,σ,p,d‖ϕε‖Lp(Ω)(57)

which implies that

(58) ‖uε(t)‖L2(Ω) ≤ H1C1,σ,p,dH2(ε) exp
(
− tk−1(Nε)

α−1
)
‖ϕε‖Lp(Ω).

Since the Sobolev embedding D(Aγ) ↪→ L
2d

d−4γ (Ω), we deduce for any 0 < γ < d
4

‖uε(t)‖
L

2d
d−4γ (Ω)

≤ C2,γ,d‖uε(t)‖D(Aγ) = C2,γ,d

( ∑
λj≤Nε

λ2γ
j 〈uε(t), ej〉2

) 1
2

≤ C2,γ,d(Nε)
γ‖uε(t)‖L2(Ω) ≤ Bε‖ϕε‖Lp(Ω),(59)

where Bε depends on ε. �

Theorem 3.4. Let us assume problem (1) has a unique solution u ∈
L∞(0, T ;Gα,k(Ω)) such that ‖u‖L∞(0,T ;Gα,k(Ω)) ≤ M . Let us choose Nε such
that for any t > 0
(60)
lim
ε→0

Nε = ∞, lim
ε→0

(Nε)
−σ exp

(
Tk−1Nα−1

ε

)
ε = lim

ε→0
(Nε)

γ exp
(
−tk−1Nα−1

ε

)
= 0.

Then ‖uε(t)−u(t)‖
L

2d
d−4γ (Ω)

is of order max
(
(Nε)

γ exp
(
−tk−1(Nε)

α−1
)
, (Nε)

−p
)
.

Remark 3.2. Let us choose Nε =
[

1
rTk−1 log(

1
ε )
] 1

α−1

for any 0 < r < 1. Then

it is easy to check that (60) holds. The error ‖uε(t) − u(t)‖
L

2d
d−4γ (Ω)

is of order

max
((

1
Tk−1r log(

1
ε )
) γ

α−1 ε
r
T ,

(
1

Tk−1r log(
1
ε )
) −p

α−1

)
.

Proof. Note that

‖u(t)− PNε
u(t)‖L2(Ω) =

( ∑
λj>Nε

exp
(
−2tk−1λα−1

j

)
exp

(
2tk−1λα−1

j

)
〈u(t), ej〉2

) 1
2

≤ exp
(
−tk−1Nα−1

ε

)
M.

Since ‖ϕε − uT ‖Lp(Ω) ≤ ε, and observing that −d
4 < σ ≤ (p−2)d

4 we have the
Sobolev embedding Lp(Ω) ↪→ D(Aσ), and we then find that ‖ϕε − uT ‖D(Aσ) ≤
C1,σ,p,d‖ϕε − uT ‖Lp(Ω) ≤ C1,σ,p,dε. The latter inequality leads to∥∥∥S−1

α,k(T − t)PNε
(ϕε − uT )

∥∥∥
L2(Ω)

≤ (Nε)
−σ exp

(
(T − t)k−1(Nε)

α−1
)
‖ϕε − uT ‖Aσ).
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Using the triangle inequality and combining some previous estimates, we find that

‖uε(t)− u(t)‖L2(Ω)

≤
∥∥∥S−1

α,k(T − t)PNε
(ϕε − uT )

∥∥∥
L2(Ω)

+ ‖u(t)− PNε
u(t)‖L2(Ω)

+

∫ T

t

∥∥∥B−1
α,k(s− t)PNε

(
G(uε(s))−G(u(s))

)∥∥∥
L2(Ω)

≤ exp
(
− tk−1(Nε)

α−1
)[

M + C1,σ,p,d(Nε)
−σ exp

(
Tk−1(Nε)

α−1
)
ε
]
ds

+K(1 + kλ1)
−1

∫ T

t

exp
(
(s− t)k−1Nα−1

ε

)
‖uε(s)− u(s)‖L2(Ω)ds.

(61)

Multiplying both sides by exp(tk−1(Nε)
α−1) and then applying Gronwall’s inequal-

ity,

exp
(
tk−1(Nε)

α−1
)
‖uε(t)− u(t)‖L2(Ω)

≤
[
M + C1,σ,p,d(Nε)

−σ exp
(
Tk−1(Nε)

α−1
)
ε
]
exp

(
K(1 + kλ1)

−1T
)
.

(62)

Since the Sobolev embedding D(Aγ) ↪→ L
2d

d−4γ (Ω) holds true for any 0 < γ < d
4 ,

then

‖uε(t)− u(t)‖
L

2d
d−4γ (Ω)

≤ C2,γ,d‖uε(t)− u(t)‖D(Aγ).(63)

Now, we continue to estimate the term ‖uε(t)− u(t)‖D(Aγ). Indeed,

‖uε(t)− PNε
u(t)‖2D(Aγ) =

∑
λj≤Nε

λ2γ
j 〈uε(t)− u(t), ej〉2 ≤ (Nε)

2γ‖uε(t)− u(t)‖2L2(Ω)

(64)

and

‖u(t)− PNε
u(t)‖2D(Aγ) =

∑
λj>Nε

λ−2p
j λ2γ+2p

j 〈u(t), ej〉2

≤ (Nε)
−2p‖u(t)‖2D(Ap+γ) ≤ (Nε)

−2p‖u‖2L∞(0,T ;D(Ap+γ)).(65)

From the two preceding estimates, we find that∥∥uε(t)− u(t)
∥∥
D(Aγ)

≤ ‖uε(t)− PNε
u(t)‖D(Aγ) + ‖u(t)− PNε

u(t)‖D(Aγ)

≤ (Nε)
γ‖uε(t)− u(t)‖L2(Ω) + (Nε)

−p‖u‖L∞(0,T ;D(Ap+γ))

≤
[
M + C1,σ,p,dH2(ε)

]
H1(Nε)

γ exp
(
− tk−1(Nε)

α−1
)

+ (Nε)
−p‖u‖L∞(0,T ;D(Ap+γ)).

(66)

where we set H1 = exp
(
K(1 + kλ1)

−1T
)
, H2(ε) = (Nε)

−σ exp
(
Tk−1Nα−1

ε

)
ε.

From (63) and (66), we obtain the desired result. �
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ultad de Matemáticas, Universidad de Sevilla, Sevilla 41012, Spain

Email address: caraball@us.es

Licensed to Universidad de Sevilla. Prepared on Mon Feb  1 08:25:37 EST 2021 for download from IP 150.214.182.24.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=3448562
https://www.ams.org/mathscinet-getitem?mr=3592649
https://www.ams.org/mathscinet-getitem?mr=3960498
https://www.ams.org/mathscinet-getitem?mr=3745344
https://www.ams.org/mathscinet-getitem?mr=3713537
https://www.ams.org/mathscinet-getitem?mr=3583262
https://www.ams.org/mathscinet-getitem?mr=3408831
https://www.ams.org/mathscinet-getitem?mr=1608488
https://www.ams.org/mathscinet-getitem?mr=4022971

	1. Introduction
	2. Well-posedness of initial value problems (1)-(2)
	2.1. Local well-posedness and regularity
	2.2. Continuation and blow-up alternative

	3. Terminal value problems (1)-(3)
	3.1. Well-posedness of problems (1)-(3) under the case 0<\al\le1
	3.2. Ill-posedness and regularization under the case \al>1

	References

