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Abstract. In this paper, we study a stochastic epidemic model with isolation

and nonlinear incidence. In particular, we propose a stochastic threshold for

the model without any sharp sufficient assumptions on model parameters as
compared to existing works. Firstly, we establish the uniqueness of the global

positive solution according to Lyapunov function method. Secondly, we prove
stochastic permanence of the solutions. Then, we establish sufficient condition

for the extinction. Thirdly, we investigate necessary and sufficient conditions

for persistence in mean of the disease. Finally, we provide some numerical
simulations to illustrate our theoretical results.

1. Introduction. Diseases are caused by pathogens such as viruses, bacteria, epi-
phytes or parasites like protozoans and worms. Epidemiology is the study of the
distribution and determinants of disease prevalence in populations like natural en-
vironment (migration, vegetation, water ways, ...), human environment (infrastruc-
ture, intensive agriculture,...), socio-demographic drivers social inequality, preven-
tion,...) and public health systems (healthcare system, food and water quality. One
objective of epidemiology is to describe the distribution of the disease, i.e., to find
out who has how much of what, where and when. Another objective is to identify
the causes or risk factors for diseases in order to find out why everyone does not
have the same thing uniformly [8]. A third objective of mathematical modeling in
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epidemiology is to develop models that will assist the decision making process [2].
In order to limit the spread of certain severe diseases, infected people are isolated
as a preventive measure, this operation is called quarantine. As a helping hand
to build strategies for governments to control the public health, several compart-
mental epidemic models have been established, to understand the mechanism and
the behavior of the isolation tool. Hethcote et al. [9] introduced a deterministic
SIQS model where they studied the asymptotic stability of the equilibrium points.
The local and global stability of the model were also discussed by Chen [4]. The
stability analysis with saturated incidence rate was investigated by Adebimpe et
al. [1]. In [29], the authors studied the deterministic and stochastic dynamics of
an SIQS epidemic model with non linear incidence. Yang et al. [26, 27] studied

a deterministic SIQS model with saturated incidence ψ(S, I) = βSI
1+rI , where β is

the disease transmission coefficient, and r is the saturation constant. The term
βI represents the infection force of the disease and 1

1+rI represents the inhibition
effect from the behavioral change of the susceptible individuals when their number
increases or from the crowding effect of the infective individuals. The resulting
system is

Ṡ = A− ψ(S, I)− µS + γI + εQ,

İ = ψ(S, I)− (µ+ α2 + δ + γ)I, (1)

Q̇ = δI − (µ+ α3 + ε)Q,

where S(t), I(t) and Q(t) are the population fractions of susceptible, infective and
quarantined. The parameters A, β, γ, ε, α2, α3, δ, are positive constants. The
constant A is the recruitment rate of susceptible corresponding to births and im-
migration, µ is the natural death rate of population, δ is the rate constant for
individuals leaving the compartment I for the quarantine compartment Q, α2 and
α3 are the disease-related death rate constant in compartments I and Q respec-
tively, γ is the rate at which individuals recover and return to Susceptible S from
compartment I and ε is the rate at which individuals recover and return to Sus-
ceptible S from compartment Q. The corresponding basic reproduction number [9]
related to (1) is given by

R0 =
Aβ

µ (µ+ α2 + δ + γ)
.

In deterministic models, the output of the model is fully determined by the pa-
rameter values and the initial conditions. In the real world, epidemic dynamics
is inevitably perturbed by the environmental noise, see references for white noise
[3, 7, 17, 24, 20] and [6, 31] for Lévy noise. Stochastic models possess some inherent
randomness. The same set of parameter values and initial conditions will lead to an
ensemble of different outputs. In this work, we are interested in a stochastic model
perturbed by white noise. In the following, B(R3

+) denotes the Borel σ-algebra on
R3

+, and (R3
+, B(R3

+), {Ft}t≥0, P) is a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is rightly continuous and increasing
while F0 contains all P-null sets). Then, to characterize the effects of stochastic
noises on the deterministic system (1) and to make it reasonable and realistic, a
stochastic model driven by Brownian motion is proposed as follows

dS = [A− ψ(S, I)− µS + γI + εQ] dt+ σ1SdB1(t),

dI = [ψ(S, I)− (µ+ α2 + δ + γ)I] dt+ σ2IdB2(t), (2)
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dQ = [δI − (µ+ α3 + ε)Q] dt+ σ3QdB3(t),

where B1(t), B2(t), B3(t) are independent Brownian motions, and σ1, σ2, σ3 are the
intensities of the white noises. See also a recent work [22], which is concerned with
the dynamical behavior of a stochastic SIQR epidemic model with both white and
telegraph noises. Define

RS = R0 −
σ2

2

2(µ+ α2 + δ + γ)
.

In [25], Wei and Chen considered an SIQS epidemic model with a saturated incidence
rate, and the authors discussed the permanence and ultimately boundedness with
random perturbations related to death rates.

The stochastic model with bilinear incidence, when r = 0, has been discussed in
Zhang et al. [30], where the following behaviors of model solutions, according to
the value of the threshold RS , were shown:

• If RS < 1, then the disease will die out.
• If RS > 1, then the disease will prevail provided that

µ >
σ2

2
, (H1)

where σ2 = max(σ2
1 , σ

2
2 , σ

2
3).

In [31], the authors presented a stochastic model driven by Lévy noise with a
mass action incidence and they discussed the existence of a stochastic threshold
under the assumption of existence of ρ > 2 such that

µ− 1

2
(ρ− 1)σ2 − ζ

ρ
> 0. (H2)

where ζ is a dependent parameter of the intensities of Lvy jumps see [31]
Our motivation, is to extend the results introduced in [30, 31]. We improve these

works by deriving a stochastic threshold which does not impose any condition on
the stochastic volatility as (H1) in [30] for white noise, and our analysis can be
extended to the Lévy noise case without (H2) hypothesis as in [31] .

The rest of this paper is organized as follows. The next section is devoted to the
existence and uniqueness of the global positive solution. In the third section, we
explore the stochastic boundedness and permanence of the solutions of the stochastic
system (2). The fourth section is dedicated to the investigation of the stochastic
threshold between the extinction and the persistence in mean of the epidemic. In
the last section the presented results are demonstrated by numerical simulations.
Finally, some conclusions are stated too.

We define the differential operator L, associated with the following general d-
dimensional stochastic system

dX(t) = F (t,X(t))dt+G(t,X(t))dB(t), (3)

where F (t,X(t)) is a function in Rd defined in [t0,+∞[×Rd, G(t,X(t)) is a d×m
matrix, F and G are locally Lipschitz functions in x and B(t) is a d-dimensional
Wiener process. Let Sh = {x ∈ Rd : |x| < h}. The differential operator L, acts on
a function V ∈ C1,2(R+ × Sh;R+). as follows

LV (t, x) = Vt(t, x) + Vx(t, x)F (t, x) +
1

2
trace

[
GT (t, x)Vxx(x, t)G(x, t)

]
. (4)
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By Itô’s formula, if x(t) ∈ Sh,
dV (t, x(t)) = LV (t, x(t))dt+ Vx(t, x(t))G(t, x(t))dB(t), (5)

where

Vt =
∂V

∂t
, Vx =

(
∂V

∂x1
,
∂V

∂x2
, . . . ,

∂V

∂xd

)
Vxx =

(
∂V 2

∂xi∂xj

)
d×d

. (6)

For any X ∈ R3, the norm |X|, as usual, is given by |X| =
√
X2

1 +X2
2 +X2

3 .

2. Existence and uniqueness of the global positive solution. In this section,
using the Lyapunov analysis method (mentioned in [23]), we shall show that the
model (2) has a local positive solution, then we show that this solution is global
positive. Denote

R3
+ =

{
(S, I,Q) ∈ R3 : S > 0, I > 0, Q > 0

}
.

Theorem 2.1. For any given initial value (S(0), I(0), Q(0)) ∈ R3
+, there is a unique

positive solution (S(t), I(t), Q(t)) of model (2) on t ≥ 0 and the solution will remain
in R3

+ with probability 1.

Proof. Since the coefficients of the system (2) are locally Lipschitz continuous, for
any given initial value (S(0), I(0), Q(0)) ∈ R3

+ there is a unique local solution pos-
itive (S(t), I(t), Q(t)) on t ∈ [0, τe), where τe is the explosion time. Now, we show
that the solution is global, we have only to prove that τe =∞ a.s. Consider ε0 > 0
such that S(0) > ε0, I(0) > ε0, Q(0) > ε0, then we define the stopping time, for all
ε > 0 such that ε ≤ ε0, as follows

τε = inf

{
t ∈ [0, τe) : S(t) 6∈

[
ε,

1

ε

]
or I(t) 6∈

[
ε,

1

ε

]
, or Q(t) 6∈

[
ε,

1

ε

]}
. (7)

Throughout this paper we set inf ∅ =∞ (∅ denotes the empty set). It is clear that,
τε is increasing as ε → 0. Set τ0 = lim

ε→0
τε, therefore τ0 < τe a.s. If τ0 = ∞ a.s. is

true, then τe =∞ a.s. and (S(t), I(t), R(t)) ∈ R3
+ a.s. for t ≥ 0. In other words, to

complete the proof it is required to show that τ0 =∞ a.s. If this statement is false,
then there exist a pair of constants T > 0 and δ ∈ (0, 1) such that P{τ0 ≤ T} > δ.
Thus there is ε1 > 0 such that

P{τε ≤ T} ≥ δ ∀ε ≤ ε1. (8)

Consider a C2-function V1 : R3
+ → R+ as follows

V1(X(t)) = S(t) +
1

S(t)
+ I(t) +

1

I(t)
+Q(t) +

1

Q(t)
, (9)

where X(t) denote (S(t), I(t), Q(t)) Applying Itô’s formula and using the expecta-
tion (see [14] and [23]) we obtain

EV1(X(t ∧ τε)) = V1(X(0)) + E
∫ t∧τε

0

LV1(X(u))du, (10)

where LV1 is given by

LV1(X(u)) =A− µS − 1

S2

[
A− µS − βSI

1 + rI
+ γI + εQ

]
− (µ+ α2 + δ + γ)I − 1

I2

[
βS(u)I(u)

1 + rI(u)
− (µ+ α2 + δ + γ)I(u)

]
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− (µ+ α3 + ε)Q− 1

Q2
(δI − (µ+ α3 + ε)Q) +

σ2
1

S
+
σ2

2

I
+
σ2

3

Q

≤A+
µ

S
+

β

rS
+
µ+ α2 + δ + γ

I
+
µ+ α3 + ε

Q
+
σ2

1

S
+
σ2

2

I
+
σ2

3

Q

≤c1V (X(u)), (11)

where c1 = max(µ+ β/r + σ2
1 , µ+ α2 + δ + γ + σ2

2 , µ+ α3 + ε+ σ2
3). Substituting

(11) in (10) we obtain

EV1(X(t ∧ τε)) ≤V1(X(0)) + E
∫ t∧τε

0

c1

(
A

c1
+ V1(X(u))

)
du

E
(
A

c1
+ V1(X(t ∧ τε))

)
≤A
c1

+ V1(X(0)) + c1

∫ t

0

E
(
A

c1
+ V1(X(u))

)
du.

Using the Gronwall inequality we obtain for t = T

A

c1
+ E[V1(X(T ∧ τε))] ≤

(
A

c1
+ V1(X(0))

)
ec1T . (12)

Let Ωε = {τε ≤ T}. Then, from (8) we have, P(Ωε) ≥ δ. On the other hand, from
(9), we have V1(X(T ∧ τe)) > 0, thus

E [V1(X(T ∧ τε))] =E [1ΩεV1(X(T ∧ τε)] + E
[
1ΩCε

V1(T ∧ τε)
]

≥E [1ΩεV1(X(τε))] , (13)

where 1Ωε is the characteristic function of Ωε. For every ω ∈ Ωε some component
of (X(τε, ω)) is equal to ε, or 1/ε, then

V1(X(τε)) ≥
1

ε
, (14)

Combining (12)-(14) yields(
A

c1
+ V1(X(0))

)
ec1T ≥ E [1ΩεV1(X(τε))] ≥

1

ε
P (Ωε) ≥

δ

ε

Letting ε goes to 0 we obtain

∞ >

(
A

c1
+ V1(X(0))

)
ec1T =∞,

which is a contradiction, and therefore we must have τe = ∞ a.s. Consequently
S(t), I(t) and Q(t) are positive and global.

3. Stochastic permanence. In this section, we will investigate the stochastic
permanence of (2). First of all, we present the following definitions introduced in
[13].

Definition 3.1. The solutions of SDE (2) are called stochastically ultimately
bounded, if for any ε̃ ∈ (0, 1), there is a positive constant χ(= χ(ε̃)), such that
the solution of SDE (2) with any positive initial value has the property that

lim sup
t→∞

P(|X(t)| > χ) ≤ ε̃.

Definition 3.2. SDE (2) is said to be stochastically permanent if for any ε̃ ∈ (0, 1),
there exist positive constants χ(= χ(ε̃)), δ(= δ(ε̃)), such that

lim inf
t→∞

P(|X(t)| ≤ χ) ≥ 1− ε̃, lim inf
t→∞

P(|X(t)| ≥ δ) ≥ 1− ε̃.
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Theorem 3.3. The solutions of model SDE (2) are stochastically ultimately bound-
ed for any initial value X(0) ∈ R3

+.

Proof. The total population is denoted by N(t) = S(t)+ I(t)+Q(t). Consider a C2

function V2 = ϑp2, where ϑ2(X) = 1 + N and p a positive real to be chosen below.
By Itô’s formula we have

dV2(t) =pϑp−1
2 (t)[A− µN(t)− α2I(t)− α3Q(t)]dt

+
p(p− 1)

2
ϑp−2

2 (t)[σ2
1S

2(t) + σ2
2I

2(t) + σ2
3Q

2(t)]dt

+ pϑp−1
2 (t)[σ1S(t)dB1(t) + σ2I(t)dB2(t) + σ3Q(t)dB3(t)]. (15)

Integrating (15) from 0 to t and taking expectations of both sides and using Fubini’s
Theorem, we obtain that

E(V2(t))− V2(0) =p

∫ t

0

E(ϑp−1
2 (u)[A+ µ− µϑ2(u)− α2I(u)− α3Q(u)])du

+ p

∫ t

0

E
(
p− 1

2
ϑp−2

2 (u))[σ2
1S

2(u) + σ2
2I

2(u) + σ2
3Q

2(u)]

)
du.

Then we have

dE(V2(t))

dt
=pE(ϑp−1

2 (t)[A+ µ− µϑ2(t)− α2I(t)− α3Q(t)])

+
p(p− 1)

2
E[ϑp−2

2 (t)(σ2
1S

2(t) + σ2
2I

2(t) + σ2
3Q

2(t))].

Let σ2 = max(σ2
2 , σ

2
2 , σ

2
3) and p > 1. Since I,Q > 0, we obtain

dE(V2(t))

dt
≤ p

[(
p− 1

2
σ2 − µ

)
E(ϑp2(t)) + (A+ µ)E(ϑp−1

2 (t))

]
.

We choose p such that 1 < p < 1 + 2µ
σ2 , and using the fact that x 7→ E(|.|x)

1
x is

increasing for all x > 0 (see [23, page 23]). Consequently we have

dE(V2(t))

dt
≤p
[
−
(
µ− p− 1

2
σ2

)
[E(ϑp−1

2 (t))]
p
p−1 + (A+ µ)E(ϑp−1

2 (t))

]
≤pE(ϑp−1

2 ((t))

[
(A+ µ)−

(
µ− p− 1

2
σ2

)
[E(ϑp−1

2 (t))]
1
p−1

]
Let, ϑ(t) = E(ϑp−1

2 (t)), then we have

d(V2(t))

dt
≤ pϑ(t)

[
(A+ µ)−

(
µ− p− 1

2
σ2

)
ϑ

1
p−1 (t)

]
.

We recall that the solution of ODE defined as follow{
dϑ(t) = pϑ(t)

[
(A+ µ)−

(
µ− p−1

2 σ2
)
ϑ

1
p−1 (t)

]
,

ϑ(0) = V2(0)

is

ϑ(t) =

[
2µ− (p− 1)σ2

2(A+ µ)
+

(
1

V2(0)
− 2µ− (p− 1)σ2

2(A+ µ)

)
e−(A+µ)t

]−(p−1)

,

which leads to

ϑ(t)→
[

2(A+ µ)

2µ− (p− 1)σ2

]p−1

, as t→∞.
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Then by a comparison theorem we have

lim sup
t→∞

E(V2(t)) ≤
[

2(A+ µ)

2µ− (p− 1)σ2

]p−1

:= L(p),

Which implies that there exists a T > 0, such that

E(V2(t)) ≤ 2L(p), t > T.

Since the function E(V2(t)) is continuous, we deduce that there exists a constant
` > 0 such that for all t > 0,

E(1 +N(t))p = E(V2(t)) ≤ `. (16)

We choose a constant χ sufficiently large such that `
χp < 1. Using Chebyshev’s

inequality, we have

P(|X(t)| > χ) ≤ P((1 +N(t))p) > χp) ≤ 1

χp
E((1 +N(t))p),

and this implies that

lim sup
t→∞

P(|X(t)| > χ) ≤ `

χp
:= ε̃. (17)

Theorem 3.4. The SDE (2) is stochastically permanent for any initial value
X(0) ∈ R3

+.

Proof. Its easy to see that inequality (17) leads to

lim inf
t→∞

P(|X(t)| ≤ χ) ≤ 1− ε̃.

Then to complete the proof we need to show lim inf
t→∞

P(|X(t)| ≥ δ) ≤ 1− ε̃.
By the Itô formula, we have

d

(
1

N(u)

)
=−N−2(u)[A− µN(u)− α2I − α3Q(u)]du

+N−3(u)[σ2
1S(u)2 + σ2

2I(u)2 + σ2
3Q(u)2]du

−N−2(u)[σ1S(u)dB1(u) + σ2I(u)dB2(u) + σ3Q(u)dB3(u)]. (18)

Integrating (18) from 0 to t, taking expectations of both sides and using Fubini’s
Theorem, we obtain

E
(

1

N(u)

)
−
(

1

N(0)

)
=

∫ t

0

E
(
N−2(u)[−A+ µN(u) + α2I(u) + α3Q(u)]

)
du

+

∫ t

0

E
(
N−3(u)[σ2

1S
2(u) + σ2

2I
2(u) + σ2

3Q
2(u)]

)
du.

Then we have

dE(N−1(t))

dt
=E

(
N−2(t)[−A+ µN(t) + α2I(t) + α3Q(t)]

)
+ E

(
N−3(t)[σ2

1S
2(t) + σ2

2I
2(t) + σ2

3Q
2(t)]

)
≤−AE(N−2(t)) + (µ+ α2 + ε+ σ2)E(N−1(t))

≤−A[E(N−1(t))]2 + (µ+ α2 + ε+ σ2)E(N−1(t))

=E(N−1(t))((µ+ α2 + ε+ σ2)−A[E(N−1(t))]).
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Therefore, letting z(t) = E(N−1(t)),

dz(t)

dt
≤ z(t)[(µ+ α2 + ε+ σ2)−Az(t)].

Recall that the solution of the following ODE{
dz(t)
dt = z(t)[(µ+ α2 + ε+ σ2)−Az(t)],
z(0) = 1

N(0) ,

is given by

z(t) =
1

A
µ+α2+ε+σ2 +

(
N(0)− A

µ+α2+ε+σ2

)
e
−( A

µ+α2+ε+σ2
)t
.

Therefore

lim
t→∞

z(t) =
µ+ α2 + ε+ σ2

A
:= l.

Thus by the comparison theorem we obtain

lim sup
t→∞

E
(

1

N(t)

)
≤ l.

By the same approach as before we deduce that there is a positive real number `′

such that for all t > 0

E
(

1

N(t)

)
≤ `′.

Besides, we choose δ sufficiently small such that
√

3δ`′ < 1. By Chebyshev’s in-
equality and using the inequality N2 ≤ 3|X|2 we deduce that

P(|X| ≤ δ) = P
(

1

|X|
≥ 1

δ

)
≤ δE

(
1

|X(t)|

)
≤ δE

( √
3

N(t)

)
≤
√

3δ`′ := ε̃.

Hence

lim sup
t→∞

P(|X| < δ) ≤ ε̃,

which implies that

lim inf
t→∞

P(|X| ≥ δ) ≥ 1− ε̃.

4. Investigation of a stochastic threshold. In this section, we investigate a
stochastic threshold between the extinction and the persistence in mean of the
stochastic system (2).

Lemma 4.1. Let (S(t), I(t), Q(t)) be a solution of system (2) with any initial value
(S(0), I(0), Q(0)) ∈ R3

+, then

lim
t→∞

S(t)

t
= lim
t→∞

I(t)

t
= lim
t→∞

Q(t)

t
= 0 a.s. (19)

Proof. From (15) and for all p such that 1 < p < 1 + 2µ
σ2 , we can derive that

d(V2(s)) ≤p
[
Aϑp−1

2 (s) +
(p− 1)σ2

2
ϑp2(s)

]
ds

pϑp−1
2 (s)[σ1S(s)dB1(s) + σ2I(s)dB2(s) + σ3Q(s)dB3(s)],
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which implies that

E
(

sup
k≤u≤k+1

V2(u)

)
≤ EV2(k) + p

∫ k+1

k

E
[
Aϑp−1

2 (s) +
(p− 1)σ2

2
ϑp2(s)

]
ds

+ pE
(

sup
k≤u≤k+1

[∫ u

k

ϑp−1
2 (s)[σ1S(s)dB1(s) + σ2I(s)dB2(s) + σ3Q(s)dB3(s)

])
.

(20)

Let a be a positive real number such that 1 − 4apσ2 > 1
2 . By Burkholder-Davis-

Gundy’s inequality (see [23]) and Hölder’s inequality, we derive that

E
(

sup
k≤u≤k+1

[∫ u

k

ϑp−1
2 (s)(σ1S(s)dB1(s) + σ3I(s)dB2(s) + σ3Q(s)dB3(s))

])

≤ 4
√

2

[∫ k+1

k

(
ϑ

2(p−1)
2 (s)[σ2

1S
2(s) + σ2

2I
2(s) + σ2

3Q
2(s)]

)
ds

] 1
2

≤ 4
√

2σ2E

[∫ k+1

k

ϑ2p
2 (s)ds

] 1
2

≤ 4
√

2σ2E

[
sup

k≤s≤k+1
ϑp2(s)

∫ k+1

k

ϑp2(s)ds

] 1
2

≤ 4σ2E

(a sup
k≤s≤k+1

ϑp2(s)

)2

+

(
1

a

∫ k+1

k

ϑp2(s)ds

)2
 1

2

≤ 4aσ2E
(

sup
k≤s≤k+1

ϑp2(s)

)
+

4

a
σ2

∫ k+1

k

Eϑp2(s)ds

= 4aσ2E
(

sup
k≤s≤k+1

V2(s)

)
+

4

a
σ2

∫ k+1

k

EV2(s)ds.

This together with (20) and (16) means that there is a constant H > 0 such that

E
(

sup
k≤u≤k+1

V2(u)

)
≤ 2`

[
1 + p

(
A+

p− 1

2
σ2 +

4

a
σ2

)]
:= H, k = 1 , 2, . . .

Let ε > 0 be arbitrary. Then, by Chebyshev’s inequality, we have

P
(

sup
k≤u≤k+1

V2(u) > k1+ε

)
≤ H

k1+ε
, k = 1 , 2, . . .

Now, the Borel-Cantelli Lemma implies that, with probability 1, we have

sup
k≤u≤k+1

V2(u) ≤ k1+ε,

for all but finitely many k. Thus for almost all ω ∈ Ω, there exists a positive integer
k0(ω) such that

sup
k≤u≤k+1

V2(u) ≤ k1+ε, whenever k ≥ k0.

Hence, for almost all ω ∈ Ω, if k ≥ k0 and k ≤ t ≤ k + 1, we obtain

log(N(t))p

log(t)
≤ log(1 +N(t))p

log(t)
≤ (1 + ε) log(k)

log(k)
= 1 + ε.
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Letting ε→ 0, we obtain

lim sup
t→∞

log(N(t))

log(t)
≤ 1

p
a.s.

Then, for any arbitrarily small positive constant ε1(ε1 < 1− 1
p ), there exist a constant

T1(ω) and a set Ω1, such that P(Ω1) ≥ 1− ε1 and for t ≥ T1(ω), ω ∈ Ω1

log(N(t))

log(t)
≤ 1

p
+ ε1.

Hence

lim sup
t→∞

N(t)

t
≤ lim sup

t→∞

t
1
p+ε1

t
= 0 a.s.

By Theorem 2.1, the solution (S(t), I(t), Q(t)) with positive initial value will remain
in R3

+, and

lim
t→∞

S(t)

t
= lim
t→∞

I(t)

t
= lim
t→∞

Q(t)

t
= 0 a.s.

Lemma 4.2. Let (S(t), I(t), Q(t)) be a solution of system (2) with an initial value
(S(0), I(0), Q(0)) ∈ R3

+. Then

lim
t→∞

1

t

∫ t

0

S(u)dB1(u) = lim
t→∞

1

t

∫ t

0

I(u)dB2(u) = lim
t→∞

1

t

∫ t

0

Q(u)dB3(u) = 0 a.s.

(21)

Proof. The proof is analogous to [30].

4.1. Extinction. In this section, we shall establish sufficient conditions for extinc-
tion of the disease in the stochastic model (2). In the sequel, we set < f(t) >=
1
t

∫ t
0
f(u)du.

Theorem 4.3. Let (S(t), I(t), Q(t)) be a solution of system (2) with initial value
(S(0), I(0), Q(0)) ∈ R3

+. Then, if RS < 1, the disease of system (2) will go to
extinction almost surely, i.e.,

lim
t→∞

I(t) = 0 a.s.

Moreover

lim
t→∞
〈Q(t)〉 = 0 a.s and lim

t→∞
< S(t) >=

A

µ
a.s.

Proof. By Itô’s formula, we have

d(log(I(t)) =

(
βS(t)

1 + rI(t)
− (µ+ α2 + δ + γ)− σ2

2

2

)
dt+ σ2dB2(t). (22)

Integrating both sides of (22) from 0 to t and dividing by t,

log(I(t))

t
=

log(I(0))

t
+

〈
βS(t)

1 + rI(t)

〉
−
(
µ+ α2 + δ + γ +

σ2
2

2

)
+ σ2

B(t)

t
. (23)

By Theorem 2.1, the solution (S(t), I(t), Q(t)) with positive initial value will remain
in R3

+, leads that

log(I(t))

t
≤ log(I(0))

t
+ β < S(t) > −

(
(µ+ α2 + δ + γ) +

σ2
2

2

)
+ σ2

B(t)

t
. (24)
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Define the function

φ1(t) = S(t) + I(t) +
ε

µ+ α3 + ε
Q(t).

From the system (2), we obtain

dφ1(t) =

[
A− µS(t) +

(
εδ

µ+ α3 + ε
− (µ+ α2 + δ)

)
I(t)

]
dt

+ σ1S(t)dB1(t) + σ2I(t)dB2(t) +
σ3εδ

µ+ α3 + ε
Q(t)dB3(t).

By integration we deduce that

< S(t) >=
A

µ
+

(
εδ

µ(µ+ α3 + ε)
− µ+ α2 + δ

µ

)
< I(t) > +

Ψ1(t)

t
. (25)

where

Ψ1(t) =
1

µ
(σ1

∫ t

0

S(u)dB1(u)du+ σ2

∫ t

0

I(u)dB2(u)du

+
σ3εδ

µ+ α3 + ε

∫ t

0

Q(u)dB3(u)du+ φ1(0)− φ1(t)).

It is easy to see that

< S(t) >≤ A

µ
+

Ψ1(t)

t
. (26)

Using (24) into (26), we obtain

log(I(t))

t
≤ log(I(0))

t
+
βA

µ
−
(
µ+ α2 + δ + γ +

σ2
2

2

)
+ σ2

B(t)

t
+ β

Ψ1(t)

t

=
log(I(0))

t
+ (µ+ α2 + δ + γ)(RS − 1) + σ2

B(t)

t
+ β

Ψ1(t)

t
. (27)

Taking into account now the law of large numbers and Lemma 4.1 and Lemma 4.2,

we have lim
t→∞

B(t)
t = 0 and

lim
t→∞

Ψ1(t)

t
= 0. (28)

This together with (27) implies that

lim sup
t→∞

log(I(t))

t
≤ (µ+ α2 + δ + γ)(RS − 1),

which leads to
lim
t→∞

I(t) = 0 a.s. (29)

From the third equation of system (2) we deduce that

Q(t)−Q(0)

t
= δ〈I(s)〉 − (µ+ α3 + ε)〈Q(t)〉+

σ3

t

∫ t

0

Q(s)dB(s).

From lemma (4.2) and (29). Hence, we conclude that

lim
t→∞
〈Q(t)〉 = 0 a.s. (30)

Using (25), (28), (29) and Lemmas 4.1 and 4.2 we obtain

lim
t→∞

< S(t) >=
A

µ
a.s.
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4.2. Persistence in mean. To study the persistence of the disease, we need the
following lemmas presented in [12].

Lemma 4.4. Let f ∈ C[[0,∞) × Ω, (0,∞)]. If there exist positive constants λ0, λ
such that

log(f(t)) ≥ λt− λ0

∫ t

0

f(t)dt+ F (t), a.s.

for all t ≥ 0, where F (t) ∈ C[[0,∞)× Ω,R] and lim
t→∞

F (t)

t
= 0 a.s. Then

lim
t→∞

1

t

∫ t

0

f(t)dt ≥ λ

λ0
a.s.

Lemma 4.5. Let f ∈ C[[0,∞) × Ω, (0,∞)]. If there exist positive constants λ0, λ
such that

log(f(t)) ≤ λt− λ0

∫ t

0

f(t)dt+ F (t), a.s.

for all t ≥ 0, where F (t) ∈ C[[0,∞)× Ω,R] and lim
t→∞

F (t)

t
= 0 a.s. Then

lim
t→∞

1

t

∫ t

0

f(t)dt ≤ λ

λ0
a.s.

Theorem 4.6. Let (S(t), I(t), Q(t)) be a solution of system (2) starting from a
positive data (S(0), I(0), Q(0)). If RS > 1, then the disease will be persistent in
mean. Moreover we have

lim
t→∞

< I(t) >=
(µ+ α2 + δ + γ)(RS − 1)(

γ + δε
µ+α3+ε

)
r + (µr + β)

(
µ+α2

µ + (µ+α3)δ
µ(µ+α3+ε)

) , (31)

lim
t→∞

< S(t) >=
A

µ
+

(
εδ

µ(µ+α3+ε) −
µ+α2+δ

µ

)
(µ+ α2 + δ + γ)(RS − 1)(

γ + δε
µ+α3+ε

)
r + (µr + β)

(
µ+α2

µ + (µ+α3)δ
µ(µ+α3+ε)

) , (32)

lim
t→∞

< Q(t) >=
δ(µ+ α2 + δ + γ)(RS − 1)

(γ + δε)(µ+ α3 + ε) r + (µr + β)
(

(µ+α2)(µ+α3+ε)
µ + (µ+α3)δ

µ

) .
(33)

Proof. Define a function

φ2(t) = S(t) +
ε

µ+ α3 + ε
Q(t).

Let

M1(t) = σ1

∫ t

0

S(u)dB(u), M2(t) = σ2

∫ t

0

I(u)dB(u),

and

M3(t) = σ3

∫ t

0

R(u)dB(u).

Integrating the first and the third equation of system (2), we obtain

φ2(t)− φ2(0)

t
=A−

(
µ+

β

r

)
< S(t) > +

β

r

〈
S(t)

1 + rI(t)

〉
+
M1(t)

t

+

(
γ +

δε

µ+ α3 + ε

)
< I(t) > +

ε

µ+ α3 + ε

M3(t)

t
. (34)
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Combining (23), (25) and (34) we compute that

log(I(t))

t
=
Aβ

µ
−
(
µ+ α2 + δ + γ +

σ2
2

2

)
+
F (t)

t

−r
[
γ+

δε

µ+α3+ε
+

(
µ+

β

r

)(
µ+α2

µ
+

(µ+α3)δ

µ(µ+α3+ε

)]
< I(t) >

=−
[(
γ+

δε

µ+α3+ε

)
r+(µr+β)

(
µ+α2

µ
+

(µ+ α3)δ

µ(µ+α3+ε

)]
< I(t) >

+ (µ+ α2 + δ + γ)(RS − 1) +
F (t)

t
, (35)

where

F (t) = log(I(0)) +

(
µr

β
+ 1

)
φ2(t) +

r

β

(
M1(t) +

ε

µ+ α3 + ε
M3(t)

)
.

Using Lemma 4.4 and Lemma 4.5 we deduce assertion (31). Combining (25),(28)
and (31) we obtain assertion (32). Integrating now the third equation of system
(2),

Q(t)−Q(0)

t
= δ < I(t) > −(µ+ α3 + ε) < Q(t) >,

making t go to ∞ and using (31) and Lemma 4.1 we obtain the desired assertion
(33).

5. Numerical simulations. To illustrate numerically [10, 15] our theoretical re-
sults, we consider a realistic infective disease as pneumococcus which is a bacterium
infecting the area of the upper throat named the nasopharynx which can be trans-
mitted by direct contact as coughs and sneezes of an infected person. Usually
antibiotics were necessarily used to treat pneumococcus infections. Therefore a
resistance has increased across the time against this treatment. For this matter
vaccines have been developed to cure the infection. We consider a population of
children under 2 years of age in Scotland (see [19]). Due to direct spread of the dis-
ease, we consider the quarantine measurement as a tool to control the transmission
of the Pneumococcus infection as their immune systems are not sufficiently well
developped. In the following, we choose initial values S(0) = 156015, I(0) = 1990
and Q(0) = 995 and the time step ∆t = 10−3. For the parameters we take the same
values as Zhang et al. in [30] as follows.

A β µ γ ε
206.04 2.865× 10−7 1.3736× 10−3 0.02011 0.1

Table 1. Table of parameter used in the numerical simulation.

Numerical simulations are performed using different values of α2, α3, σ1, σ2, σ3,
and δ.
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Extinction when RS < 1.

Example 1 (µ > σ2/2). We choose the parameters r = 0.0001, α2 = 0.001, α3 =
0.011, σ1 = 0.001, σ2 = 0.052, σ3 = 0.02, to get, R0 = 1.0116 and RS = 0.9797.
Hence, according to Theorem 4.3, ifRs < 1, for the positive solution (S(t), I(t), Q(t))
of the system (2) the disease will extinct a.s. Fig 1 clearly support the theoreti-
cal result. Therefore, we illustrated the same parameters simulated in [30] for the
bilinear incidence rate.
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Figure 1. Paths of stochastic and deterministic systems as given
in Example 1

Example 2 (µ ≤ σ2/2). We choose parameters r = 0.0001, α2 = 0.006, α3 =
0.001, δ = 0.015, σ1 = 0.001, σ2 = 0.15, σ3 = 0.2, In this case, R0 = 1.0116
and RS = 0.7468 < 1. Hence, according to Theorem 4.3, if the condition on the
stochastic threshold is fulfilled for the positive solution (S(t), I(t), Q(t)). The pneu-
mococcus disease goes to extinction a.s. as illustrated in Fig 2. Thus, the simulation
clearly support the theoretical result which alleviate the condition mentioned in the
previous example on the volatility for the stochastic epidemic model (2) with the
saturated incidence rate.

Persistence when RS > 1.

Example 3 (µ > σ2/2). We choose parameters r = 0.001, α2 = 0.0001, α3 =
0.001, δ = 0.005, σ1 = 0.001, σ2 = 0.006, σ3 = 0.02, to get, R0 = 1.6166 and RS =
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Figure 2. Paths of stochastic and deterministic systems as given
in Example 2

1.5696 > 1. Hence, according to Theorem 4.6, the positive solution (S(t), I(t), Q(t))
of the stochastic system (2) is persistent in mean. Obviously, the numerical simula-
tion results, see Fig 3, are consistent with the conclusions of our Theorem 4.6. The
numerical simulation of the Pneumococcus disease with quarantine measurement
were performed for the incidence rate r under a condition on the volatility and the
stochastic threshold to generalize the bilinear case in [30].

Example 4 (µ ≤ σ2/2). r = 0.001, α2 = 0.001, α3 = 0.001, δ = 0.007, σ1 =
0.001, σ2 = 0.06, σ3 = 0.05, to get, R0 = 1.4576 and RS = 1.3965 > 1. Hence,
according to Theorem 4.6, the disease will persist a.s. as illustrated in Fig 4 .
The performed simulation for the pneumococcus disease support our theoretical
result where we assumed that the persistence will hold in a population of children
under two years if the condition on the stochastic threshold is ensured regardless of
the intensity of the white noise and the considered quarantine tool to control the
transmission of the disease for a saturated incidence rate.

5.1. The quarantine effect.

Example 5. In this example, choose steep ∆ = 0.1 with initial values S(0) =
100015, I(0) = 57990, Q(0) = 995, and the parameters r = 0, α2 = 0.005, α3 =
0, δ = [0.0009 0.005 0.015], σ1 = 0.001, σ2 = 0.18, σ3 = 0.01, to get, R0 =
[1.5694 1.3650 1.0360] and RS = [0.9778 0.8504 0.6454]. Hence, according to
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Figure 3. Paths of stochastic and deterministic systems as given
in Example 3

Theorem 4.3, all positive solutions of the system (2) if Rs < 1 the disease extinct
a.s. Fig 5a clearly support the theoretical result. The presented illustration for
the extinction of the Pneumococcus disease shows the impact of the quarantine
measurement upon the time of the stochastic epidemic model. Thus the adopted
strategy of increasing the isolation measure will lead to a quick extinction of the
disease.

Example 6. In this example, we choose step ∆ = 0.01 with initial values S(0) =
156015, I(0) = 1990, Q(0) = 995 and the parameters r = 0, α2 = 0.001, α3 =
0, δ = [0 0.005 0.01], σ1 = 0.01, σ2 = 0.02, σ3 = 0.01. By computation, we
get that, R0 = [2, 004 1, 6227 1.3650] and RS = [1.9911 1.6152 1.3586]. Hence,
according to Theorem 4.6, all positive solutions of the system (2) are persistent in
mean in both cases of no quarantine measure taken and the use of isolation with
different rate of individuals leaving the infected compartment I to the quarantine
Q. Fig 5b clearly support the theoretical result. The performed simulation shows
the role of the isolation measurement to maintain the persistence of the disease
under a reasonable number of infected for a population of children under two years
in Scotland. In other words, as the adoption of the quarantine method has been
proven efficient for the limitation of the disease spread.
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Figure 4. Paths of stochastic and deterministic systems as given
in Example 4
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(a) Paths of stochastic and deterministic
systems as given in Example 5
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Figure 5. Effect of quarantine

Concluding remarks and discussions. In this paper we have established the
existence and uniqueness of the global positive solution for a stochastic solution
SIQS epidemic model with saturated incidence rate. We showed the solutions are
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ultimately bounded and stochastic permanence for the stochastic SIQS model.We
investigated the extinction and persistence of the disease according to the stochastic
threshold RS . Our main motivation was to alleviate the assumptions on the thresh-
old in the extinction and the persistence in mean cases. Throughout this paper,
this work provides theoretical and numerical guidance for prevention and control of
infectious diseases such as pneumococcus. More precisely the results show that the
stochastic threshold Rs completely determines the global behavior of the stochastic
SIQS model; if Rs < 1 the diseases goes to extinction; if Rs > 1 the disease will
persist in mean. Thus, if the stochastic threshold condition is fulfilled, the adopted
strategy of increasing the isolation measure will lead to a quick extinction of the
disease. However if there is a lack of mobilization from the government health policy
to use this tool, the disease will take time to be extinct.
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